CN109154830A - 无人机控制方法及无人机 - Google Patents

无人机控制方法及无人机 Download PDF

Info

Publication number
CN109154830A
CN109154830A CN201780025876.3A CN201780025876A CN109154830A CN 109154830 A CN109154830 A CN 109154830A CN 201780025876 A CN201780025876 A CN 201780025876A CN 109154830 A CN109154830 A CN 109154830A
Authority
CN
China
Prior art keywords
relative altitude
unmanned plane
weight
radar
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780025876.3A
Other languages
English (en)
Inventor
王俊喜
王春明
吴旭民
石仁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Shenzhen Dajiang Innovations Technology Co Ltd
Original Assignee
Shenzhen Dajiang Innovations Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dajiang Innovations Technology Co Ltd filed Critical Shenzhen Dajiang Innovations Technology Co Ltd
Publication of CN109154830A publication Critical patent/CN109154830A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0646Rate of change of altitude or depth specially adapted for aircraft to follow the profile of undulating ground
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • G01S13/935Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft for terrain-avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机控制方法及无人机。该方法包括:确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度;至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度;根据所述融合相对高度,控制所述无人机的飞行姿态。本发明使得当飞行速度过快或者地形起伏较大时,无人机也能够较好地完成地形跟随功能。

Description

无人机控制方法及无人机
技术领域
本发明涉及飞行技术领域,尤其涉及一种无人机控制方法及无人机。
背景技术
在无人机的一些应用中,无人机可以依靠雷达为其提供可靠的离地高度等数据,并通过飞行控制器的处理与控制,保持与地面反射物等之间的距离。
现有技术中,无人机的雷达通常安装于无人机的正下方,以方便地确定无人机与其正下方的地面反射物间的相对距离,并实现定高飞行。无人机进行自动定高作业的过程中,当飞行速度较慢或者地形较为平坦时,可以较好地完成地形跟随功能,当飞行速度过快或地形起伏较大时,由于从测量数据的获取到最后动力系统执行完成间通常具有时间上的延迟,因而不能实时依据雷达测量的相对距离控制高度,导致定高效果总是“慢半拍”,从而无法较好地完成地形跟踪功能。
因此,当飞行速度过快或地形起伏较大时,如何确保无人机能够较好地完成地形跟随功能,成为目前亟待解决的问题。
发明内容
本发明提供一种无人机控制方法及无人机,用于解决现有技术中当飞行速度过快或地形起伏较大时,无法确保无人机能够较好地完成地形跟随功能的问题。
第一方面,本发明提供一种无人机控制方法,包括:
确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度;
至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度;
根据所述融合相对高度,控制所述无人机的飞行姿态。
第二方面,本发明提供一种无人机,包括:控制器,所述控制器用于:
确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度;
至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度;
根据所述融合相对高度,控制所述无人机的飞行姿态。
本发明提供的无人机控制方法及无人机,通过确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,并根据所述融合相对高度控制所述无人机的飞行姿态,实现了根据体现前方地形变化的融合相对高度,控制所述无人机的飞行姿态,从而使得当飞行速度过快或者地形起伏较大时,无人机也能够较好地完成地形跟随功能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明无人机控制方法实施例一的流程图;
图2为本发明确定第二相对高度的示意图;
图3为本发明无人机控制方法实施例二的流程图;
图4A为本发明无人机控制方法的示意图一;
图4B为本发明第一相对高度、第二相对高度以及融合相对高度的关系示意图;
图5为本发明无人机控制方法实施例三的流程图;
图6为本发明无人机控制方法的示意图二;
图7为本发明无人机的结构示意图;
图8为本发明无人机的实体结构图一;
图9为本发明无人机的实体结构图二。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明应用于无人机,所述无人机可以进行自动定高,用以解决现有技术中飞行速度过快或地形起伏较大时,由于动力系统具有迟滞效应,导致定高效果总是慢半拍,无法较好地完成地形跟随功能。
图1为本发明无人机控制方法实施例一的流程图,本实施例的执行主体可以为所述无人机的控制器。如图1所示,本实施例的方法可以包括:
步骤101、确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度。
