CN109165622B - 基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法 - Google Patents

基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法 Download PDF

Info

Publication number
CN109165622B
CN109165622B CN201811035948.5A CN201811035948A CN109165622B CN 109165622 B CN109165622 B CN 109165622B CN 201811035948 A CN201811035948 A CN 201811035948A CN 109165622 B CN109165622 B CN 109165622B
Authority
CN
China
Prior art keywords
ground
glia
area
satellite
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811035948.5A
Other languages
English (en)
Other versions
CN109165622A (zh
Inventor
王桂杰
吴维伦
叶圣生
胡洪涛
郭海朋
王云龙
臧西胜
秦同春
朱菊艳
王海刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA GEOLOGICAL ENVIRONMENTAL MONITORING INSTITUTE
Original Assignee
CHINA GEOLOGICAL ENVIRONMENTAL MONITORING INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA GEOLOGICAL ENVIRONMENTAL MONITORING INSTITUTE filed Critical CHINA GEOLOGICAL ENVIRONMENTAL MONITORING INSTITUTE
Priority to CN201811035948.5A priority Critical patent/CN109165622B/zh
Publication of CN109165622A publication Critical patent/CN109165622A/zh
Application granted granted Critical
Publication of CN109165622B publication Critical patent/CN109165622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9023SAR image post-processing techniques combined with interferometric techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明公开了基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法,针对滑坡灾害孕灾环境的复杂地形特征及卫星侧视成像特征,在精确分析地形因子坡度、坡向及卫星成像入射角、方位角等姿态参数相互作用关系基础上,提出和建立了地形与卫星姿态参数据响应关系综合因子;并精确计算和模拟升降轨模式下地面每一监测点的地面局部入射角,并对地面局部入射角进行分类分析,分析其与InSAR技术干涉特性的相互影响及变化关系,并精确确定有效监测区域及无法有效监测的叠掩和阴影区域,从而实现不同复杂地形区、不同卫星侧视成像姿态参数下区域滑坡辨识监测有效监测范围的精确确定,实现时序InSAR技术区域滑坡早期动态辨识监测的精准分析。

