CN109163670A - 多点式光纤光栅孔壁应变计及孔壁应变检测方法 - Google Patents

多点式光纤光栅孔壁应变计及孔壁应变检测方法 Download PDF

Info

Publication number
CN109163670A
CN109163670A CN201811170712.2A CN201811170712A CN109163670A CN 109163670 A CN109163670 A CN 109163670A CN 201811170712 A CN201811170712 A CN 201811170712A CN 109163670 A CN109163670 A CN 109163670A
Authority
CN
China
Prior art keywords
strain
hole wall
measurement
sensor
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811170712.2A
Other languages
English (en)
Inventor
王成虎
刘民
刘一民
高桂云
周昊
侯正阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crustal Dynamics of China Earthquake Administration
Original Assignee
Institute of Crustal Dynamics of China Earthquake Administration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crustal Dynamics of China Earthquake Administration filed Critical Institute of Crustal Dynamics of China Earthquake Administration
Priority to CN201811170712.2A priority Critical patent/CN109163670A/zh
Publication of CN109163670A publication Critical patent/CN109163670A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种多点式光纤光栅孔壁应变计及孔壁应变检测方法,其中多点式光纤光栅孔壁应变计,包括测量筒体部分和活塞导向部分;测量筒体部分包括传感光纤、定位销、安装杆、粘结剂挡圈、测量筒体内腔、胶室、光纤光栅应变传感器、环氧树脂外壳和销钉孔;活塞导向部分包括销钉孔、活塞杆、出胶孔、粘结剂挡圈和导向器。本发明的有益效果是:提出基于多点式带温度补偿的光纤光栅应变传感器的孔壁应变检测方法,并研制光纤光栅孔壁应变计。本发明具有抗电磁干扰能力强、耐腐蚀性好、体积小精度高、测量范围大等优点,且结构简单,尺寸较小,安装与测量流程快速方便,可以实现在Φ38~40mm安装子孔中的孔壁应变测量。