本步骤中,无人机可以通过搭载在无人机上的雷达来检测所述第一相对高度和所述第二相对高度。可以理解的是,无人机同样可以利用其它设备,如超声波探测器或激光雷达来实现检测相对高度的目的,此处并不作限制。在本实施例中,所述雷达具体可以指其天线为定向天线的雷达,或者也可以是指其天线为旋转天线的雷达(即,旋转雷达)。若所述雷达具体指其天线为定向天线的雷达,则所述雷达可以包括第一雷达和第二雷达,其中,所述第一雷达垂直向下发射雷达波,通过所述第一雷达可以确定所述第一相对高度,所述第二雷达倾斜向前下发射雷达波,通过所述第二雷达可以确定所述第二相对高度。若所述雷达具体指其天线为旋转天线的旋转雷达,则当所述旋转雷达垂直向下发射雷达波时,通过所述旋转雷达可以确定所述第一相对高度,当所述旋转雷达倾斜向前下发射雷达波时,通过所述旋转雷达可以确定所述第二相对高度。
可选的,所述第一雷达可以安装于所述农业无人机的机架的下方或所述机架的负载的下方。所述第二雷达可以相较于所述无人机的航向轴倾斜安装于所述无人机的机架上或所述机架的负载上。具体的,当所述无人机正飞时,所述第二雷达具体可以倾斜安装于所述机架或所述负载的前方;当所述无人机倒飞时,所述第二雷达具体可以倾斜安装于所述机架或所述负载的后方。所述旋转雷达可以安装于所述农业无人机的机架的下方或所述机架的负载的下方。其中,所述机架的负载例如可以为水箱。
可选的,步骤101具体可以包括:获取所述无人机与所述无人机正下方的地面反射物之间的第一距离,并将所述第一距离确定为所述第一相对高度;通过所述无人机上的雷达,获取所述无人机与所述无人机前方的地面反射物之间的第二距离,并根据所述第二距离确定所述第二相对高度。其中,所述根据第二距离确定第二相对高度,具体可以为根据所述第二距离以及所述雷达倾斜向下发射的雷达波的发射方向相对于水平方向的角度,确定所述第二相对高度,如图2所示,A表示无人机,B表示无人机A前方的地面反射物,L表示通过雷达测出的无人机A与其前方的地面反射物B之间的距离,θ表示所述雷达倾斜向下发射的雷达波的发射方向相对于水平方向的角度。具体的,可以根据距离L、角度θ,采用如下公式(1)无人机A与其前方的地面发射物B之间的第二相对高度H2
H2=L×sinθ 公式(1)
需要说明的是,上述无人机上的雷达,可以理解为所述雷达为所述无人机的组成部分,或者也可以理解为所述雷达安装于所述无人机上。
步骤102、至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度。
本步骤中,由于所述第一相对高度是指所述无人机与所述无人机正下方的地面发射物之间的相对高度,所述第二相对高度是指所述无人机与所述无人机前方的地面发射物之间的相对高度,因此至少根据所述第一相对高度和所述第二相对高度确定的所述融合相对高度,能够在考虑所述无人机正下方的地形的基础上体现前方地形变化。需要说明的是,对于至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度的具体实现方式,本发明并不作限定,任何基于第一相对高度和第二相对高度,确定融合考虑第一相对高度和第二相对高度的融合相对高度的方式,均属于本发明的保护范围。例如,可以根据第一相对高度以及第二相对高度,采用加权求和的方式确定融合相对高度。
步骤103、根据所述融合相对高度,控制所述无人机的飞行姿态。
本步骤中,所述飞行姿态可以包括俯冲、爬升、加速、减速等。这里,根据所述融合相对高度,控制所述无人机的飞行姿态可以使所述无人机能够完成预测性地地形跟随功能。例如,当所述融合相对高度较大时,所述飞行姿态可以为俯冲;当所述融合相对高度较小时,所述飞行姿态可以为爬升。又例如,当所述融合相对高度较大且与所述第一相对高度相差较大时,所述飞行姿态可以为俯冲和加速。又例如,当所述融合相对高度较小且与所述第一相对高度相差较大时,所述飞行姿态可以为爬升和加速。又例如,当所述融合相对高度较小且与所述第一相对高度相差较小时,所述飞行姿态可以为爬升和减速。需要说明的是,上述控制所述无人机的飞行姿态的具体方式仅为举例,任何根据所述融合相对高度,控制所述无人机的飞行姿态,从而使得无人机能够完成地形跟随功能的具体实现方式,均属于本发明的保护范围。
本实施例中,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,并根据所述融合相对高度控制所述无人机的飞行姿态,实现了根据体现前方地形变化的融合相对高度,控制所述无人机的飞行姿态,从而使得当飞行速度过快或者地形起伏较大时,无人机也能够较好地完成地形跟随功能。
图3为本发明无人机控制方法实施例二的流程图。本实施例在图1所示实施例的基础上主要描述了至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度一种具体的实现方式。如图3所示,本实施例的方法可以包括:
步骤301、根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度。
本步骤中,所述预测相对高度可以为通过任何方法所预测的用于体现前方地形变化的相对高度。可选的,所述预测相对高度可以根据之前时刻的所述融合相对高度确定,所述之前时刻的融合相对高度具体可以为之前时刻的一个融合相对高度,或者,之前时刻的多个融合相对高度。当为之前时刻的一个融合相对高度时,所述预测相对高度具体可以为前一时刻的所述融合相对高度;当为之前时刻的多个融合相对高度时,可以对所述多个融合相对高度进行平均或加权平均等处理,确定所述预测相对高度。
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度的具体实现方式,本发明并不作限定,例如,可以根据第一相对高度和预测相对高度,采用加权平均或加权求和的方式,确定第一估计高度。可选的,步骤301具体可以为根据所述第一相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第一估计高度。具体的,将所述第一相对高度作为卡尔曼滤波算法中的测量值,将所述预测相对高度作为卡尔曼滤波算法中的预测值,采用卡尔曼滤波算法计算出来的估计值即为所述第一估计高度。
步骤302、根据所述第二相对高度以及所述预测相对高度,确定第二估计高度。
本步骤中,具体可以为根据所述第二相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第二估计高度。需要说明的是,步骤302与步骤301类似,在此不再赘述。
步骤303、根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度。
本步骤中,根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度的具体实现方式,本发明并不作限定,例如可以将所述第一估计高度和所述第二估计高度的平均值,作为所述融合相对高度。可选的,步骤303具体可以为根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度。可选的,可以根据所述第一估计高度、所述第一权重、所述第二估计高度以及所述第三权重,采用加权求和或加权平均的方式,确定所述融合相对高度。