Description

基于InSAR技术的区域滑坡早期动态识别监测有效区域确定 方法
技术领域
本发明属于航天遥感地质灾害早期动态识别监测技术领域,是解决应用干涉合成孔径雷达InSAR(Interferometric Synthetic Aperture Radar)技术进行区域滑坡早期动态识别监测时由于卫星姿态参数及复杂地形因素影响而无法全面有效覆盖又不能精确判定究竟哪些区域为有效监测区域的难题,而通过建立相关算法模型精确计算和确定有效监测区域的方法。
背景技术
近年来,干涉合成孔径雷达InSAR技术已经成为大范围长时间系列地表形变灾害调查监测的重要手段,也被广泛的应用在滑坡调查监测上,尤其是区域滑坡早期动态识别监测上已经成为国内外专家研究应用的热点。
然而,由于滑坡灾害孕灾环境的山区及高山峡谷等复杂地形特征以及合成孔径雷达SAR卫星侧视成像特征,使得无法全部有效识别监测目标山区尤其高山峡谷区,但怎样确定哪些区域为有效监测区域成为InSAR技术是否能在滑坡辨识监测领域普适应用的难点,国际相关领域的专家也对此进行了多方面的深入研究和探索。See Plank等(2012)提出基于GIS(Geographical Information System)的建模模拟方法预测分析不同卫星成像模式下影响复杂地形区滑坡辨识监测的阴影和叠掩区,2014年Notti等又在See Plank等研究基础上应用地形及卫星成像模式对Persistent Scatterer InSAR(PS-InSAR)方法下不同地面覆盖条件PS提取和获取能力的大小进行了初步探讨,取得了一定的理论成果,但由于研究过程中采用模拟预测仅给出了大致的定性分析。因此,所得结果无法精确判定有效监测区域,无法精确识别监测结果的真实有效性。
发明内容
本发明的目的在于针对滑坡灾害孕灾环境的复杂地形特征及卫星侧视成像特征,在精确分析地形因子坡度、坡向及卫星成像入射角、方位角等姿态参数相互作用关系基础上,提出和建立了地形与卫星姿态参数据响应关系综合因子——即地面局部入射角(Ground Local IncidenceAngle,GLIA)算法模型;并通过日本ALOS(The Advanced LandObservation satellite)卫星PALSAR(PhasedArray-type L-band Synthetic ApertureRadar)升降轨数据及地形DEM(Digital Elevation Model)数据,精确计算和模拟升降轨模式下地面每一监测点的地面局部入射角,并对地面局部入射角进行分类分析,详细分析其与InSAR技术干涉特性(后向散射强度系数与相干系数)的相互影响及变化关系,并精确确定有效监测区域及无法有效监测的叠掩和阴影区域,从而实现不同复杂地形区、不同卫星侧视成像姿态参数下区域滑坡辨识监测有效监测范围的精确确定,实现时序InSAR技术区域滑坡早期动态辨识监测的精准分析。
为实现上述目的,本发明采用的技术方案为基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法,该方法具体包括以下步骤:
步骤1:建立地形与卫星姿态参数据响应关系综合因子即地面局部入射角(GroundLocal IncidenceAngle,GLIA)算法模型。
对受地形坡度、坡向及卫星侧视成像轨道运行参数入射角、方位角等综合影响的地面局部入射角给出确定性的定义,并建立几何关系模型;对几何关系模型中每一参数进行定义和解释;并给出不同成像模式下参数的取值,对几何关系模型中围绕地面局部入射角形成的封闭三角形的三条矢量边进行详细的投影换算和分解;最后,依据余玄定理,根据三条边的换算标量关系,得出地面局部入射角的几何关系模型计算公式。
步骤2:地面局部入射角GLIA算法模型应用。
地面局部入射角算法模型推导出的地面局部入射角计算公式是由地面坡度
Figure BDA0001790874560000021
坡向δ及卫星入射角θ、视线向水平角ω决定的三角函数及反三角函数关系计算式。其中,地面坡度
Figure BDA0001790874560000022
及坡向δ从地形数据DEM里通过栅格计算分析提取;卫星入射角θ及视线向水平角ω从卫星数据头文件里分析提取。最后,依据步骤1推导出的GLIA计算公式并通过区域栅格数据的计算分析处理,得到研究区域每一地面监测点的地面局部入射角GLIA值,应用ALOS卫星PALSAR升降轨数据(升轨数据为ALOS-1数据、降轨数据为ALOS-2数据)和SRTM(The ShuttleRadar Topography Mission)的DEM数据,对库区坝址附近约400平方公里的滑坡易发高山峡谷区域进行地面局部入射角计算模拟,得出研究区内升降轨数据下地面局部入射角的详细分布图;为后续简化分析,将研究区内各点地面局部入射角进行分组分析,除叠掩(GLIA负值的区域,即由于地形影响该区域雷达接收的反射信号为不同点的反射叠加)和阴影(GLIA大于90°的区域,即由于该区域地形陡峭不能被雷达信号照射到的区域)区各分列一组外,其余以10°区间为一组进行划分,得出研究区升降轨数据地面局部入射角详细的分布和重分类图。