Description

多点式光纤光栅孔壁应变计及孔壁应变检测方法
技术领域
本发明涉及地球物理岩体应力测量领域,具体地说,涉及一种多点式光纤光栅孔壁应变计及孔壁应变检测方法。主要应用于套芯应力解除地应力测量领域,其功能是采用布设在弹性模量已知空心管壁上的多个带温度补偿单元的光纤光栅应变传感器,先将其安装进入测量子孔,在套芯过程中观测由于岩芯解除引起的子孔孔壁变形或应变,并通过孔口外光纤光栅解调仪将传感器应变数据记录并存储到计算机,根据测得的子孔孔壁应变,通过孔壁应变测量应力计算理论和空心包体应变测量应力计算理论及公式(蔡美峰,1999)求出子孔周围的原岩应力状态。
背景技术
深部地壳应力状态的观测与估算是地应力实测工作的一个重要难点问题,从地应力概念提出至今,各国科学家提出的数十种地应力测试方法按照其数据来源归类,大概可以分为五大类:基于岩芯的方法、基于钻孔的方法、地质学方法、地球物理方法(或地震学方法)、基于地下空间的方法(Hill et al.,1994;Amadei and Stephasson,1997)。套芯应力解除法作为一种基于钻孔的地应力测量常用方法,通过监测岩芯从母岩解除下来过程中的应变和变形,进而反演原地应力场。套芯应力解除法在测定原岩应力(绝对应力)的适用性和可靠性方面,经过国内外学者数十年的研究(O.J.Olson,1949;N.Hast,1974),目前已形成一套标准化的测量程序,使用和测量过程相对与别的测试方法较为方便,且测量设备重量体积较小,成为适用性强和可靠性高的地应力测量方法之一。套芯应力解除法的测量步骤示意图如图1-4所示:其中:41为套芯大孔,42为安装子孔,43为应变传感器探头,44为套孔岩芯。
套芯应力解除法中的钻孔孔壁应变测量法能通过一个钻孔中的一次测量,就可确定岩体的三维应力状态,被公认为最有效的测量方法之一。钻孔孔壁应变测量法所采用的应变计,目前常用的有两种型式:一种是常见的钻孔三向应变计,它是把测量元件电阻丝应变片直接粘贴在钻孔岩壁上。这种应变计测量精度高,但操作复杂,对被测岩体完整性要求高,测量成功率较低。另一种是空心包体式钻孔三向应变计,它是把应变片粘贴在预制的环氧树脂薄筒上,再浇注一层薄的环氧树脂层制成应变计,当进行地应力测量时,再用环氧树脂粘结剂充填应变计与钻孔岩壁之间的空隙。空心包体式孔壁应变仪采用带温度补偿的多组电阻应变片花作为传感器件测量孔壁应变进而反演原地应力,通过包裹在电阻应变片外部的环氧树脂壳体更好的与钻孔孔壁进行粘贴耦合,能单孔测试全应力张量。国内外对于钻孔孔壁应变测量仪器已有大量的相关研究。钻孔孔壁应变测量仪器包括瑞典国家电力局研制的Borre三轴孔壁应变计、澳大利亚联邦科学和工业研究组织的(CSIRO)HI型空心包体应变计(and Klasson,2003)。国内有长江科学院研制的新型空心包体式钻孔三向应变计、地质力学研究所研究的KX2000型空心包体式钻孔三向应变计(刘允芳等,2011)和北京科技大学蔡美峰院士发明的采用完全温度补偿技术的改进型空心包体应变计(蔡美峰等,2001)。意大利的Iabichino(2014)等人利用CSIRO HID Cell数字式空心包体应变计,完成评估在单元CSIRO取心点附近的岩体中的完整应力状态。刘允芳等人(2008)采用瑞典深钻孔水下三向应变计在三峡工程船闸区进行地应力测量,该设备具有三向电阻应变计、定向罗盘和触发装置,其外径为70mm,其整体长度约1.7m,在76mm的钻孔中进行了突破300m深度的地应力测量。