其中,所述第一权重和所述第二权重可以预先设置,或者也可以动态确定,本发明并不作限定。可选的,可以根据通过如下方式动态确定所述第一权重和所述第二权重:根据所述第一估计高度和所述第一相对高度,确定第一新息;根据所述第二估计高度和所述第二相对高度,确定第二新息;根据所述第一新息以及所述第二新息,确定所述第一权重和所述第二权重;其中,所述第一新息越大,则所述第一权重越小,所述第二权重越大;所述第二新息越大,则所述第一权重越大,所述第二权重越小。可以看出,可选的,上述第一权重与第二权重之和可以等于1。这里,第一新息可以是指第一估计高度与第一相对高度之差,第二新息可以是指第二估计高度与第二相对高度之差。
需要说明是,对于根据第一新息以及第二新息确定第一权重和第二权重的具体方式,本发明并不作限定,任何满足“第一新息越大,则第一权重越小,第二权重越大;第二新息越大,则第一权重越大,第二权重越小”条件的具体确定方式均属于本发明的保护范围。例如,可以根据第一新息g1以及所述第二新息g2,采用如下公式(2)确定第一权重w1,采用如下公式(3)确定第二权重w2
w1=g1 -1×[g1 -1+g2 -1] 公式(2)
w2=g2 -1×[g1 -1+g2 -1] 公式(3)
可选的,可以根据第一估计高度X1、第一权重w1、第二估计高度X2以及第二权重w2,采用如下公式(4),确定融合相对高度Xg。
Xg=w1*X1+w2*X2 公式(4)
结合图1及图3所示实施例,本发明无人机控制方法例如可以如图4A所示。其中,L1表示第一距离,L2表示第二距离,预处理1用于根据第一距离,确定第一相对高度H1,预处理2用于根据第二距离L2确定第二相对高度H2,子滤波器1用于根据第一相对高度H1以及之前时刻的融合相对高度Xg确定第一估计高度X1以及第一新息g1,子滤波器2用于根据第二相对高度H2以及之前时刻的融合相对高度Xg确定第二估计高度X2以及第二新息g2,主滤波器用于根据第一估计高度X1、第二估计高度X2、第一新息g1以及第二新息g2确定融合相对高度Xg。
基于图4A中确定融合相对高度的方法,上述第一相对高度、上述第二相对高度以及上述融合相对高度之间的相互关系可以如图4B所示。通过图4B可以看出,基于第一相对高度和第二相对高度所确定的融合相对高度的变化趋势既能够较好地体现前方地形即第二相对高度的变化,又能够体现下方地形即第一相对高度的趋势,不至于变化幅度过大以导致飞行不稳定。
本实施例中,通过根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度,根据所述第二相对高度以及所述预测相对高度,确定第二估计高度,并根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度,实现了根据第一相对高度和第二相对高度确定融合相对高度。
图5为本发明无人机控制方法实施例三的流程图。本实施例在图1所示实施例的基础上主要描述了至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度一种可选的实现方式。如图5所示,本实施例的方法可以包括:
步骤501、确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,所述无人机与所述无人机前方的地面反射物之间的第二相对高度,以及所述无人机与所述无人机后方的地面反射物之间的第三相对高度。
本步骤中,无人机可以通过搭载在无人机上的雷达来检测所述第一相对高度、所述第二相对高度以及所述第三相对高度。所述雷达具体可以指其天线为定向天线的雷达,或者也可以是指其天线为旋转天线的旋转雷达。若所述雷达具体指其天线为定向天线的雷达,则所述雷达可以包括第一雷达、第二雷达和第三雷达,其中,所述第一雷达垂直向下发射雷达波,通过所述第一雷达可以确定所述第一相对高度,所述第二雷达倾斜向前下发射雷达波,通过所述第二雷达可以确定所述第二相对高度,所述第三雷达倾斜向后下发射雷达波,通过所述第三雷达可以确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度。若所述雷达具体为旋转雷达,则当所述旋转雷达垂直向下发射雷达波时,通过所述旋转雷达可以确定所述第一相对高度,当所述旋转雷达倾斜向前下发射雷达波时,通过所述旋转雷达可以确定所述第二相对高度,当所述旋转雷达倾斜向后下发射雷达波时,通过所述旋转雷达可以确定所述第三相对高度。
可选的,所述第一雷达可以安装于所述农业无人机的机架的下方或所述机架的负载的下方。所述第二雷达和所述第三雷达可以相较于所述无人机的航向轴倾斜安装于所述无人机的机架上或所述机架的负载上。具体的,当所述无人机正飞时,所述第二雷达具体可以倾斜安装于所述机架或所述负载的前方,所述第三雷达具体可以倾斜安装于所述机架或所述负载的后方;当所述无人机倒飞时,所述第二雷达具体可以倾斜安装于所述机架或所述负载的后方,所述第三雷达具体可以倾斜安装于所述机架或所述负载的前方。所述旋转雷达可以安装于所述农业无人机的机架的下方或所述机架的负载的下方。其中,所述机架的负载例如可以为水箱。可选的,若所述雷达具体为旋转雷达,所述旋转雷达可以安装在所述无人机的机架的下方或所述无人机的脚架上。
可选的,步骤501具体可以包括:通过所述无人机上的雷达,获取所述无人机与所述无人机正下方的地面反射物之间的第一距离,并将所述第一距离确定为所述第一相对高度;通过所述无人机上的雷达,获取所述无人机与所述无人机前方的地面反射物之间的第二距离,并根据所述第二距离确定所述第二相对高度;通过所述无人机上的雷达,获取所述无人机与所述无人机后方的地面反射物之间的第三距离,并根据所述第三距离确定所述第三相对高度。需要说明的是,根据第三距离确定第三相对高度的具体实现方式与上述图2所示根据第二距离确定第二相对高度的具体实现方式类似,在此不再赘述。
需要说明的是,上述无人机上的雷达,可以理解为所述雷达为所述无人机的组成部分,或者也可以理解为所述雷达安装于所述无人机上。
步骤502、根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度。
本步骤中,由于通常情况下地形并不是突变的,因此在确定融合相对高度时也可以参考所述无人机与所述无人机后方的地面反射物之间的第三相对高度。即使对于地形突变的场景,也可以通过调节第三相对高度在确定融合相对高度时的重要程度来确保在考虑第三相对高度下所确定的融合相对高度的准确性,例如在地形突变场景,第三相对高度在确定融合相对高度时的重要程度较低。在地形非突变场景,第三相对高度在确定融合相对高度时的重要程度较高。需要说明的是,对于根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定用于体现前方地形变化的融合相对高度的具体实现方式,本发明并不作限定,任何基于第一相对高度、第二相对高度和第三相对高度,确定融合考虑第一相对高度、第二相对高度和第三相对高度的融合相对高度的方式,均属于本发明的保护范围。例如,可以根据第一相对高度、第二相对高度和第三相对高度,采用加权求和的方式确定融合相对高度。