步骤3:地面局部入射角GLIA与时序InSAR干涉特性的相关性分析。
应用升降轨数据获取的地面局部入射角GLIA与应用19景升轨数据通过时序InSAR技术和应用2景降轨数据通过D-InSAR技术获取的升降轨数据平均后向散射强度系数BSC(Backward Scattering Coefficient)及平均相干系数CC(Coherence Coefficient)值进行相互作用影响关系变化分析,详细分析不同区间地面局部入射角对时序InSAR干涉特征的影响。
步骤4:可靠干涉区域即有效监测区域确定。
通过地面局部入射角GLIA与升降轨数据InSAR技术后向散射平均强度系数BSC及平均相干系数CC值的影响变化趋势分析,得出地面局部入射角GLIA与后向散射平均强度系数BSC及平均相干系数CC值的变化影响关系,详细分析不同区间的地面局部入射角所在区域的地面后向散射强度及相干性大小,并给出确定性定量结论;最后给出了当地面局部入射角处于0°-90°区间时InSAR技术所得干涉测量结果都是可靠而有效地,而当地面局部入射角处于大于90°的阴影区和小于0°的叠掩区时InSAR技术所得干涉测量结果都是不可靠而无效的。从而确定了水电库区坝址附近易发滑坡的高山峡谷区有效和无效监测区域。
得出地面局部入射角GLIA越小其干涉性能越强,且InSAR技术在山区及高山峡谷区应用的地面局部入射角GLIA最佳区间是10°-20°,且地面局部入射角GLIA在0°-90°的区间所处的区域都是InSAR技术干涉结果的有效监测范围。
与现有技术相比,本发明解决了以下两个方面的难题:
一方面,本发明精确建立了地形和卫星姿态参数综合影响因子即地面局部入射角GLIA算法模型,能够定量计算和分析地形与卫星成像姿态参数综合因子地面局部入射角GLIA对InSAR技术干涉特性的影响,精确确定了InSAR技术在高山峡谷地形复杂区域进行滑坡早期动态识别监测时的有效监测范围,提高了InSAR技术在区域滑坡早期动态辨识和监测应用上的实用性和精准性;另一方面,给出了InSAR技术进行区域滑坡早期辨识监测时地形与卫星成像姿态参数综合因子地面局部入射角GLIA的最佳范围,为应用InSAR技术进行不同区域滑坡早期动态识别监测时选用哪种模式的卫星雷达数据提供理论计算依据。
附图说明
图1本发明所涉及方法流程框架结构图;
图2地面局部入射角(GLIA)几何关系模型;
图3升轨ALOS PALSAR数据的地面局部入射角(GLIA)分布和重分类图;
图4降轨ALOS PALSAR数据的地面局部入射角(GLIA)分布和重分类图;
图5升降轨数据地面局部入射角(GLIA)与后向散射强度影响变化趋势图;
图6升降轨数据地面局部入射角(GLIA)与相干系数影响变化趋势图;
图7库区坝址附近采用时序InSAR技术的有效监测区域确定分布图。
具体实施方式
下面将结合附图和算法对本发明作进一步的详细说明。
如图1-7所示,本发明所涉及方法流程框架结构如附图1所示,包括以下步骤:
步骤1:建立地形与卫星姿态参数据响应关系即地面局部入射角(GLIA)算法模型。
地面局部入射角是侧视合成孔径雷达对地成像时雷达电磁波的入射方向与地面点的法线方向之间的夹角,该夹角是由雷达对地成像时卫星传感器的入射角、方位角及地面成像点的坡度、坡向所决定,如附图1所示。
附图2中,θ为卫星传感器的入射角,
Figure BDA0001790874560000041
为地面点的坡度角,θloc即为地面局部入射角GLIA;δ和ω分别为地面点的坡向角和卫星视线向的水平角,以正北方向为0°方向,以顺时针旋转为正方向。图中
Figure BDA0001790874560000042
Figure BDA0001790874560000043
分别为卫星视线向矢量、地面点法线向矢量,以及卫星视线向矢量、地面点法线向矢量的合矢量。
对于视线向水平角ω,当卫星传感器右视成像时,取值为:ω=卫星方位角+90°;当卫星传感器左视成像时,取值为:ω=卫星方位角-90°。由于应用的雷达数据多采用右视成像,因此,右视成像中,附图1为右视成像的地面局部入射角GLIA几何关系模型。
将附图2中视线向矢量
Figure BDA0001790874560000044
分别投影到X、Y、Z方向,结果如下:
Figure BDA0001790874560000045
Figure BDA0001790874560000046
Figure BDA0001790874560000047
其中,XVs、YVs、ZVs分别为矢量
Figure BDA0001790874560000048
在X、Y、Z方向的投影值。
地面点法线矢量
Figure BDA0001790874560000049
分别投影到X、Y、Z方向,结果如下:
Figure BDA00017908745600000410
Figure BDA00017908745600000411
Figure BDA00017908745600000412
其中,XVn、YVn、ZVn分别为矢量
Figure BDA00017908745600000413
在X、Y、Z方向的投影值。
Figure BDA00017908745600000414
矢量在X、Y、Z方向的投影结果如下:
XVa=XVn+XVs
(7)
YVa=YVn+YVs
(8)
ZVa=ZVn+ZVs
(9)
其中,XVa、YVa、ZVa分别为矢量
Figure BDA0001790874560000051
在X、Y、Z方向的投影值。
应用余弦定理可得如下:
Figure BDA0001790874560000052
因此,推导地面局部入射角GLIA模型计算公式如下:
Figure BDA0001790874560000053
步骤2:地面局部入射角算法模型应用。
应用ALOS卫星PALSAR升降轨数据(升轨数据为ALOS-1数据、降轨数据为ALOS-2数据)对水电库区坝址附近约400平方公里滑坡易发区应用上述模型公式及计算分析进行地面局部入射角GLIA提取,其中,地面每一观测点的入射角θ和卫星视线向水平角ω能够通过ALOS PALSAR升降轨数据进行分析和提取,而坡度角和坡向角从30米分辨率的SRTM DEM数据中通过栅格计算获取
依据公式(11),研究区每一地面点的地面局部入射角被获取,升降轨数据地面局部入射角的范围分别为26.58–101.97°(升轨)和32.51–116.50°(降轨),其中,地面局部入射角GLIA为负值的区域为叠掩区,而大于90°的区域为阴影区,研究区内每一点的地面局部入射角的值是不同的。为了简化后续分析,将地面局部入射角以10°区间为1组进行划分,叠掩和阴影区域分别分列,因此,在研究区升降轨数据地面局部入射角都分别被划为11组,其地面局部入射角详细的分类及划分见附图3和附图4所示。
至此,应用ALOS PALSAR升降轨数据通过步骤1所建立的算法模型,水电站库区坝址附近滑坡易发区地面局部入射角GLIA被详细的计算和分析。
步骤3:地面局部入射角GLIA与InSAR技术干涉特性的影响关系分析。
步骤3.1:地面局部入射角GLIA与后向散射强度的影响关系分析
为了获取地面局部入射角GLIA与InSAR技术后向散射强度的关系,应用上述升轨19景ALOS-1PALSAR数据通过时序InSAR技术与应用上述降轨2景ALOS-2PALSAR数据通过D-InSAR技术分别获取其后向平均散射强度系数BSC,依据步骤2中地面局部入射角GLIA分组分析结果对后向散射强度系数BSC进行区域强度平均统计分析,并对其地面局部入射角(GLIA)与后向散射强度系数BSCs影响变化关系进行详细分析,其详细的影响变化变化趋势见附图5。
附图5结果表明:随着地面局部入射角GLIA增大升降轨数据的后向散射强度系数都逐渐减小。然而,对于升轨数据,当地面局部入射角GLIA小于10°区间内时其后向散射强度系数值相对高而稳定;而降轨数据,则是当地面局部入射角GLIA小于30°区间内时其后向散射强度系数相对高而稳定。而后,在地面局部入射角GLIA增至到50°-60°区间后升降轨数据都是随着地面局部入射角GLIA的增大其与后向散射强度系数BSC的影响变化梯度迅速减缓;但,叠掩区后向散射强度系数BSC值是最高的而阴影区后向散射强度系数BSC值是最低的。
步骤3.2:地面局部入射角GLIA与干涉相干性的影响关系分析
为了获取地面局部入射角GLIA与干涉相干性的关系,应用上述过时序InSAR技术获取升轨数据的平均相干系数CC与应用上述D-InSAR技术获取降轨数据的平均相干系数CC,依据步骤2中地面局部入射角GLIA分组分析结果对相干系数值进行区域平均统计分析,并对地面局部入射角(GLIA)与相干系数影响变化关系进行详细分析,其详细的影响变化趋势见附图6。
附图6结果表明:起初,随着地面局部入射角GLIA增大升降轨数据的相干系数平均值也都随之增大,至10°-20°的区间时相干系数CC平均值都达到最大;而后,随着地面局部入射角GLIA的增大相干系数CC平均值逐渐降低,然而升轨数据在地面局部入射角GLIA达到50°-60°区间以后其相干系数CC平均值又随之增大而轻微增加,而降轨数据则仍随着地面局部入射角GLIA的增大而逐渐减小。这表明,在50°-60°区间以前升降轨数据相干性随着地面局部入射角的增加变化趋势是一致的,而到达50°-60°以后升降轨数据的变化发生了相反的变化趋势。
步骤4:可靠干涉区域即有效监测区域确定。
通过以上地面局部入射角GLIA与后向散射强度系数BSC及相干系数CC影响关系的综合分析,以下结论被得出:地面局部入射角GLIA越小后向散射强度越大;同时,地面局部入射角越小其InSAR技术干涉性能越强,且地面局部入射角在10°-20°的区间时是InSAR技术在山区及高山峡谷区应用的最佳区间;当地面局部入射角GLIA处在0°-90°的区间时InSAR技术干涉结果是相对稳定而有效的,但,叠掩区(地面局部入射角小于0°)和阴影区(地面局部入射角大于90°)的干涉结果是不可靠而无效的。
因此,本发明中应用19景升轨ALOS-1数据通过时序InSAR技术获取的水电库区坝址附近区域滑坡监测干涉结果的有效监测区域如附图7所示,叠掩和阴影区为不可靠而无效的监测区域,其他区域为地面局部入射角GLIA为0°-90°的区域,为可靠而有效的监测区域。
至此,本发明基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法被完成和实现。