通过前面的分析可知,根据国内外研究现状调研可以发现空心包体式孔壁应变计都是基于传统电阻式应变片的电学测试仪器,其测量原理是将电阻应变计安装在测量筒体表面,测量筒体在受载荷后表面产生的微小变形“ε”会使应变计的电阻值就发生线性变化,利用电桥电路测出此电阻值的变化,即可按公式算出构件表面的应变。而应变片的电阻值易受外界温度的变化而产生非线性变化,测量电路不能过长影响其电阻值的测量精度,且对于大应变其电阻值具有较大的非线性,因此它们普遍存在易受测试环境尤其是温度因素的干扰,深孔测量中不宜长距离电信号的采集与传输,不易实现分布式测量等不足之处,现阶段还没有更加先进的应变片式孔壁应变计的改进方法。
准分布式FBG光纤传感技术是20世纪90年代以来新兴的一种性能优良,有着广泛应用前景的无源敏感元件,是通过一定方法利用光纤材料的光敏性使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,其谐振波长对温度、应变、折射率等外界环境的变化比较敏感,其工作原理如下:光敏光纤在紫外光照射下,纤芯的折射率发生有规律的变化,形成周期性的折射率分布结构,即构成了光纤光栅。当宽谱的入射光入射到光纤光栅上,在满足Bragg条件的情况下,就会发生全反射,其反射光谱在Bragg波长λB处出现峰值,且有λB=2neffΛ,其中neff为纤芯的有效折射率,Λ为折射率变化的周期(即栅距),光纤光栅的反射谱与透射光谱特性如图5所示。
当光纤光栅周围应力场等发生变化时,通过此光栅反射的特定波长随之发生改变,根据此原理制成的光纤光栅应变传感器的波长变化与应变之间的表达式有ΔλB=(1-Pε)ε·λB,其中Pε为弹光系数,由光纤光栅的材料确定,因此通过解调波长得出波长变化量进而计算出光纤应变传感单元的应变值。
光纤光栅技术具有抗电磁干扰能力强、耐腐蚀性好、体积小精度高、测量范围大等优点,该技术在岩土工程应变和位移监测领域已经有较为广泛的应用,但是在地应力变化观测方面涉及极少,仅有一些基于光纤传感技术的应力应变传感器,缺乏基于该技术的地应力孔壁应变监测技术的系统研究。光纤光栅的上述特性特别适用于套芯应力解除法中的孔壁应变测量领域,因而本技术方案采用光纤光栅技术研发地应力测试中的孔壁应变测量技术,研发基于带温度补偿单元的光纤光栅应变传感器的多点式孔壁应变计,实现对套芯应力解除法中孔壁应变的高精度检测。
发明内容
本发明正是为了解决上述技术问题而设计的一种多点式光纤光栅孔壁应变计。通过发明多点式光纤光栅(FBG)孔壁应变计来开展基于套芯应力解除法的孔壁应变测试工作,其外径为36mm,满足在38-40mm安装子孔中的测量要求,其测量精度达到0.5%FS。采用多点式带温度补偿单元的光纤光栅应变传感器,将其封装在弹性模量已知的空心管壁上,外面覆盖一层环氧树脂外壳以便与孔壁的耦合,结合孔口光纤光栅解调仪将传感器数据记录并存储,实现应力解除过程中单截面多点式的孔壁应变测量。
本发明解决其技术问题所采用的技术方案是:
多点式光纤光栅孔壁应变计,包括测量筒体部分和活塞导向部分;测量筒体部分包括传感光纤、定位销、安装杆、粘结剂挡圈、测量筒体内腔、胶室、光纤光栅应变传感器、环氧树脂外壳和销钉孔;活塞导向部分包括销钉孔、活塞杆、出胶孔、粘结剂挡圈和导向器;两个粘结剂挡圈之间部分为测量段,传感光纤从安装杆的中间孔进入测量筒体内腔并与光纤光栅应变传感器串联,定位销插在安装杆上,粘结剂挡圈的作用是防止粘结剂水漏出,胶室注满调制粘结剂,将光纤光栅应变传感器封装在弹性模量已知的测量筒体内腔管壁上,外面覆盖一层环氧树脂外壳以便与测量子孔孔壁的耦合,销钉孔的作用是插入销钉将测量筒体部分与活塞导向部分连接;活塞导向部分中,活塞杆的尾部有多个出胶孔,粘结剂挡圈的作用是防止粘结剂漏出,导向器的作用是将孔壁应变计装入测量子孔的指定位置中。