与上述图3所示实施例类似,步骤502具体可以包括:根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;根据所述第三相对高度以及所述预测相对高度,确定第三估计高度;根据所述第一估计高度、所述第二估计高度和所述第三估计高度,确定所述融合相对高度。
其中,根据第一相对高度以及预测相对高度,确定第一估计高度的具体实现方式,以及根据第二相对高度以及预测相对高度,确定第二估计高度的具体实现方式可以参见图3所示实施例,在此不再赘述。根据第三相对高度以及预测相对高度,确定第三估计高度的具体实现方式与根据第一相对高度以及预测相对高度,确定第一估计高度的具体实现方式类似,在此不再赘述。
其中,根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度的具体实现方式,本发明并不作限定,例如可以将所述第一估计高度、所述第二估计高度和所述第三估计高度的平均值,作为所述融合相对高度。可选的,具体可以为根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度。可选的,可以根据所述第一估计高度、所述第一权重、所述第二估计高度、第二权重、所述第三估计高度以及所述第三权重,采用加权求和或加权平均的方式,确定所述融合相对高度。
其中,所述第一权重、所述第二权重和所述第三权重可以预先设置,或者也可以动态确定,本发明并不作限定。可选的,可以根据通过如下方式动态确定所述第一权重、所述第二权重和所述第三权重:根据所述第一估计高度和所述第一相对高度,确定第一新息;根据所述第二估计高度和所述第二相对高度,确定第二新息;根据所述第三估计高度和所述第三相对高度,确定第三新息;根据所述第一新息、所述第二新息以及所述第三新息,确定所述第一权重、所述第二权重和所述第三权重;其中,所述第一新息越大,则所述第一权重越小,所述第二权重和所述第三权重之和越大;所述第二新息越大,则所述第二权重越小,所述第一权重与所述第三权重之和越大;所述第三新息越大,则所述第三权重越小,所述第一权重与所述第二权重之和越大。可选的,上述第一权重、第二权重和第三权重之和可以等于1。
需要说明是,对于根据第一新息、第二新息以及第三信息确定第一权重、第二权重和第三权重的具体方式,本发明并不作限定,任何满足“所述第一新息越大,则所述第一权重越小,所述第二权重和所述第三权重之和越大;所述第二新息越大,则所述第二权重越小,所述第一权重与所述第三权重之和越大;所述第三新息越大,则所述第三权重越小,所述第一权重与所述第二权重之和越大”条件的具体确定方式均属于本发明的保护范围。例如,可以根据第一新息g1、所述第二新息g2以及所述第三新息g3,采用如下公式(5)确定第一权重w1,采用如下公式(6)确定第二权重w2,采用如下公式(7)确定第二权重w3
w1=g1 -1×[g1 -1+g2 -1+g3 -1] 公式(5)
w2=g2 -1×[g1 -1+g2 -1+g3 -1] 公式(6)
w3=g3 -1×[g1 -1+g2 -1+g3 -1] 公式(7)
可选的,可以根据第一估计高度X1、第一权重w1、第二估计高度X2、第二权重w2、第三估计高度X3以及第三权重w3,采用如下公式(8),确定融合相对高度Xg。
Xg=w1*X1+w2*X2+w3*X3 公式(8)
可选的,本发明无人机控制方法例如可以如图6所示。其中,L1表示第一距离,L2表示第二距离,L3表示第三距离,预处理1用于根据第一距离,确定第一相对高度H1,预处理2用于根据第二距离L2确定第二相对高度H2,预处理3用于根据第三距离L3确定第三相对高度H3,子滤波器1用于根据第一相对高度H1以及之前时刻的融合相对高度Xg确定第一估计高度X1以及第一新息g1,子滤波器2用于根据第二相对高度H2以及之前时刻的融合相对高度Xg确定第二估计高度X2以及第二新息g2,子滤波器3用于根据第三相对高度H3以及之前时刻的融合相对高度Xg确定第三估计高度X3以及第三新息g3,主滤波器用于根据第一估计高度X1、第二估计高度X2、第三估计高度X3、第一新息g1、第二新息g2以及第三新息g3确定融合相对高度Xg。
步骤503、根据所述融合相对高度,控制所述无人机的飞行姿态。
需要说明的是,步骤503与步骤103类似,在此不再赘述。
本实施例中,通过无人机上的雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,所述无人机与所述无人机前方的地面反射物之间的第二相对高度,以及所述无人机与所述无人机后方的地面反射物之间的第三相对高度,根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定用于体现前方地形变化的融合相对高度,并根据所述融合相对高度控制所述无人机的飞行姿态,实现了根据体现前方地形变化的融合相对高度,控制所述无人机的飞行姿态,从而使得当飞行速度过快或者地形起伏较大时,无人机也能够较好地完成地形跟随功能。
可选的,对于上述倾斜发射的雷达波的倾斜角度可以根据动力系统迟滞效应的延迟时长进行动态调节。具体的,在上述实施例的基础上还可以包括如下步骤:根据所述无人机的动力系统迟滞效应的延迟时长,确定所述雷达波的倾斜角度;根据所述倾斜角度,调节所述雷达波的发射方向。可选的,当所述动力系统迟滞效应的延迟时长较长时,可以表示所述动力系统反应较慢,为了能够确保留给动力系统足够的反应时间,需要获知前方较远距离范围的地形变化。当所述动力系统迟滞效应的延迟时长较小时,可以表示所述动力系统反应较快,可以为动力系统留较短的反应时间,因此只需要获知前方较近距离范围的地形变化,因此,当雷达波的倾斜角度为所述雷达波的发射方向相对于水平方向的角度时,所述延迟时长与所述倾斜角度的关系具体可以为:当所述延迟时长越大时,所述倾斜角度越小;当所述延迟时长越小时,所述倾斜角度越大。
图7为本发明无人机的结构示意图,图8为本发明无人机的实体结构图一,图9为本发明无人机的实体结构图二。如图7-图9所示,本实施例的无人机700可以包括:控制器701,控制器701用于:
确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度;
至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度;
根据所述融合相对高度,控制所述无人机的飞行姿态。
可选的,控制器701至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,具体包括:
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;
根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;
根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度。
可选的,控制器701根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度。
可选的,控制器701根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,采用加权求和的方式,确定所述融合相对高度。