Claims (1)

1.基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法,其特征在于:该方法具体包括以下步骤,
步骤1:建立地形与卫星姿态参数据响应关系综合因子即地面局部入射角GLIA算法模型;
对受地形坡度、坡向及卫星侧视成像轨道运行参数入射角、方位角综合影响的地面局部入射角给出确定性的定义,并建立几何关系模型;对几何关系模型中每一参数进行定义和解释;并给出不同成像模式下参数的取值,对几何关系模型中围绕地面局部入射角形成的封闭三角形的三条矢量边进行详细的投影换算和分解;最后,依据余弦定理,根据三条边的换算标量关系,得出地面局部入射角GLIA的几何关系模型计算公式;
步骤2:地面局部入射角GLIA算法模型应用;
地面局部入射角算法模型推导出的地面局部入射角计算公式是由地面坡度
Figure FDA0003113999990000011
坡向δ及卫星入射角θ、视线向水平角ω决定的三角函数及反三角函数关系计算式;地面坡度
Figure FDA0003113999990000012
及坡向δ从地形数据DEM里通过栅格计算分析提取;卫星入射角θ及视线向水平角ω从卫星数据头文件里分析提取;最后,依据步骤1推导出的地面局部入射角的几何关系模型计算公式并通过区域栅格数据的计算分析处理,得到研究区域每一地面监测点的地面局部入射角GLIA值,应用ALOS卫星PALSAR升降轨数据即升轨数据为ALOS-1数据、降轨数据为ALOS-2数据和SRTM的DEM数据,对滑坡易发高山峡谷区域进行地面局部入射角计算模拟,得出升降轨数据下地面局部入射角的详细分布图;为后续简化分析,将研究区内各点地面局部入射角进行分组分析,除叠掩即GLIA负值的区域,即由于地形影响该区域雷达接收的反射信号为不同点的反射叠加和阴影即GLIA大于90°的区域,即由于该区域地形陡峭不能被雷达信号照射到的区域区各分列一组外,其余以10°区间为一组进行划分,得出研究区升降轨数据地面局部入射角详细的分布和重分类图;
步骤3:地面局部入射角GLIA与时序InSAR干涉特性的相关性分析;
应用升降轨数据获取的地面局部入射角GLIA与应用19景升轨数据通过时序InSAR技术和应用2景降轨数据通过D-InSAR技术获取的升降轨数据平均后向散射强度系数BSC及平均相干系数CC值进行相互作用影响关系变化分析,分析不同区间地面局部入射角对时序InSAR干涉特征的影响;
步骤4:可靠干涉区域即有效监测区域确定;
通过地面局部入射角GLIA与升降轨数据InSAR技术后向散射平均强度系数BSC及平均相干系数CC值的影响变化趋势分析,得出地面局部入射角GLIA与后向散射平均强度系数BSC及平均相干系数CC值的变化影响关系,详细分析不同区间的地面局部入射角所在区域的地面后向散射强度及相干性大小,并给出确定性定量结论;最后给出了当地面局部入射角处于0°-90°区间时InSAR技术所得干涉测量结果都是可靠而有效地,而当地面局部入射角处于大于90°的阴影区和小于0°的叠掩区时InSAR技术所得干涉测量结果都是不可靠而无效的;从而确定水电库区坝址附近易发滑坡的高山峡谷区有效和无效监测区域;
得出地面局部入射角GLIA越小其干涉性能越强,且InSAR技术在山区及高山峡谷区应用的地面局部入射角GLIA最佳区间是10°-20°,且地面局部入射角GLIA在0°-90°的区间所处的区域都是InSAR技术干涉结果的有效监测范围;
θloc即为地面局部入射角GLIA;以正北方向为0°方向,以顺时针旋转为正方向;
Figure FDA0003113999990000021
Figure FDA0003113999990000022
分别为卫星视线向矢量、地面点法线向矢量,以及卫星视线向矢量、地面点法线向矢量的合矢量;
对于视线向水平角ω,当卫星传感器右视成像时,取值为:ω=卫星方位角+90°;当卫星传感器左视成像时,取值为:ω=卫星方位角-90°;由于应用的雷达数据多采用右视成像,因此,右视成像中将视线向矢量
Figure FDA0003113999990000023
分别投影到X、Y、Z方向,结果如下:
Figure FDA0003113999990000024
Figure FDA0003113999990000025
Figure FDA0003113999990000026
其中,XVs、YVs、ZVs分别为矢量
Figure FDA0003113999990000027
在X、Y、Z方向的投影值;
地面点法线矢量
Figure FDA0003113999990000028
分别投影到X、Y、Z方向,结果如下:
Figure FDA0003113999990000029
Figure FDA00031139999900000210
Figure FDA00031139999900000211
其中,XVn、YVn、ZVn分别为矢量
Figure FDA0003113999990000031
在X、Y、Z方向的投影值;
Figure FDA0003113999990000032
矢量在X、Y、Z方向的投影结果如下:
XVa=XVn+XVs
(7)
YVa=YVn+YVs
(8)
ZVa=ZVn+ZVs
(9)
其中,XVa、YVa、ZVa分别为矢量
Figure FDA0003113999990000033
在X、Y、Z方向的投影值;
应用余弦定理可得如下:
Figure FDA0003113999990000034
因此,推导地面局部入射角GLIA模型计算公式如下:
Figure FDA0003113999990000035
CN201811035948.5A 2018-09-06 2018-09-06 基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法 Active CN109165622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811035948.5A CN109165622B (zh) 2018-09-06 2018-09-06 基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811035948.5A CN109165622B (zh) 2018-09-06 2018-09-06 基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法