所述多点式光纤光栅孔壁应变计,根据多个光纤光栅应变传感器能够在一根光纤上串联集成的特点,光纤光栅应变传感器采用单截面多点式安装方式,共分A、B和C三组,每组有4个光纤光栅应变传感器;A、B和C三组传感器位于测量筒体内腔管壁上,沿圆周均匀分布,即相邻间隔120°,每组传感器组件有4个光纤光栅应变传感器,其分别与Z轴的夹角分别为45°、90°、135°和0°,即一个多点式光纤光栅孔壁应变计包括3组共计12个光纤光栅应变传感器。
所述多点式光纤光栅孔壁应变计,其光纤光栅应变传感器的连接方式:利用4根传感光纤将12个光纤光栅应变传感器分4组进行串联连接;L1号光纤连接3号、7号和11号传感器,其安装角度均为与Z轴的夹角135°;L2号光纤连接2号、6号和10号传感器,其安装角度均为与Z轴的夹角0°;L3号光纤连接1号、5号和9号传感器,其安装角度均为与Z轴的夹角90°;L4号光纤连接4号、8号和12号传感器,其安装角度均为与Z轴的夹角45°;每组传感器组件测量同一安装角度的应变,便于进行数据分析与对比。
所述多点式光纤光栅孔壁应变计,其光纤光栅应变传感器为具有温度补偿的应变传感器,其温度标定与补偿方法是:在光纤光栅应变传感器安装在测量筒体内腔外壁之前,应先将光纤光栅应变传感器单元放置于恒温水域箱中进行温度标定实验,对波长随温度变化的实验数据进行拟合、处理和分析,通过温度标定实验得到应变传感单元的温度灵敏度系数,进而在压力加载中对应变传感单元温度进行补偿;带温度补偿单元的光纤光栅应变传感器内部有一个不受应变影响的感温光栅,其作用为测量环境温度变化ΔT,有式中:λt0为感温光栅的初始波长;λt1为t1时刻的波长;R1为感温光栅的温度灵敏度;环境温度ΔT引起光纤光栅应变传感器波长改变,变化量ΔλS为:Δλs=Rs·T,式中Rs为应变传感单元的温度灵敏度;将解调仪解调出的波长λ减去温度引起的波长变化,最终得到光纤光栅应变传感器在加载压力下的波长为:λs=λ-Δλs,其中λ为t1时刻波长解调仪解调出的波长。
所述基于多点式光纤光栅孔壁应变计的孔壁应变检测方法流程如下:
第一步:在测量钻孔、测量子孔成孔及准备工作就绪后,将粘结剂注入到测量筒体部分的胶室内,将测量筒体部分和活塞导向部分通过销钉连接固定,记录多点光纤光栅应变传感器的第一次初值;然后,用带有定向器的安装杆将光纤光栅孔壁应变计送入测量子孔;
第二步:光纤光栅孔壁应变计到达测量位置后,推断固定销钉,使粘结剂从胶室挤出,经活塞杆的中间孔由出胶孔挤出,进入两组粘结剂挡圈之间的区域胶结,再次记录多点光纤光栅应变传感器的第二次初值;
第三步:待粘结剂固化后,即可进行应力解除试验,将传感光纤依次从岩心管、钻杆及其后部的三通管穿出,连接孔口光纤光栅解调仪,并记录光栅应变传感器的最终初值;在套芯过程中进行光栅应变传感器的测量,套芯每隔2cm,利用光纤光栅解调仪读取所有传感器波长数据一次,并记录读数,直到读数不随进尺变化时停止套芯;套芯过程结束后,取出带有应变计的岩芯。
所述孔壁应变检测方法,第三步中粘结剂固化时间为8-16小时。
目前基于套芯应力解除法的空心包体式孔壁应变计都是基于传统电阻式应变片的电学测试仪器,它们普遍存在易受测试环境尤其是温度因素的干扰、深孔测量中不宜长距离电信号的采集与传输、不易实现分布式测量,现阶段还没有更加先进的钻孔孔壁应变变化观测方法。
本发明的有益效果是:提出基于多点式带温度补偿的光纤光栅应变传感器的孔壁应变检测方法,并研制光纤光栅孔壁应变计。本发明具有抗电磁干扰能力强、耐腐蚀性好、体积小精度高、测量范围大等优点,且结构简单,尺寸较小,安装与测量流程快速方便,可以实现在Φ36mm安装子孔中的孔壁应变测量。
附图说明
图1为套芯应力解除地应力测量步骤示意图之一。
图2为套芯应力解除地应力测量步骤示意图之二。