可选的,控制器701还用于:
根据所述第一估计高度和所述第一相对高度,确定第一新息;
根据所述第二估计高度和所述第二相对高度,确定第二新息;
根据所述第一新息以及所述第二新息,确定所述第一权重和所述第二权重;
其中,所述第一新息越大,则所述第一权重越小,所述第二权重越大;所述第二新息越大,则所述第二权重越小,所述第一权重越大。
可选的,所述第一权重与所述第二权重之和等于1。
可选的,控制器701,还用于确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度;
所述控制器至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,具体包括:
根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度。
可选的,控制器701根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度,具体包括:
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;
根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;
根据所述第三相对高度以及所述预测相对高度,确定第三估计高度;
根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度。
可选的,控制器701根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度。
可选的,控制器701根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,采用加权求和的方式,确定所述融合相对高度。
可选的,控制器701还用于:
根据所述第一估计高度和所述第一相对高度,确定第一新息;
根据所述第二估计高度和所述第二相对高度,确定第二新息;
根据所述第三估计高度和所述第三相对高度,确定第三新息;
根据所述第一新息、所述第二新息和所述第三新息,确定所述第一权重、所述第二权重以及和所述第三权重;其中,
所述第一新息越大,则所述第一权重越小,所述第二权重和所述第三权重之和越大;
所述第二新息越大,则所述第二权重越小,所述第三权重和所述第一权重之和越大;
所述第三新息越大,则所述第三权重越小,所述第一权重和所述第二权重之和越大。
可选的,所述第一权重、所述第二权重和所述第三权重之和等于1。
可选的,所述预测相对高度根据之前时刻的所述融合相对高度确定。
可选的,所述预测相对高度为前一时刻的所述融合相对高度。
可选的,控制器701根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度,具体包括:
根据所述第一相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第一估计高度;
所述根据所述第二相对高度以及所述预测相对高度,确定第二估计高度,包括:
根据所述第二相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第二估计高度。
可选的,本实施例的无人机700还包括雷达702,控制器701与雷达702通信连接,控制器701确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,具体包括:
通过雷达702,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度。
一种可能实现的方式中,雷达702包括第一雷达7021和第二雷达7022;其中,通过第一雷达7021,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,第一雷达7021垂直向下发射雷达波;通过第二雷达7022,确定所述无人机与所述无人机前方的地面反射物之间的第二相对高度,第二雷达7022倾斜向前下发射雷达波。
可选的,雷达702还包括第三雷达7023,控制器701,还用于通过第三雷达7023,确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度,第三雷达7023倾斜向后下发射雷达波。
另一种可能的实现方式中,雷达702为旋转雷达;其中,当所述旋转雷达垂直向下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度;当所述旋转雷达倾斜向前下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机前方的地面反射物之间的第二相对高度。
可选的,控制器701,还用于当所述旋转雷达倾斜向后下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度。
可选的,控制器701,还用于:根据所述无人机的动力系统迟滞效应的延迟时长,确定所述雷达波的倾斜角度;根据所述倾斜角度,调节所述雷达波的发射方向。
可选的,所述雷达波的倾斜角度为所述雷达波的发射方向相对于水平方向的角度;当所述延迟时长越大时,所述倾斜角度越小,当所述延迟时长越小时,所述倾斜角度越大。
可选的,雷达702安装在无人机700的机架703、机脚704或机架703的负载705上。
可选的,控制器701确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,具体包括:
获取所述无人机与所述无人机正下方的地面反射物之间的第一距离,并将所述第一距离确定为所述第一相对高度;
获取所述无人机与所述无人机前方的地面反射物之间的第二距离,并根据所述第二距离确定所述第二相对高度。
可选的,本发明中上述无人机具体可以为多旋翼无人机,例如四旋翼无人机。
需要说明的是,图8中以雷达安装于负载705上为例,图9中以雷达安装于机脚704上为例。本实施例中,第一雷达7021垂直向下发射雷达波,其所发射的雷达波可以由图8中从第一雷达7021所延伸出的虚线表示,第二雷达7022倾斜向前下发射雷达波,其所发射的雷达波可以由图8中从第二雷达7022所延伸出的虚线表示,第三雷达7023倾斜向前下发射雷达波,其所发射的雷达波可以由图8中从第三雷达7023所延伸出的虚线表示。
需要说明的是,图8和图9只是以示例的形式示意出一种无人机的实体结构图,并不是对无人机结构的限定,本发明对无人机的结构不作具体限定。
需要说明的是,第一雷达、第二雷达以及第三雷达可以为定向雷达、相控阵雷达。例如,在图8中,第一雷达、第二雷达以及第三雷达分别为单独设置的定向雷达,在其他实施例中,第一雷达、第二雷达以及第三雷达集成在一起,为相控阵雷达。
本实施例的无人机中的控制器,可以用于执行图1、图3或图5所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (45)

1.一种无人机控制方法,其特征在于,包括:
确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度;
至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度;
根据所述融合相对高度,控制所述无人机的飞行姿态。
2.根据权利要求1所述的方法,其特征在于,所述至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,包括:
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;
根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;
根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度。
3.根据权利要求2所述的方法,其特征在于,所述根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度,包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度。
4.根据权利要求3所述的方法,其特征在于,所述根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度,包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,采用加权求和的方式,确定所述融合相对高度。
5.根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
根据所述第一估计高度和所述第一相对高度,确定第一新息;
根据所述第二估计高度和所述第二相对高度,确定第二新息;
根据所述第一新息以及所述第二新息,确定所述第一权重和所述第二权重;
其中,所述第一新息越大,则所述第一权重越小,所述第二权重越大;所述第二新息越大,则所述第二权重越小,所述第一权重越大。
6.根据权利要求3-5任一项所述的方法,其特征在于,
所述第一权重与所述第二权重之和等于1。
7.根据权利要求1所述的方法,其特征在于,所述方法还包括:
确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度;
所述至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,包括:
根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度。
8.根据权利要求7所述的方法,其特征在于,所述根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度,包括:
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;
根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;
根据所述第三相对高度以及所述预测相对高度,确定第三估计高度;
根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度。
9.根据权利要求8所述的方法,其特征在于,所述根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度,包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度。
10.根据权利要求9所述的方法,其特征在于,所述根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度,包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,采用加权求和的方式,确定所述融合相对高度。
11.根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
根据所述第一估计高度和所述第一相对高度,确定第一新息;
根据所述第二估计高度和所述第二相对高度,确定第二新息;
根据所述第三估计高度和所述第三相对高度,确定第三新息;
根据所述第一新息、所述第二新息和所述第三新息,确定所述第一权重、所述第二权重以及和所述第三权重;其中,
所述第一新息越大,则所述第一权重越小,所述第二权重和所述第三权重之和越大;
所述第二新息越大,则所述第二权重越小,所述第三权重和所述第一权重之和越大;
所述第三新息越大,则所述第三权重越小,所述第一权重和所述第二权重之和越大。
12.根据权利要求11所述的方法,其特征在于,
所述第一权重、所述第二权重和所述第三权重之和等于1。
13.根据权利要求2-6、8-12中任一项所述的方法,其特征在于,所述预测相对高度根据之前时刻的所述融合相对高度确定。
14.根据权利要求13所述的方法,其特征在于,所述预测相对高度为前一时刻的所述融合相对高度。
15.根据权利要求2-6、8-14任一项所述的方法,其特征在于,所述根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度,包括:
根据所述第一相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第一估计高度;
所述根据所述第二相对高度以及所述预测相对高度,确定第二估计高度,包括:
根据所述第二相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第二估计高度。
16.根据权利要求1-15任一项所述的方法,其特征在于,所述确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,包括:
通过所述无人机上的雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,且所述雷达包括第一雷达和第二雷达;
其中,通过所述第一雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,所述第一雷达垂直向下发射雷达波;
通过所述第二雷达,确定所述无人机与所述无人机前方的地面反射物之间的第二相对高度,所述第二雷达倾斜向前下发射雷达波。
17.根据权利要求1-15任一项所述的方法,其特征在于,所述确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,包括;
通过所述无人机上的雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,且所述雷达为旋转雷达;
其中,当所述旋转雷达垂直向下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度;
当所述旋转雷达倾斜向前下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机前方的地面反射物之间的第二相对高度。
18.根据权利要求16所述的方法,其特征在于,所述雷达还包括第三雷达,通过所述第三雷达,确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度,所述第三雷达倾斜向后下发射雷达波。
19.根据权利要求17所述的方法,其特征在于,当所述旋转雷达倾斜向后下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度。
20.根据权利要求16-19任一项所述的方法,其特征在于,所述方法还包括:
根据所述无人机的动力系统迟滞效应的延迟时长,确定所述雷达波的倾斜角度;
根据所述倾斜角度,调节所述雷达波的发射方向。
21.根据权利要求20所述的方法,其特征在于,所述雷达波的倾斜角度为所述雷达波的发射方向相对于水平方向的角度;
当所述延迟时长越大时,所述倾斜角度越小,当所述延迟时长越小时,所述倾斜角度越大。
22.根据权利要求1-21任一项所述的方法,其特征在于,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,包括:
获取所述无人机与所述无人机正下方的地面反射物之间的第一距离,并将所述第一距离确定为所述第一相对高度;
获取所述无人机与所述无人机前方的地面反射物之间的第二距离,并根据所述第二距离确定所述第二相对高度。
23.一种无人机,其特征在于,包括:控制器,所述控制器用于:
确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度;
至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度;
根据所述融合相对高度,控制所述无人机的飞行姿态。
24.根据权利要求23所述的无人机,其特征在于,所述控制器至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,具体包括:
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;
根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;
根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度。
25.根据权利要求24所述的无人机,其特征在于,所述控制器根据所述第一估计高度以及所述第二估计高度,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度。
26.根据权利要求25所述的无人机,其特征在于,所述控制器根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度以及所述第二估计高度对应的第二权重,采用加权求和的方式,确定所述融合相对高度。
27.根据权利要求25或26所述的无人机,其特征在于,所述控制器还用于:
根据所述第一估计高度和所述第一相对高度,确定第一新息;
根据所述第二估计高度和所述第二相对高度,确定第二新息;
根据所述第一新息以及所述第二新息,确定所述第一权重和所述第二权重;
其中,所述第一新息越大,则所述第一权重越小,所述第二权重越大;所述第二新息越大,则所述第二权重越小,所述第一权重越大。
28.根据权利要求25-27任一项所述的无人机,其特征在于,
所述第一权重与所述第二权重之和等于1。
29.根据权利要求23所述的无人机,其特征在于,所述控制器,还用于确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度;
所述控制器至少根据所述第一相对高度以及所述第二相对高度,确定用于体现前方地形变化的融合相对高度,具体包括:
根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度。
30.根据权利要求29所述的无人机,其特征在于,所述控制器根据所述第一相对高度、所述第二相对高度以及所述第三相对高度,确定所述融合相对高度,具体包括:
根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度;
根据所述第二相对高度以及所述预测相对高度,确定第二估计高度;
根据所述第三相对高度以及所述预测相对高度,确定第三估计高度;
根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度。
31.根据权利要求30所述的无人机,其特征在于,所述控制器根据所述第一估计高度、所述第二估计高度以及所述第三估计高度,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度。
32.根据权利要求31所述的无人机,其特征在于,所述控制器根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,确定所述融合相对高度,具体包括:
根据所述第一估计高度、所述第一估计高度对应的第一权重、所述第二估计高度、所述第二估计高度对应的第二权重、所述第三估计高度以及所述第三估计高度对应的第三权重,采用加权求和的方式,确定所述融合相对高度。
33.根据权利要求31或32所述的无人机,其特征在于,所述控制器还用于:
根据所述第一估计高度和所述第一相对高度,确定第一新息;
根据所述第二估计高度和所述第二相对高度,确定第二新息;
根据所述第三估计高度和所述第三相对高度,确定第三新息;
根据所述第一新息、所述第二新息和所述第三新息,确定所述第一权重、所述第二权重以及和所述第三权重;其中,
所述第一新息越大,则所述第一权重越小,所述第二权重和所述第三权重之和越大;
所述第二新息越大,则所述第二权重越小,所述第三权重和所述第一权重之和越大;
所述第三新息越大,则所述第三权重越小,所述第一权重和所述第二权重之和越大。
34.根据权利要求33所述的无人机,其特征在于,
所述第一权重、所述第二权重和所述第三权重之和等于1。
35.根据权利要求24-28、30-34中任一项所述的无人机,其特征在于,所述预测相对高度根据之前时刻的所述融合相对高度确定。
36.根据权利要求35所述的无人机,其特征在于,所述预测相对高度为前一时刻的所述融合相对高度。
37.根据权利要求24-28、30-36任一项所述的无人机,其特征在于,所述控制器根据所述第一相对高度以及预测的用于体现前方地形变化的预测相对高度,确定第一估计高度,具体包括:
根据所述第一相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第一估计高度;
所述根据所述第二相对高度以及所述预测相对高度,确定第二估计高度,包括:
根据所述第二相对高度以及所述预测相对高度,采用卡尔曼滤波算法,确定第二估计高度。
38.根据权利要求23-37任一项所述的无人机,其特征在于,所述无人机还包括雷达,所述控制器与所述雷达通信连接,所述控制器确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,具体包括:
通过所述雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,且所述雷达包括第一雷达和第二雷达;
其中,通过所述第一雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,所述第一雷达垂直向下发射雷达波;
通过所述第二雷达,确定所述无人机与所述无人机前方的地面反射物之间的第二相对高度,所述第二雷达倾斜向前下发射雷达波。
39.根据权利要求23-37任一项所述的无人机,其特征在于,所述无人机上还包括雷达,所述控制器与所述雷达通信连接,所述控制器确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,具体包括;
通过所述雷达,确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,且所述雷达为旋转雷达;
其中,当所述旋转雷达垂直向下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度;
当所述旋转雷达倾斜向前下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机前方的地面反射物之间的第二相对高度。
40.根据权利要求38所述的无人机,其特征在于,所述雷达还包括第三雷达,所述控制器,还用于通过所述第三雷达,确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度,所述第三雷达倾斜向后下发射雷达波。
41.根据权利要求39所述的无人机,其特征在于,所述控制器,还用于当所述旋转雷达倾斜向后下发射雷达波时,通过所述旋转雷达确定所述无人机与所述无人机后方的地面反射物之间的第三相对高度。
42.根据权利要求38-41任一项所述的无人机,其特征在于,所述控制器,还用于:
根据所述无人机的动力系统迟滞效应的延迟时长,确定所述雷达波的倾斜角度;
根据所述倾斜角度,调节所述雷达波的发射方向。
43.根据权利要求42所述的无人机,其特征在于,所述雷达波的倾斜角度为所述雷达波的发射方向相对于水平方向的角度;
当所述延迟时长越大时,所述倾斜角度越小,当所述延迟时长越小时,所述倾斜角度越大。
44.根据权利要求38-43任一项所述的无人机,其特征在于,所述雷达安装在所述无人机的机架、机脚或所述机架的负载上。
45.根据权利要求23-44任一项所述的无人机,其特征在于,所述控制器确定所述无人机与所述无人机正下方的地面反射物之间的第一相对高度,以及所述无人机与所述无人机前方的地面反射物之间的第二相对高度,具体包括:
获取所述无人机与所述无人机正下方的地面反射物之间的第一距离,并将所述第一距离确定为所述第一相对高度;
获取所述无人机与所述无人机前方的地面反射物之间的第二距离,并根据所述第二距离确定所述第二相对高度。
CN201780025876.3A 2017-12-18 2017-12-18 无人机控制方法及无人机 Pending CN109154830A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117036 WO2019119240A1 (zh) 2017-12-18 2017-12-18 无人机控制方法及无人机

Publications (1)

Publication Number Publication Date
CN109154830A true CN109154830A (zh) 2019-01-04

Family

ID=64803840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780025876.3A Pending CN109154830A (zh) 2017-12-18 2017-12-18 无人机控制方法及无人机

Country Status (4)

Country Link
US (1) US20200110425A1 (zh)
EP (1) EP3637214A4 (zh)
CN (1) CN109154830A (zh)
WO (1) WO2019119240A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638514B (zh) * 2020-06-19 2023-08-04 四川陆垚控制技术有限公司 无人机测高方法及无人机导航滤波器
CN117368871A (zh) * 2022-07-01 2024-01-09 深圳市道通智能航空技术股份有限公司 高度信息修正方法、其装置、电子设备及无人机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968440B1 (en) * 1997-12-03 2002-02-27 Raytheon Company System for accurately determining missile vertical velocity and altitude
US8332083B1 (en) * 2008-07-03 2012-12-11 Rockwell Collins, Inc. System and method for generating a missed approach path
CN102902275A (zh) * 2011-07-29 2013-01-30 空中客车运营简化股份公司 用于优化控制飞机的垂直轨迹的方法和设备
JP2014121927A (ja) * 2012-12-20 2014-07-03 Mitsubishi Heavy Ind Ltd 水中機
CN105824322A (zh) * 2016-05-11 2016-08-03 飞智控(天津)科技有限公司 基于激光雷达的无人机地形跟随系统及方法
CN106292699A (zh) * 2016-08-03 2017-01-04 广州极飞电子科技有限公司 无人机仿地飞行的方法、装置和无人机
CN106716285A (zh) * 2016-06-30 2017-05-24 深圳市大疆创新科技有限公司 农业无人机作业方法、系统及农业无人机
US20170199528A1 (en) * 2015-09-04 2017-07-13 Nutech Ventures Crop height estimation with unmanned aerial vehicles
CN106950976A (zh) * 2017-02-28 2017-07-14 北京天恒长鹰科技股份有限公司 基于卡尔曼和粒子滤波的室内飞艇三维定位装置及方法
CN107074360A (zh) * 2016-11-22 2017-08-18 深圳市大疆创新科技有限公司 无人飞行器的控制方法、飞行控制器及无人飞行器
CN107466384A (zh) * 2016-05-25 2017-12-12 深圳市大疆创新科技有限公司 一种追踪目标的方法及装置
CN107463183A (zh) * 2016-06-06 2017-12-12 特拉克赛卡斯公司 用于远程控制航空器的类似地面交通工具的控制

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制系统、终端及机载飞控系统
CN105843246A (zh) * 2015-11-27 2016-08-10 深圳市星图智控科技有限公司 无人机跟踪方法、系统及无人机
CN107087429B (zh) * 2016-03-25 2020-04-07 深圳前海达闼云端智能科技有限公司 飞行器的控制方法和装置
CN105857590B (zh) * 2016-04-28 2018-09-18 东北大学 一种四旋翼飞行器的飞行控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968440B1 (en) * 1997-12-03 2002-02-27 Raytheon Company System for accurately determining missile vertical velocity and altitude
US8332083B1 (en) * 2008-07-03 2012-12-11 Rockwell Collins, Inc. System and method for generating a missed approach path
CN102902275A (zh) * 2011-07-29 2013-01-30 空中客车运营简化股份公司 用于优化控制飞机的垂直轨迹的方法和设备
JP2014121927A (ja) * 2012-12-20 2014-07-03 Mitsubishi Heavy Ind Ltd 水中機
US20170199528A1 (en) * 2015-09-04 2017-07-13 Nutech Ventures Crop height estimation with unmanned aerial vehicles
CN105824322A (zh) * 2016-05-11 2016-08-03 飞智控(天津)科技有限公司 基于激光雷达的无人机地形跟随系统及方法
CN107466384A (zh) * 2016-05-25 2017-12-12 深圳市大疆创新科技有限公司 一种追踪目标的方法及装置
CN107463183A (zh) * 2016-06-06 2017-12-12 特拉克赛卡斯公司 用于远程控制航空器的类似地面交通工具的控制
CN106716285A (zh) * 2016-06-30 2017-05-24 深圳市大疆创新科技有限公司 农业无人机作业方法、系统及农业无人机
CN106292699A (zh) * 2016-08-03 2017-01-04 广州极飞电子科技有限公司 无人机仿地飞行的方法、装置和无人机
CN107074360A (zh) * 2016-11-22 2017-08-18 深圳市大疆创新科技有限公司 无人飞行器的控制方法、飞行控制器及无人飞行器
CN106950976A (zh) * 2017-02-28 2017-07-14 北京天恒长鹰科技股份有限公司 基于卡尔曼和粒子滤波的室内飞艇三维定位装置及方法

Also Published As

Publication number Publication date
WO2019119240A1 (zh) 2019-06-27
EP3637214A4 (en) 2020-12-23
EP3637214A1 (en) 2020-04-15
US20200110425A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
US11726498B2 (en) Aerial vehicle touchdown detection
EP3326041B1 (en) Method and device for terrain simulation flying of unmanned aerial vehicle and unmanned aerial vehicle
CN107077148B (zh) 无人机避障控制方法、飞行控制器及无人飞行器
CN107000830B (zh) 一种无人机下降的控制方法、装置以及无人机
US9778660B2 (en) Unmanned aerial vehicle low-power operation
CN109032157A (zh) 无人机仿地作业方法、装置、设备及存储介质
JP2020505261A (ja) 無人航空機のための衝突回避システム及び方法
US20130325217A1 (en) Altitude estimator for a rotary-wing drone with multiple rotors
US20170038781A1 (en) Methods and apparatus of tracking moving targets from air vehicles
CN115951713A (zh) 无人机的控制方法
CN109154830A (zh) 无人机控制方法及无人机
CN109062251A (zh) 无人机避障方法、装置、设备及存储介质
CN110673633B (zh) 一种基于改进apf的电力巡检无人机路径规划方法
US11656637B2 (en) Cooperative path planning method and device for automatic control aerocraft and aerocraft system
CN107074360B (zh) 无人飞行器的控制方法、飞行控制器及无人飞行器
CN105404310B (zh) 无人机飞行控制方法及装置
US20230034699A1 (en) Adjusting load on tethered aircraft
CN110134131A (zh) 用于无人飞行器的控制方法和控制装置以及无人飞行器
CN114371720A (zh) 无人机实现跟踪目标的控制方法和控制装置
CN110147116A (zh) 用于无人飞行器爬坡的控制方法、控制装置和无人飞行器
CN108319283A (zh) 飞行器控制方法及飞行器
US20230095700A1 (en) Vehicle flight control method and apparatus for unmanned aerial vehicle, and unmanned aerial vehicle
CN109634301A (zh) 一种考虑视场角限制以及运动不确定性的结合记忆的旋翼飞行器高速飞行避障方法
WO2023082255A1 (zh) 无人飞行器的控制方法、无人飞行器及存储介质
CN114020010B (zh) 一种无人机集群空基回收方法、系统、电子设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104