Publications (2)

Publication Number Publication Date
CN109165622A CN109165622A (zh) 2019-01-08
CN109165622B true CN109165622B (zh) 2021-10-01

Family

ID=64894274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811035948.5A Active CN109165622B (zh) 2018-09-06 2018-09-06 基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法

Country Status (1)

Country Link
CN (1) CN109165622B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244298B (zh) * 2019-07-26 2021-09-10 北京东方至远科技股份有限公司 一种InSAR数据升降轨联合滑坡分析方法
CN111257873A (zh) * 2020-01-15 2020-06-09 兰州大学 一种基于合成孔径雷达干涉测量的滑坡灾害隐患识别方法
CN111968230B (zh) * 2020-07-16 2021-05-04 中国自然资源航空物探遥感中心 一种区域性活动滑坡识别与圈定方法、装置和设备
CN113640758B (zh) * 2021-08-23 2022-07-19 中国科学院空天信息创新研究院 一种城市复杂环境下的sar图像定标器放置方法与系统
CN113534154B (zh) * 2021-09-16 2021-11-30 成都理工大学 一种sar视线向变形与坡度坡向敏感度计算方法
CN114186413A (zh) * 2021-12-10 2022-03-15 中国地质科学院探矿工艺研究所 一种基于地表形变和孕灾环境条件的滑坡易发性评价方法
CN114612631B (zh) * 2022-03-02 2023-06-09 自然资源部重庆测绘院 一种基于InSAR技术的高精度无漏洞DSM提取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175771A1 (en) * 2007-05-08 2011-07-21 Raney Russell K Synthetic Aperture Radar Hybrid-Quadrature-Polarity Method and Architecture for Obtaining the Stokes Parameters of Radar Backscatter
US20170010353A1 (en) * 2015-07-08 2017-01-12 Conocophillips Company Terrestrial imaging using multi-polarization synthetic aperture radar
CN107132539A (zh) * 2017-05-03 2017-09-05 中国地质科学院探矿工艺研究所 一种基于小基线集的时间序列InSAR的滑坡早期识别方法
CN108427103A (zh) * 2018-04-20 2018-08-21 中铁第四勘察设计院集团有限公司 一种用于地基雷达回波信号标定的角反射器
CN108459318A (zh) * 2018-02-02 2018-08-28 中国铁路设计集团有限公司 基于遥感技术的潜在滑坡早期识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175771A1 (en) * 2007-05-08 2011-07-21 Raney Russell K Synthetic Aperture Radar Hybrid-Quadrature-Polarity Method and Architecture for Obtaining the Stokes Parameters of Radar Backscatter
US20170010353A1 (en) * 2015-07-08 2017-01-12 Conocophillips Company Terrestrial imaging using multi-polarization synthetic aperture radar
CN107132539A (zh) * 2017-05-03 2017-09-05 中国地质科学院探矿工艺研究所 一种基于小基线集的时间序列InSAR的滑坡早期识别方法
CN108459318A (zh) * 2018-02-02 2018-08-28 中国铁路设计集团有限公司 基于遥感技术的潜在滑坡早期识别方法
CN108427103A (zh) * 2018-04-20 2018-08-21 中铁第四勘察设计院集团有限公司 一种用于地基雷达回波信号标定的角反射器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于少量控制点的Radarsat_2影像快速几何纠正技术研究;耿忠 等;《地理信息世界》;20100225;第27-30页 *
边坡单元的SAR数据特征;黄佳璇 等;《测绘科学》;20161031;第111-114页 *
高山峡谷区D-InSAR 滑坡监测数据特征分析;谢谟文 等;《测绘通报》;20120425(第4期);第18-21、40页 *