图3为套芯应力解除地应力测量步骤示意图之三。
图4为套芯应力解除地应力测量步骤示意图之四。
图5为光栅的反射谱与透射光谱图。
图6为本发明多点式光纤光栅孔壁应变计结构组成示意图。
图7为光纤光栅应变传感器安装方式示意图。
图8光纤光栅应变传感器安装方式示意图局部放大图之一。
图9光纤光栅应变传感器安装方式示意图局部放大图之二。
图10光纤光栅应变传感器安装方式示意图局部放大图之三。
图11光纤光栅应变传感器安装方式示意图局部放大图之四。
图12为本发明光纤光栅应变传感器连接示意图。
图13为本发明多点式光纤光栅孔壁应变计入孔示意图。
图14为本发明多点式光纤光栅孔壁应变计到孔底出胶凝结示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
如图6-14所示,本发明一种多点式光纤光栅孔壁应变计,包括测量筒体部分和活塞导向部分;测量筒体部分包括传感光纤21、定位销22、安装杆23、粘结剂挡圈24、测量筒体内腔25、胶室26、光纤光栅应变传感器27、环氧树脂外壳28和销钉孔29;活塞导向部分包括销钉孔29'、活塞杆30、出胶孔31、粘结剂挡圈24'和导向器32;粘结剂挡圈24与粘结剂挡圈24'之间部分为测量段,传感光纤21从安装杆23的中间孔进入测量筒体内腔25光纤光栅应变传感器27串联,定位销22插在安装杆23上,粘结剂挡圈24的作用是防止粘结剂水漏出,胶室26注满调制粘结剂,将光纤光栅应变传感器27封装在弹性模量已知的测量筒体内腔25管壁上,外面覆盖一层环氧树脂外壳28以便与测量子孔38孔壁的耦合,销钉孔29、29'的作用是插入销钉39将测量筒体部分与活塞导向部分连接;活塞导向部分中,活塞杆30的尾部打有多个出胶孔31,粘结剂挡圈24'的作用是防止粘结剂漏出,导向器32的作用是将孔壁应变计装入测量子孔38的指定位置中。
所述多点式光纤光栅孔壁应变计,根据多个光纤光栅应变传感器能够在一根光纤上串联集成的特点,光纤光栅应变传感器27采用单截面多点式安装方式,共分A、B和C三组,每组有4个光纤光栅应变传感器;A、B和C三组传感器位于测量筒体内腔25管壁上,沿圆周均匀分布,即相邻间隔120°,每组传感器组件有4个光纤光栅应变传感器,其分别与Z轴的夹角分别为45°、90°、135°和0°,即一个多点式光纤光栅孔壁应变计包括3组共计12个光纤光栅应变传感器。
所述多点式光纤光栅孔壁应变计,其光纤光栅应变传感器27的连接方式:利用4根传感光纤21将12个光纤光栅应变传感器27分4组进行串联连接;L1号光纤连接3号、7号和11号传感器,其安装角度均为与Z轴的夹角135°;L2号光纤连接2号、6号和10号传感器,其安装角度均为与Z轴的夹角0°;L3号光纤连接1号、5号和9号传感器,其安装角度均为与Z轴的夹角90°;L4号光纤连接4号、8号和12号传感器,其安装角度均为与Z轴的夹角45°;每组传感器组件测量同一安装角度的应变,便于进行数据分析与对比。
所述多点式光纤光栅孔壁应变计,其光纤光栅应变传感器27为具有温度补偿的应变传感器,其温度标定与补偿方法是:在光纤光栅应变传感器27安装在测量筒体内腔25外壁之前,应先将光纤光栅应变传感器27单元放置于恒温水域箱中进行温度标定实验,对波长随温度变化的实验数据进行拟合、处理和分析,通过温度标定实验得到应变传感单元的温度灵敏度系数,进而在压力加载中对应变传感单元温度进行补偿;带温度补偿单元的光纤光栅应变传感器内部有一个不受应变影响的感温光栅,其作用为测量环境温度变化ΔT,有式中:λt0为感温光栅的初始波长;λt1为t1时刻的波长;R1为感温光栅的温度灵敏度;环境温度ΔT引起光纤光栅应变传感器波长改变,变化量ΔλS为:Δλs=Rs·T,式中Rs为应变传感单元的温度灵敏度;将解调仪解调出的波长λ减去温度引起的波长变化,最终得到光纤光栅应变传感器在加载压力下的波长为:λs=λ-Δλs,其中λ为t1时刻波长解调仪解调出的波长。
所述基于多点式光纤光栅孔壁应变计的孔壁应变检测方法流程如下:
第一步:在测量钻孔、测量子孔38成孔及准备工作就绪后,将粘结剂注入到测量筒体部分的胶室26内,将测量筒体部分和活塞导向部分通过销钉39连接固定,记录多点光纤光栅应变传感器27的第一次初值;然后,用带有定向器的安装杆将光纤光栅孔壁应变计送入测量子孔38;
第二步:光纤光栅孔壁应变计到达测量位置后,推断固定销钉39,使粘结剂从胶室26挤出,经活塞杆30的中间孔由出胶孔31挤出,进入两组粘结剂挡圈24、24'之间的区域胶结,再次记录多点光纤光栅应变传感器的第二次初值;
第三步:待粘结剂固化后,即可进行应力解除试验,将传感光纤依次从岩心管、钻杆及其后部的三通管穿出,连接孔口光纤光栅解调仪,并记录光栅应变传感器的最终初值;在套芯过程中进行光栅应变传感器的测量,套芯每隔2cm,利用光纤光栅解调仪读取所有传感器波长数据一次,并记录读数,直到读数不随进尺变化时停止套芯;套芯过程结束后,取出带有应变计的岩芯。
所述孔壁应变检测方法,第三步中粘结剂固化时间为8-16小时。
应用实例:
1.发明组成
借鉴电阻应变片空心包体孔壁应变测试仪的主体结构,其外径为36mm,整体长度410mm。本发明所述光纤光栅孔壁应变计主体结构由两部分组成,分别是测量筒体部分和活塞导向部分。多点式光纤光栅(FBG)孔壁应变计的结构组成示意图如图6所示。
2.传感器布设方式及温度标定
(1)布设方式:单截面多点式安装方式是利用FBG应变传感器在一根光纤串联集成的特点设计光纤光栅应变传感器安装位置,传感器安装初步设计方案如图3所示,拟设计A,B,C位于测量筒体表面的三组传感器组件,沿圆周均匀分布,即相邻间隔120°,每组传感器组件有4个光纤光栅应变传感器,其与Z轴的夹角分别为45°、90°(周向)、135°和0°(周向),即一个多点式光纤光栅(FBG)孔壁应变计包括3组共计12个光纤光栅应变传感器。单截面多点式光纤光栅应变计在测量筒体上的安装位置及角度如图7-11所示。
(2)传感器连接方式:利用4根传感光纤将12个传感器分4组进行串联连接,如图12所示。
(3)温度标定与补偿。
3.安装流程
多点式光纤光栅(FBG)孔壁应变计的安装流程如下:
(1)在测量钻孔、子孔成孔及准备工作就绪后,将粘结剂注入测量基体的胶室内,将测量基体与活塞导向部分由销钉固定好,记录多点光纤光栅应变传感器的第一次初值。如图13所示,用带有定向器的安装杆将光纤光栅孔壁应变计送入测量子孔。
(2)应变计到达测量位置后,推断固定销钉,使粘结剂从胶室挤出,经活塞的中间孔由出胶孔挤出,进入两组粘结剂挡圈之间的区域胶结,再次记录多点光纤光栅应变传感器的第二次初值。如图14所示。
(3)待粘结剂固化后(一般需要12h左右),即可进行应力解除试验,将传感光纤依次从岩心管、钻杆及其后部的三通管穿出,连接孔口光纤光栅解调仪,并记录光栅应变传感器的最终初值。在套芯过程中进行光栅应变传感器的测量,套芯每隔2cm读数一次,记录光纤光栅解调仪读数,待读数不随进尺变化时(大约为钻头超过应力计中心45c m)停止套芯。套芯结束后,取出带有应变计的岩芯。
本套设备在实验室中的原地应力测试实验进行了测试,应用效果良好。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下得出的其他任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。

Claims (6)

1.一种多点式光纤光栅孔壁应变计,包括测量筒体部分和活塞导向部分;其特征在于:测量筒体部分包括传感光纤(21)、定位销(22)、安装杆(23)、粘结剂挡圈(24)、测量筒体内腔(25)、胶室(26)、光纤光栅应变传感器(27)、环氧树脂外壳(28)和销钉孔(29);活塞导向部分包括销钉孔(29')、活塞杆(30)、出胶孔(31)、粘结剂挡圈(24')和导向器(32);粘结剂挡圈(24)与粘结剂挡圈(24')之间部分为测量段,传感光纤(21)从安装杆(23)的中间孔进入测量筒体内腔(25)并与光纤光栅应变传感器(27)串联,定位销(22)插在安装杆(23)上,粘结剂挡圈(24)的作用是防止粘结剂水漏出,胶室(26)注满调制粘结剂,将光纤光栅应变传感器(27)封装在弹性模量已知的测量筒体内腔(25)管壁上,外面覆盖一层环氧树脂外壳(28)以便与测量子孔(38)孔壁的耦合,销钉孔(29、29')的作用是插入销钉(39)将测量筒体部分与活塞导向部分连接;活塞导向部分中,活塞杆(30)的尾部有多个出胶孔(31),粘结剂挡圈(24')的作用是防止粘结剂漏出,导向器(32)的作用是将孔壁应变计装入测量子孔(38)的指定位置中。
2.根据权利要求1所述的多点式光纤光栅孔壁应变计,其特征在于:根据多个光纤光栅应变传感器能够在一根光纤上串联集成的特点,光纤光栅应变传感器(27)采用单截面多点式安装方式,共分A、B和C三组,每组有4个光纤光栅应变传感器;A、B和C三组传感器位于测量筒体内腔(25)管壁上,沿圆周均匀分布,即相邻间隔120°,每组传感器组件有4个光纤光栅应变传感器,其分别与Z轴的夹角分别为45°、90°、135°和0°,即一个多点式光纤光栅孔壁应变计包括3组共计12个光纤光栅应变传感器。
3.根据权利要求2所述的多点式光纤光栅孔壁应变计,其特征在于:光纤光栅应变传感器(27)的连接方式:利用4根传感光纤(21)将12个光纤光栅应变传感器(27)分4组进行串联连接;L1号光纤连接3号、7号和11号传感器,其安装角度均为与Z轴的夹角135°;L2号光纤连接2号、6号和10号传感器,其安装角度均为与Z轴的夹角0°;L3号光纤连接1号、5号和9号传感器,其安装角度均为与Z轴的夹角90°;L4号光纤连接4号、8号和12号传感器,其安装角度均为与Z轴的夹角45°;每组传感器组件测量同一安装角度的应变,便于进行数据分析与对比。
4.根据权利要求1、2和3所述的多点式光纤光栅孔壁应变计,其特征在于:光纤光栅应变传感器(27)为具有温度补偿的应变传感器,其温度标定与补偿方法是:在光纤光栅应变传感器(27)安装在测量筒体内腔(25)外壁之前,先将光纤光栅应变传感器(27)单元放置于恒温水域箱中进行温度标定实验,对波长随温度变化的实验数据进行拟合、处理和分析,通过温度标定实验得到应变传感单元的温度灵敏度系数,进而在压力加载中对应变传感单元温度进行补偿;带温度补偿单元的光纤光栅应变传感器内部有一个不受应变影响的感温光栅,其作用为测量环境温度变化ΔT,有式中:λt0为感温光栅的初始波长;λt1为t1时刻的波长;R1为感温光栅的温度灵敏度;环境温度ΔT引起光纤光栅应变传感器波长改变,变化量ΔλS为:Δλs=Rs·T,式中Rs为应变传感单元的温度灵敏度;将解调仪解调出的波长λ减去温度引起的波长变化,最终得到光纤光栅应变传感器在加载压力下的波长为:λs=λ-Δλs,其中λ为t1时刻波长解调仪解调出的波长。
5.基于权利要求1所述多点式光纤光栅孔壁应变计的孔壁应变检测方法,其特征在于:基于多点式光纤光栅孔壁应变计的孔壁应变检测方法流程如下:
第一步:在测量钻孔、测量子孔(38)成孔及准备工作就绪后,将粘结剂注入到测量筒体部分的胶室(26)内,将测量筒体部分和活塞导向部分通过销钉(39)连接固定,记录多点光纤光栅应变传感器(27)的第一次初值;然后,用带有定向器的安装杆将光纤光栅孔壁应变计送入测量子孔(38);
第二步:光纤光栅孔壁应变计到达测量位置后,推断固定销钉(39),使粘结剂从胶室(26)挤出,经活塞杆(30)的中间孔由出胶孔(31)挤出,进入两组粘结剂挡圈(24、24')之间的区域胶结,再次记录多点光纤光栅应变传感器的第二次初值;
第三步:待粘结剂固化后,即可进行应力解除试验,将传感光纤依次从岩心管、钻杆及其后部的三通管穿出,连接孔口光纤光栅解调仪,并记录光栅应变传感器的最终初值;在套芯过程中进行光栅应变传感器的测量,套芯每隔2cm,利用光纤光栅解调仪读取所有传感器波长数据一次,并记录读数,直到读数不随进尺变化时停止套芯;套芯过程结束后,取出带有应变计的岩芯。
6.根据权利要求5所述的孔壁应变检测方法,其特征在于:第三步中粘结剂固化时间为8-16小时。
CN201811170712.2A 2018-10-09 2018-10-09 多点式光纤光栅孔壁应变计及孔壁应变检测方法 Pending CN109163670A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811170712.2A CN109163670A (zh) 2018-10-09 2018-10-09 多点式光纤光栅孔壁应变计及孔壁应变检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811170712.2A CN109163670A (zh) 2018-10-09 2018-10-09 多点式光纤光栅孔壁应变计及孔壁应变检测方法

Publications (1)

Publication Number Publication Date
CN109163670A true CN109163670A (zh) 2019-01-08

Family

ID=64877517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811170712.2A Pending CN109163670A (zh) 2018-10-09 2018-10-09 多点式光纤光栅孔壁应变计及孔壁应变检测方法

Country Status (1)

Country Link
CN (1) CN109163670A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461189A (zh) * 2020-11-03 2021-03-09 中国地质科学院地质力学研究所 地应力测量应变计
CN115014602A (zh) * 2022-06-16 2022-09-06 中国地质大学(武汉) 一种增敏型光纤光栅空心包体应力计

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903439A2 (de) * 1997-09-19 1999-03-24 Österreichische Donaukraftwerke AG Verkehrsweg, insbesondere für Kraftfahrzeuge
CN2549430Y (zh) * 2002-05-30 2003-05-07 欧进萍 光纤光栅毛细管式封装应变计
US20110292965A1 (en) * 2010-06-01 2011-12-01 Mihailov Stephen J Method and system for measuring a parameter in a high temperature environment using an optical sensor
CN103556992A (zh) * 2013-10-25 2014-02-05 中国矿业大学 一种光纤光栅地应力的获取方法
US20140105760A1 (en) * 2006-01-11 2014-04-17 Besst, Inc. Sensor assembly for determining fluid properties in a subsurface well
CN105910531A (zh) * 2016-06-22 2016-08-31 北京科技大学 基于完全温度补偿技术的原位数字化型三维孔壁应变计
CN107941306A (zh) * 2017-12-21 2018-04-20 珠海任驰光电科技有限公司 一种改进型双光纤光栅封装的液位传感器及液位测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903439A2 (de) * 1997-09-19 1999-03-24 Österreichische Donaukraftwerke AG Verkehrsweg, insbesondere für Kraftfahrzeuge
CN2549430Y (zh) * 2002-05-30 2003-05-07 欧进萍 光纤光栅毛细管式封装应变计
US20140105760A1 (en) * 2006-01-11 2014-04-17 Besst, Inc. Sensor assembly for determining fluid properties in a subsurface well
US20110292965A1 (en) * 2010-06-01 2011-12-01 Mihailov Stephen J Method and system for measuring a parameter in a high temperature environment using an optical sensor
CN103556992A (zh) * 2013-10-25 2014-02-05 中国矿业大学 一种光纤光栅地应力的获取方法
CN105910531A (zh) * 2016-06-22 2016-08-31 北京科技大学 基于完全温度补偿技术的原位数字化型三维孔壁应变计
CN107941306A (zh) * 2017-12-21 2018-04-20 珠海任驰光电科技有限公司 一种改进型双光纤光栅封装的液位传感器及液位测量方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461189A (zh) * 2020-11-03 2021-03-09 中国地质科学院地质力学研究所 地应力测量应变计
CN115014602A (zh) * 2022-06-16 2022-09-06 中国地质大学(武汉) 一种增敏型光纤光栅空心包体应力计
CN115014602B (zh) * 2022-06-16 2023-12-29 中国地质大学(武汉) 一种增敏型光纤光栅空心包体应力计的测定方法

Similar Documents

Publication Publication Date Title
CN109141269A (zh) 分布式光纤光栅孔壁应变计
Wu et al. Optical fiber-based sensing, measuring, and implementation methods for slope deformation monitoring: A review
CN101413836B (zh) 光纤光栅土压力传感器
CN109141271A (zh) 多点式光纤光栅孔底应变计
CN106996841B (zh) 具有自洽功能的钻孔式光纤三维地应力观测装置
CN103017950A (zh) 一种高灵敏度光纤光栅土压力计
CN107529615A (zh) 一种采场围岩的三维扰动应力测试方法
CN107402087A (zh) 一种围岩三维扰动应力场的监测装置及监测系统
CN107941306B (zh) 一种改进型双光纤光栅封装的液位传感器及液位测量方法
CN109163670A (zh) 多点式光纤光栅孔壁应变计及孔壁应变检测方法
CN107356356A (zh) 一种高成活率的光纤光栅围岩应力监测装置及监测系统
CN207074097U (zh) 一种围岩三维扰动应力场的监测装置及监测系统
CN110260920A (zh) 基于定向耦合器与长周期光纤光栅的温度和折射率双参量传感器
CN110424362B (zh) 一种光纤式温度自补偿静力触探传感器
CN101782658A (zh) 双L型光纤Bragg光栅地震检波器探头结构
CN209085551U (zh) 多点式光纤光栅孔底应变计
CN208902051U (zh) 分布式光纤光栅孔壁应变计
CN103968784A (zh) 液位式应变传感器
CN106441653B (zh) 一种地质力学模型试验隧道明洞模型受力应变监测方法
CN107402088A (zh) 一种长期监测的光纤光栅围岩应力监测装置及监测系统
CN207248395U (zh) 一种长期监测的光纤光栅围岩应力监测装置及监测系统
CN105371815A (zh) 一种便携式岩石侧向变形测量装置
Fu et al. A fiber Bragg grating anchor rod force sensor for accurate anchoring force measuring
CN115479711A (zh) 一种地下工程三维应力的硬壳包体应力计及监测系统
CN201322662Y (zh) 光纤光栅土压力传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190108

WD01 Invention patent application deemed withdrawn after publication