Also Published As

Publication number Publication date
CN109165622A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN109165622B (zh) 基于InSAR技术的区域滑坡早期动态识别监测有效区域确定方法
Liu et al. A complete high-resolution coastline of Antarctica extracted from orthorectified Radarsat SAR imagery
CN109558859B (zh) 基于DInSAR和DCNN的矿区分布信息提取方法及系统
Fanos et al. Laser scanning systems and techniques in rockfall source identification and risk assessment: a critical review
CN111999733B (zh) 海岸带大坝稳定性监测与淹没脆弱性评估方法、系统
CN105677942A (zh) 一种重复轨道星载自然场景sar复图像数据快速仿真方法
KR101541519B1 (ko) 레이더 관측자료를 3차원 격자 데이터로 구축하여 활용하는 강우량 추정 장치
Xie et al. A comparison and review of surface detection methods using MBL, MABEL, and ICESat-2 photon-counting laser altimetry data
Gong et al. Temporal filtering of InSAR data using statistical parameters from NWP models
CN109358325A (zh) 起伏地形背景下雷达高度表的地形反演方法
Allstadt et al. Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry
Long et al. Object detection research of SAR image using improved faster region-based convolutional neural network
Feng et al. A hierarchical network densification approach for reconstruction of historical ice velocity fields in East Antarctica
Hao et al. Extraction and analysis of tree canopy height information in high-voltage transmission-line corridors by using integrated optical remote sensing and LiDAR
Shi et al. Large-gradient interferometric phase unwrapping over coal mining areas assisted by a 2-D elliptical gaussian function
Liu et al. NL-MMSE: A hybrid phase optimization method in multimaster interferogram stack for DS-InSAR applications
Qin et al. Assimilation of Doppler radar observations with an ensemble square root filter: A squall line case study
CN113703020A (zh) 一种海面小型目标升沉运动测量方法
CN116973917A (zh) 一种基于多源信息融合的边坡隐患识别方法
CN114239379A (zh) 一种基于形变检测的输电线路地质灾害分析方法及系统
Chen et al. Improving Spatial Resolution of GRACE-Derived Water Storage Changes Based on Geographically Weighted Regression Downscaled Model
Zhu et al. Percentile-based neighborhood precipitation verification and its application to a landfalling tropical storm case with radar data assimilation
Jiang et al. Monitoring of landslide deformation based on InSAR
Yoo Nonlinear bathymetry inversion based on wave property estimation from nearshore video imagery
Provan et al. An assessment of the" map-potential" and" beam-swinging" techniques for measuring the ionospheric convection pattern using data from the SuperDARN radars

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant