CN109154197A - 具有外皮冷却回路的翼型件 - Google Patents

具有外皮冷却回路的翼型件 Download PDF

Info

Publication number
CN109154197A
CN109154197A CN201780028778.5A CN201780028778A CN109154197A CN 109154197 A CN109154197 A CN 109154197A CN 201780028778 A CN201780028778 A CN 201780028778A CN 109154197 A CN109154197 A CN 109154197A
Authority
CN
China
Prior art keywords
wall
airfoil
cooling
flow direction
cooling circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780028778.5A
Other languages
English (en)
Inventor
R·S·邦克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN109154197A publication Critical patent/CN109154197A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/204Heat transfer, e.g. cooling by the use of microcircuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及一种用于涡轮发动机的翼型件,该涡轮发动机具有发动机部件,该发动机部件包括内部冷却回路,该内部冷却回路流体地联接到发动机部件的外壁内的多个通道,其中冷却空气通过这些通道从内部冷却回路移动到发动机部件的外表面。

Description

具有外皮冷却回路的翼型件
背景技术
涡轮发动机,特别是燃气或燃烧涡轮发动机,是旋转发动机,其从通过发动机的燃烧气体流中提取能量到多个旋转涡轮叶片上。涡轮发动机已经用于陆地和海上移动以及发电,但是最常用的是用于航空应用,例如用于飞行器,包括直升机。在飞行器中,涡轮发动机用于飞行器的推进。在地面应用中,涡轮发动机通常用于发电。
用于飞行器的涡轮发动机被设计成在高温下操作以使得发动机效率最大化,因此某些发动机部件(例如高压涡轮和低压涡轮)的冷却可能是有利的。通常,通过将较冷的空气从高压和/或低压压缩机引导到需要冷却的发动机部件来实现冷却。高压涡轮中的温度为大约1000℃至2000℃,来自压缩机的冷却空气的温度为大约500℃至700℃。虽然压缩机空气是高温的,但是其相对于涡轮空气是较冷的,可以用来冷却涡轮。
当前的涡轮叶片总体上包括一个或多个内部冷却回路,以用于将冷却空气引导通过叶片以冷却叶片的不同部分,并且可以包括专用冷却回路以冷却叶片的不同部分,例如叶片的前边缘,后边缘和末端。
发明内容
一种用于涡轮发动机的翼型件,所述翼型件包括:外壁,所述外壁具有界定了内部空间的外表面和内表面,所述外壁限定了压力侧和吸力侧,所述压力侧和吸力侧在前边缘和后边缘之间沿轴向延伸并且在根部和末端之间沿径向延伸;至少一个涂层,所述至少一个涂层施加到所述外表面;至少一个外皮冷却回路(skin cooling circuit),所述至少一个外皮冷却回路包括在所述外表面中形成的至少一个沟槽和穿过所述涂层通向所述沟槽的至少一个膜孔;设置在所述外壁的内部的至少一部分中的至少一个壁冷却通道,和穿过所述涂层并穿过所述外壁的内部的一部分而通向所述壁冷却通道的至少一个膜孔;以及位于壁的内部中的第一供应回路和第二供应回路,所述第一供应回路将第一空气供应流流体地联接到所述至少一个沟槽以限定外皮冷却回路,第二供应回路将所述第二空气供应流流体地联接到所述至少一个壁冷却通道以限定壁冷却回路。
一种用于涡轮发动机的发动机部件,所述涡轮发动机产生热空气流并提供冷却流体流,所述发动机部件包括:壁,所述壁将所述热空气流与所述冷却流体流分离,并且具有第一表面和面向所述冷却流体流的第二表面,热空气沿着所述第一表面在热流动路径中流动;至少一个涂层,所述至少一个涂层施加到所述第一表面;至少一个外皮冷却回路,所述至少一个外皮冷却回路包括在所述第一表面中形成的至少一个沟槽和穿过所述至少一个涂层通向所述沟槽的至少一个孔;至少一个壁冷却通道,所述至少一个壁冷却通道设置在所述壁的内部的至少一部分中;第一供应回路和第二供应回路,所述第一供应回路将所述冷却流体流流体地联接到所述至少一个沟槽以限定外皮冷却回路,所述第二供应回路将所述冷却流体流流体地联接到所述至少一个壁冷却通道以限定壁冷却回路。
一种冷却翼型件的方法,其包括:传递来自源的冷却空气流平行于a)翼型件的外壁的内部,以形成壁冷却回路;以及b)所述外壁的外表面中的沟槽,然后传递到上覆所述外表面的涂层中的孔,以形成外皮冷却回路。
附图说明
在附图中:
图1为用于飞行器的涡轮发动机的示意性横截面图。
图2为图1的发动机的涡轮叶片形式的发动机部件的透视图,其具有冷却空气入口通道。
图3为图2的翼型件的示意性周边视图。
图4为图2的翼型件的横截面图,示出了多个内部通道。
图5为图4的翼型件的取出部分的示意图,示出了壁冷却回路、外皮冷却回路和空气供应回路。
图6为图5的翼型件的一部分的放大视图,示出了流动空气供应路径。
图7A和7B为图5的翼型件的一部分的放大视图,示出了流动方向。
图8A、8B和8C为图5的翼型件的一部分的另外的放大视图,示出了图6的流动方向的不同路径。
具体实施方式
本发明所述的实施例涉及用于发动机的发动机部件,其具有冷却回路,该冷却回路包括外皮冷却回路和壁冷却通道,每个都单独地联接到例如翼型件内的内部通道或供应回路,以冷却翼型件的外表面。为了说明的目的,将针对用于飞行器燃气涡轮发动机的涡轮来描述本发明。然而,应当理解,本发明并不限于此并且能够普遍地应用于发动机,包括压缩机,以及应用于非飞行器应用,例如其它移动应用和非移动工业、商业和住宅应用。
如在此所用的,术语“前”或“上游”指的是沿着朝向发动机入口的方向移动,或者沿着朝向与另一个部件相比相对更靠近发动机入口的部件的方向移动。与“前”或“上游”结合使用的术语“后”或“下游”指的是朝向发动机的后部或出口的方向,或者朝向与另一个部件相比相对更靠近发动机出口的方向。
另外,如在此所用的,术语“径向”或“径向地”指的是在发动机的中心纵向轴线和发动机外周边之间延伸的维度。
所有方向性参考(例如径向、轴向、近侧、远侧、上、下、向上、向下、左、右、侧向、前、后、顶部、底部、上部、下部、竖直、水平、顺时针、逆时针、上游、下游、向前、向后等)仅仅用于识别的目的,以帮助读者理解本发明,而并非是限制性的,尤其是并非对定位、取向或本发明的用途进行限制。连接参考(例如附接、联接、连接和联结)应当宽泛地解释,可以包括元件的连接之间的中间构件以及元件之间的相对移动,除非另外指明。因此,连接参考不必推断出两个元件直接连接和彼此为固定关系。示例性附图仅仅是示意性的,附图中反映的维度、位置、顺序和相对尺寸可以变化。
图1为用于飞行器的涡轮发动机10的示意性横截面图。发动机10具有大致纵向延伸的轴线或中心线12,其从前14至后16延伸。沿着下游串联流动关系,发动机10包括:具有风扇20的风扇部段18;具有增压器或低压(LP)压缩机24和高压(HP)压缩机26的压缩机部段22;具有燃烧器30的燃烧部段28;具有HP涡轮34和LP涡轮36的涡轮部段32;以及排气部段38。
风扇部段18包括围绕风扇20的风扇壳体40。风扇20包括围绕中心线12沿径向设置的多个风扇叶片42。HP压缩机26、燃烧器30和HP涡轮34形成发动机10的芯部44,该芯部产生热空气流。芯部44被芯部壳体46围绕,该芯部壳体可以与风扇壳体40联接。
围绕发动机10的中心线12同轴地设置的HP轴或线轴48将HP涡轮34驱动地连接到HP压缩机26。处于较大直径的环形HP线轴48内的、围绕发动机10的中心线12同轴地设置的LP轴或线轴50将LP涡轮36驱动地连接到LP压缩机24和风扇20。线轴48、50能够围绕发动机中心线旋转,并且联接到多个可旋转元件,这些可旋转元件可以共同限定转子51。
LP压缩机24和HP压缩机26分别包括多个压缩机级52、54,其中一组压缩机叶片56、58相对于对应的一组静态压缩机轮叶60、62(也称为喷嘴)旋转,以压缩或加压穿过该级的流体流。在单个压缩机级52、54中,多个压缩机叶片56、58可以设置成环,并且可以相对于中心线12从叶片平台沿径向向外延伸到叶片末端,同时对应的静态压缩机轮叶60、62定位在旋转叶片56、58的上游并与旋转叶片相邻。要注意的是,图1所示的叶片、轮叶和压缩机级的数量的选择仅仅只是示意性的,其它的数量也是可能的。
用于压缩机级的叶片56、58可以安装到盘61上,该盘安装到HP和LP线轴48、50中对应的线轴上,每个级具有其自身的盘61。用于压缩机级的轮叶60、62可以以周边布置形式安装到芯部壳体46。
HP涡轮34和LP涡轮36分别包括多个涡轮级64、66,其中一组涡轮叶片68、70相对于对应的一组静态涡轮轮叶72、74(也称为喷嘴)旋转,以从穿过该级的流体流提取能量。在单个涡轮级64、66中,多个涡轮叶片68、70可以设置成环,并且可以相对于中心线12从叶片平台沿径向向外延伸到叶片末端,同时对应的静态涡轮轮叶72、74定位在旋转叶片68、70的上游并与旋转叶片相邻。要注意的是,图1所示的叶片、轮叶和涡轮级的数量的选择仅仅只是示意性的,其它的数量也是可能的。
用于涡轮级的叶片68、70可以安装到盘71,该盘安装到HP和LP线轴48、50中对应的线轴,每个级具有专用的盘71。用于压缩机级的轮叶72、74可以以周边布置形式安装到芯部壳体46。
与转子部分互补的是,发动机10的固定部分,例如压缩机和涡轮部段22、32之间的静态轮叶60、62、72、74,也被单独地或共同地称为定子63。因此,定子63可以指的是整个发动机10中的非旋转元件的组合。
在操作中,离开风扇部段18的空气流被分流,使得空气流的一部分被引导到LP压缩机24中,然后该LP压缩机将加压空气76供应到HP压缩机26,该HP压缩机进一步加压空气。来自HP压缩机26的加压空气76在燃烧器30中与燃料混合并点火燃烧,由此产生燃烧气体。通过HP涡轮34从这些气体中提取一些功,该HP涡轮驱动HP压缩机26。燃烧气体排放到LP涡轮36中,该LP涡轮提取额外的功以驱动LP压缩机24,废气最终经由排气部段38从发动机10排出。LP涡轮36的推进驱动LP线轴50,以转动风扇20和LP压缩机24。
可以从压缩机部段22吸取加压空气流76的一部分,作为排出空气77。可以从加压空气流76吸取排出空气77,并且将排出空气提供到需要冷却的发动机部件。进入燃烧器30的加压空气流76的温度显著增大。因此,排出空气77提供的冷却对于这样的发动机部件在高温环境中的操作而言是必要的。
空气流78的其余部分绕过LP压缩机24和发动机芯部44,并且在风扇排气侧84处通过固定轮叶排离开发动机组件10,更具体地,通过包括多个翼型件引导轮叶82的出口引导轮叶组件80离开该发动机组件。更具体地,使用与风扇部段18相邻的周向排的径向延伸的翼型件引导轮叶82,以对空气流78施加一定的方向控制。
由风扇20供应的一些空气可以绕过发动机芯部44并且用于发动机10各部分的冷却,尤其是热部分,和/或用来冷却飞行器的其它方面或为这些方面提供动力。在涡轮发动机的情况下,发动机的热部分通常处于燃烧器30的下游,尤其是涡轮部段32的下游,其中HP涡轮34是最热的部分,原因是其处于燃烧部段28的直接下游。其它冷却流体源可以是但不限于从LP压缩机24或HP压缩机26排出的流体。
图2为来自图1的发动机10的涡轮叶片68之一形式的发动机部件的透视图。涡轮叶片68包括榫型件79和翼型件79。翼型件79在根部83和末端81之间沿径向延伸。榫型件79还包括在根部83处与翼型件79成一体的平台84,该平台有助于沿径向容纳涡轮空气流。榫型件79可以被构造成安装到发动机10上的涡轮转子盘。榫型件79包括至少一个入口通道,示例性地示出为第一入口通道88、第二入口通道90和第三入口通道92,每个入口通道延伸穿过榫型件79以在通道出口94处提供与翼型件79的内部流体连通。应当理解,榫型件79以横截面示出,使得入口通道88、90、92容纳在榫型件79的本体内。
转到图3,以横截面示出的翼型件79包括外壁95,该外壁界定了内部空间96,该内部空间具有凹形压力侧98和凸形吸力侧100,该凹形压力侧和凸形吸力侧连接在一起,以限定在前边缘102和后边缘104之间沿轴向延伸的翼型件形状。叶片68沿一个方向旋转,使得压力侧98跟随吸力侧100。因此,如图3所示,翼型件79朝向页面的顶部向上转动。
参考图4,内部空间96可以分为多个内部冷却空气供应回路122、124、126,这些内部冷却空气供应回路可以以任何形式布置在内部空间96中,并且专门用于将冷却空气供应到内部空间96。供应回路流体地联接到至少一个入口通道88、90、92,在入口通道处通过通道出口94提供与至少一个供应回路的内部流体连通。
应当理解,翼型件79内每个单独的供应回路的相应几何结构如图所示是示例性的,并不是将翼型件限制为如图所示的供应回路的数量、几何结构、尺寸或位置。另外,供应回路122、124、126可以彼此流体地联接,以在相邻的供应回路之间提供额外的内部流体连通。另外,虽然示出了三个供应回路,但是可以具有任何数量的供应回路,例如从零个到一个到多个。
外壁95包括外表面130和内表面132,其限定了大致实心的内部134。至少一个涂层136施加到外表面130,其中涂层136可以包括一个或多个具有金属、陶瓷或任何其它合适材料的层。外表面130和至少一个涂层限定了用于翼型件的“外皮”。包括外皮的外壁95将翼型件的第一表面128上的热空气流H与沿着第二表面129供应到供应回路122、124、126的冷却流体流C分开。涂层136可以由各种已知的方法形成,例如喷雾、汽相沉积等等,并且也可以通过增量制造而形成。
多个膜孔138可以设置成穿过外壁95的表面,以将冷却空气提供到翼型件79的外部上。壁冷却回路140和外皮冷却回路142设置有翼型件79,并且均可以流体地连接到多个膜孔138之一,以冷却外壁95和外皮130、136。应当理解,膜孔可以是为任何几何结构的膜冷却出口,例如但不限于孔、成型孔和狭槽。
可以想到,外皮冷却回路142和壁冷却回路140可以是多重外皮和壁冷却回路142、140,并且外皮和壁冷却回路142、140中的至少一些流体地联接到多个供应回路并围绕一部分或整个翼型件内部96。尽管示出了三个供应回路,但是更多或更少的供应回路可以位于翼型件内部96中。
参考图5,将针对图4的翼型件的一部分的该示意图来描述壁冷却回路140和外皮冷却回路142的细节。外皮冷却回路142包括设置在外表面130中的至少一个沟槽150以及穿过涂层136通向沟槽150的至少一个膜孔138。外皮冷却回路142可以形成在外表面130中,或者形成在涂层136中,或者形成在这两者的组合中,如图所示。在一些实施例中,所示的涂层136的一部分可以是同一基体的一部分,该基体形成沟槽150,然后顶部上增加涂层,利用非涂层材料,例如利用钎焊或附接到外表面上的金属板,来封闭外皮冷却回路142。应当理解,所示的多个沟槽和通道是示例性的,并不用来限制例如形状、取向或尺寸。
至少一个沟槽150可以是多个沟槽150,这些沟槽彼此流体地联接或者彼此流体地分离。多个沟槽150可以成组地布置,这些组可以用来形成外皮冷却回路142中的子回路。多个沟槽150的宽度和长度可以是变化的。还可以想到,多个膜孔138可以穿过涂层通向多个沟槽150中的仅仅一个沟槽或者通向多个沟槽150中的若干或全部沟槽。可以设想,沟槽150可以具有与壁冷却通道144相同或者比壁冷却通道小的尺寸,在另外的实施例中为壁冷却通道144的50%或更小。
外皮冷却回路142流体地联接到第一供应回路122,该第一供应回路位于翼型件79的内部空间96中。第一供应回路122通过至少一个内部孔152流体地联接到至少一个沟槽150,该内部孔可以形成为孔口或狭槽。
壁冷却回路140包括设置在壁95的内部134中且由外表面和内表面130、132界定的一个或多个壁冷却通道144、以及穿过涂层136和内部134并通向壁冷却通道144的至少一个膜孔138。还能够想到,多个膜孔138可以穿过涂层到达壁冷却通道144。
位于翼型件79的内部空间96内的第二供应回路124通过另外的至少一个内部孔156流体地联接到至少一个壁冷却通道144。包括第二供应回路124和壁冷却通道144的壁冷却回路140与外皮冷却回路142流体地分开。第一和第二供应回路122、124可以根据需要供应冷却空气,该冷却空气可以是相同或不同类型的冷却空气。作为另外一种选择,壁冷却回路140和外皮冷却回路142可以由相同的供应回路(例如124)供应,其中一个供应回路124流体地联接到沟槽150和壁冷却通道144两者。
现在转到图6,调节空气经由例如第一、第二或第三入口通道88、90、92之一供应到第一和第二供应回路122、124两者。调节空气可以是针对供应回路122、124中每一个相同地或不同地调节的。调节空气中的至少一者是冷却空气,其中冷却流体流C被提供到第一和第二供应回路122、124。通过调节,意味着空气供应流可以具有不同的特性,例如压力和温度。
外皮冷却回路142限定了用于调节空气作为第一空气供应流160从第一供应回路122流过沟槽150并且经由膜孔138离开的路径。壁冷却回路140限定了用于调节空气作为第二空气供应流162从第二供应回路124流过壁通道144并且经由膜孔138离开的路径。第一和第二空气供应流160、162在操作期间彼此平行地流动。
虽然对于本文所述的构造的几何结构可能有多个流动路径,但是图7A和7B中示出了两个可能的流动路径。这些流动路径仅仅是处于说明目的,而非限制性的。
转到图7A,当调节空气供应到供应回路122、124时,供应回路122、124与相邻的沟槽150和壁通道140之间的压差使得冷却空气沿着由供应回路122、124限定的第一流动方向SC从供应回路122、124流动,冷却流体流C在该供应回路处穿过内部孔152、156。
第二流动方向SCC取决于多个沟槽150之一和第一供应回路122之间的压差以及膜孔138和内部孔152的设置。第三流动方向WCP可以沿着壁通道140沿与第二流动方向SCC相同的方向流动,以产生同向流动,其中冷却空气与相邻回路中的对应冷却空气平行地且沿相同的方向流动。在这种情况下,该方向也取决于壁冷却通道140和第二供应回路124之间的压差以及膜孔138和内部孔156的设置。
转到图7B,除了相邻的冷却回路之间存在的压差之外,膜孔和内部孔152和156的设置也可以使得第二流动方向SCC和第三流动方向WCP彼此反向,以产生对向流动,其中冷却空气与相邻回路中的对应冷却空气平行地且沿相反的方向流动。
可以看到,关于外皮冷却回路142相对于壁冷却通道144的几何结构,可以考虑多种取向。图8A、8B和8C示出了一些取向。虽然想到了三种不同的可能取向,但是应当理解它们仅仅是示例性的而非限制性的。图8A示出了相对的几何结构,其中沟槽250与壁通道244垂直地延伸。图8B示出了相对的几何结构,其中沟槽350和壁通道344彼此平行地延伸。此外,图8C示出了相对的取向,其中沟槽450和壁通道444以图8A和6B所示的几何结构之间的角度取向延伸。
壁冷却回路140和外皮冷却回路142可以同向流动、对向流动、或者相对于彼此以任何笔直的或弧形的中间角度流动,只要每个冷却层保持在其对应的回路中即可。
冷却翼型件79的方法包括:首先使来自例如供应回路124的源的冷却空气流C平行于翼型件79的外壁95的内部134中的壁冷却通道144以形成壁冷却回路140,同时使来自单独的源的冷却空气流平行于外壁95的外表面130中的沟槽150,然后传递到上覆外表面130的涂层中的膜孔38以形成外皮冷却回路142。
冷却空气流通过外皮冷却回路的传递可以是沿第一方向SCC,冷却空气流通过壁冷却回路的传递可以是沿第二方向WCP,其中第一方向和第二方向是相同的、不同的或者相反的,如本文所述。
可以想到,具有多个壁通道和外皮冷却回路的整个发动机部件可以铸造成单个部件,之后可以模制和再成形发动机部件的各部分,然后施加涂层。也可以想到增量制造,其中例如供应回路的主要部件是铸造的,并且增加包括壁通道、流体连接孔和外皮冷却回路的额外部件。
本文的公开包括冷却的部件,其采用并行流动的壁冷却回路和外皮冷却回路两者和单独的子回路,其中壁冷却回路从与外皮冷却回路不同的源进给。
外皮冷却回路单独地可以允许高达30%的冷却流减少。
采用与外皮冷却回路并行的壁冷却回路的优点包括增加了基体结构的热均匀性。在外皮冷却回路失效风险增大的情况下,并行的壁冷却回路仍然可以提供与发动机部件的热和结构一体化。
在较新的涡轮冷却中,与现有的涡轮冷却相比,流动降低30%至50%。将壁冷却回路与外皮冷却回路组合能够减少30%的冷却流,降低了成本,并且降低了比燃料消耗。
书写的说明书利用实例来公开本发明,包括最佳模式,并且使得本领域任何技术人员能够实施本发明,包括制造和使用任何装置或系统以及执行任何结合的方法。本发明的专利范围由权利要求限定,并且可以包括本领域技术人员能够想到的其它例子。如果这样的其它例子具有与权利要求的文字语言不是不同的结构元件,或者如果它们包括与权利要求的文字语言差别不太明显的等同结构元件,那么它们将处于权利要求的范围内。

Claims (36)

1.一种用于涡轮发动机的翼型件,所述翼型件包括:
外壁,所述外壁具有界定了内部空间的外表面和内表面,所述外壁限定了压力侧和吸力侧,所述压力侧和吸力侧在前边缘和后边缘之间沿轴向延伸并且在根部和末端之间沿径向延伸;
至少一个涂层,所述至少一个涂层施加到所述外表面;
至少一个外皮冷却回路,所述至少一个外皮冷却回路包括在所述外表面中形成的至少一个沟槽和穿过所述涂层通向所述沟槽的至少一个膜孔;
设置在所述外壁的内部的至少一部分中的至少一个壁冷却通道,和穿过所述涂层并穿过所述外壁的内部的一部分而通向所述壁冷却通道的至少一个膜孔;以及
位于壁的内部中的第一供应回路和第二供应回路,所述第一供应回路将第一空气供应流流体地联接到所述至少一个沟槽以限定外皮冷却回路,第二供应回路将第二空气供应流流体地联接到所述至少一个壁冷却通道以限定壁冷却回路。
2.根据权利要求1所述的翼型件,其特征在于,所述第一空气供应流和第二空气供应流供应相同的调节空气。
3.根据权利要求2所述的翼型件,其特征在于,所述相同的调节空气是冷却空气。
4.根据权利要求3所述的翼型件,其特征在于,所述第一空气供应流和第二空气供应流是相同的供应回路。
5.根据权利要求1所述的翼型件,其特征在于,所述第一空气供应流和第二空气供应流供应不同的调节空气。
6.根据权利要求5所述的翼型件,其特征在于,所述不同的调节空气包括至少一个冷却空气供应流。
7.根据权利要求1所述的翼型件,其特征在于,所述外皮冷却回路和壁冷却回路并行地操作。
8.根据权利要求1所述的翼型件,其特征在于,所述翼型件还包括多个外皮冷却回路。
9.根据权利要求1所述的翼型件,其特征在于,所述翼型件还包括多个壁冷却回路。
10.根据权利要求9所述的翼型件,其特征在于,所述翼型件还包括多个外皮冷却回路。
11.根据权利要求1所述的翼型件,其特征在于,所述至少一个沟槽包括多个沟槽。
12.根据权利要求11所述的翼型件,其特征在于,所述翼型件还包括用于所述多个沟槽中各个沟槽的多个膜孔。
13.根据权利要求1所述的翼型件,其特征在于,所述供应回路限定了第一流动方向,所述沟槽限定了第二流动方向,所述壁冷却通道限定了第三流动方向。
14.根据权利要求13所述的翼型件,其特征在于,所述第一流动方向、第二流动方向和第三流动方向中的至少两个流动方向是相同的。
15.根据权利要求14所述的翼型件,其特征在于,第二流动方向和第三流动方向是相同的。
16.根据权利要求13所述的翼型件,其特征在于,所述第一流动方向、第二流动方向和第三流动方向中的至少两个流动方向是相反的。
17.根据权利要求16所述的翼型件,其特征在于,第二流动方向和第三流动方向是相反的。
18.根据权利要求1所述的翼型件,其特征在于,所述至少一个涂层包括多个涂层。
19.一种用于涡轮发动机的发动机部件,所述涡轮发动机产生热空气流并提供冷却流体流,所述发动机部件包括:
壁,所述壁将所述热空气流与所述冷却流体流分离,并且具有与所述热空气流一起处于热流动路径中的第一表面和面向所述冷却流体流的第二表面;
至少一个涂层,所述至少一个涂层施加到所述第一表面;
至少一个外皮冷却回路,所述至少一个外皮冷却回路包括在所述第一表面中形成的至少一个沟槽和穿过所述至少一个涂层通向所述沟槽的至少一个孔;
至少一个壁冷却通道,所述至少一个壁冷却通道设置在所述壁的内部的至少一部分中;
第一供应回路和第二供应回路,所述第一供应回路将所述冷却流体流流体地联接到所述至少一个沟槽以限定外皮冷却回路,所述第二供应回路将所述冷却流体流流体地联接到所述至少一个壁冷却通道以限定壁冷却回路。
20.根据权利要求19所述的发动机部件,其特征在于,所述外皮冷却回路和壁冷却回路并行地操作。
21.根据权利要求19所述的发动机部件,其特征在于,所述发动机部件还包括多个外皮冷却回路。
22.根据权利要求19所述的发动机部件,其特征在于,所述发动机部件还包括多个壁冷却回路。
23.根据权利要求22所述的发动机部件,其特征在于,所述发动机部件还包括多个外皮冷却回路。
24.根据权利要求19所述的发动机部件,其特征在于,所述至少一个沟槽还包括多个沟槽。
25.根据权利要求24所述的发动机部件,其特征在于,所述发动机部件还包括用于所述多个沟槽中各个沟槽的多个膜孔。
26.根据权利要求19所述的发动机部件,其特征在于,所述供应回路限定了第一流动方向,所述沟槽限定了第二流动方向,所述壁冷却通道限定了第三流动方向。
27.根据权利要求26所述的发动机部件,其特征在于,所述第一流动方向、第二流动方向和第三流动方向中的至少两个流动方向是相同的。
28.根据权利要求27所述的发动机部件,其特征在于,第二流动方向和第三流动方向是相同的。
29.根据权利要求26所述的发动机部件,其特征在于,所述第一流动方向、第二流动方向和第三流动方向中的至少两个流动方向是相反的。
30.根据权利要求29所述的发动机部件,其特征在于,第二流动方向和第三流动方向是相反的。
31.根据权利要求19所述的发动机部件,其特征在于,所述至少一个涂层包括多个涂层。
32.一种冷却发动机部件的方法,其包括:传递来自源的冷却空气流平行于:a)翼型件的外壁的内部中的壁通道,然后传递到上覆所述翼型件的外表面的涂层中的膜孔,以形成壁冷却回路;以及b)外壁的外表面中的沟槽,然后传递到上覆所述外表面的涂层中的膜孔,以形成外皮冷却回路。
33.根据权利要求32所述的方法,其特征在于,冷却空气通过所述外皮冷却回路的传递是沿第一方向,冷却空气在所述壁冷却回路中的传递是沿第二方向。
34.根据权利要求33所述的方法,其特征在于,所述第一方向和第二方向是相同的。
35.根据权利要求33所述的方法,其特征在于,所述第一方向和第二方向是不同的。
36.根据权利要求35所述的方法,其特征在于,所述第一方向和第二方向是相反的。
CN201780028778.5A 2016-05-10 2017-05-08 具有外皮冷却回路的翼型件 Pending CN109154197A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/150,634 US10415396B2 (en) 2016-05-10 2016-05-10 Airfoil having cooling circuit
US15/150,634 2016-05-10
PCT/US2017/031494 WO2017196698A1 (en) 2016-05-10 2017-05-08 Airfoil having a skin cooling circuit

Publications (1)

Publication Number Publication Date
CN109154197A true CN109154197A (zh) 2019-01-04

Family

ID=58710131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780028778.5A Pending CN109154197A (zh) 2016-05-10 2017-05-08 具有外皮冷却回路的翼型件

Country Status (3)

Country Link
US (2) US10415396B2 (zh)
CN (1) CN109154197A (zh)
WO (1) WO2017196698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095391A (zh) * 2022-06-30 2022-09-23 上海交通大学 增材制造的涡轮叶片近壁面冷却结构及其加工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465526B2 (en) 2016-11-15 2019-11-05 Rolls-Royce Corporation Dual-wall airfoil with leading edge cooling slot
US10450873B2 (en) * 2017-07-31 2019-10-22 Rolls-Royce Corporation Airfoil edge cooling channels
US11352886B2 (en) * 2017-10-13 2022-06-07 General Electric Company Coated components having adaptive cooling openings and methods of making the same
US10612391B2 (en) * 2018-01-05 2020-04-07 General Electric Company Two portion cooling passage for airfoil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573474B1 (en) * 2000-10-18 2003-06-03 Chromalloy Gas Turbine Corporation Process for drilling holes through a thermal barrier coating
US6746755B2 (en) * 2001-09-24 2004-06-08 Siemens Westinghouse Power Corporation Ceramic matrix composite structure having integral cooling passages and method of manufacture
US20070280832A1 (en) * 2006-06-06 2007-12-06 Siemens Power Generation, Inc. Turbine airfoil with floating wall mechanism and multi-metering diffusion technique
US7766617B1 (en) * 2007-03-06 2010-08-03 Florida Turbine Technologies, Inc. Transpiration cooled turbine airfoil
US20120125585A1 (en) * 2007-03-08 2012-05-24 Siemens Power Generation, Inc. Cmc wall structure with integral cooling channels
US8360726B1 (en) * 2009-09-17 2013-01-29 Florida Turbine Technologies, Inc. Turbine blade with chordwise cooling channels
US20130272850A1 (en) * 2012-04-17 2013-10-17 General Electric Company Components with microchannel cooling
US20140004310A1 (en) * 2011-04-27 2014-01-02 General Electric Company Wireless component and methods of fabricating a coated component using multiple types of fillers

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963368A (en) 1967-12-19 1976-06-15 General Motors Corporation Turbine cooling
US3698834A (en) 1969-11-24 1972-10-17 Gen Motors Corp Transpiration cooling
US5383766A (en) 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
FR2691209B1 (fr) 1992-05-18 1995-09-01 Europ Propulsion Enceinte contenant des gaz chauds refroidie par transpiration, notamment chambre propulsive de moteur-fusee, et procede de fabrication.
US5640767A (en) 1995-01-03 1997-06-24 Gen Electric Method for making a double-wall airfoil
US5626462A (en) 1995-01-03 1997-05-06 General Electric Company Double-wall airfoil
DE19737845C2 (de) 1997-08-29 1999-12-02 Siemens Ag Verfahren zum Herstellen einer Gasturbinenschaufel, sowie nach dem Verfahren hergestellte Gasturbinenschaufel
US6280140B1 (en) 1999-11-18 2001-08-28 United Technologies Corporation Method and apparatus for cooling an airfoil
US6375425B1 (en) 2000-11-06 2002-04-23 General Electric Company Transpiration cooling in thermal barrier coating
US6511762B1 (en) 2000-11-06 2003-01-28 General Electric Company Multi-layer thermal barrier coating with transpiration cooling
US6443700B1 (en) 2000-11-08 2002-09-03 General Electric Co. Transpiration-cooled structure and method for its preparation
US6461107B1 (en) 2001-03-27 2002-10-08 General Electric Company Turbine blade tip having thermal barrier coating-formed micro cooling channels
US6499949B2 (en) 2001-03-27 2002-12-31 Robert Edward Schafrik Turbine airfoil trailing edge with micro cooling channels
US7137776B2 (en) 2002-06-19 2006-11-21 United Technologies Corporation Film cooling for microcircuits
US7097425B2 (en) 2003-08-08 2006-08-29 United Technologies Corporation Microcircuit cooling for a turbine airfoil
US6896487B2 (en) 2003-08-08 2005-05-24 United Technologies Corporation Microcircuit airfoil mainbody
US6905302B2 (en) 2003-09-17 2005-06-14 General Electric Company Network cooled coated wall
US7097426B2 (en) 2004-04-08 2006-08-29 General Electric Company Cascade impingement cooled airfoil
US8314355B2 (en) * 2005-05-20 2012-11-20 Mitsubishi Electric Corporation Gas insulated breaking device
US7364405B2 (en) 2005-11-23 2008-04-29 United Technologies Corporation Microcircuit cooling for vanes
US7311498B2 (en) 2005-11-23 2007-12-25 United Technologies Corporation Microcircuit cooling for blades
US7513744B2 (en) 2006-07-18 2009-04-07 United Technologies Corporation Microcircuit cooling and tip blowing
US7481623B1 (en) 2006-08-11 2009-01-27 Florida Turbine Technologies, Inc. Compartment cooled turbine blade
US7717677B1 (en) 2007-01-31 2010-05-18 Florida Turbine Technologies, Inc. Multi-metering and diffusion transpiration cooled airfoil
US7837441B2 (en) 2007-02-16 2010-11-23 United Technologies Corporation Impingement skin core cooling for gas turbine engine blade
US7775768B2 (en) 2007-03-06 2010-08-17 United Technologies Corporation Turbine component with axially spaced radially flowing microcircuit cooling channels
US8047789B1 (en) * 2007-10-19 2011-11-01 Florida Turbine Technologies, Inc. Turbine airfoil
US8586179B1 (en) 2010-04-09 2013-11-19 The Boeing Company Mechanical attachment for micro-truss actively cooled structural insulation layer
US8366394B1 (en) * 2010-10-21 2013-02-05 Florida Turbine Technologies, Inc. Turbine blade with tip rail cooling channel
US8714927B1 (en) 2011-07-12 2014-05-06 United Technologies Corporation Microcircuit skin core cut back to reduce microcircuit trailing edge stresses
US9057523B2 (en) 2011-07-29 2015-06-16 United Technologies Corporation Microcircuit cooling for gas turbine engine combustor
US9776282B2 (en) 2012-10-08 2017-10-03 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
US9200521B2 (en) * 2012-10-30 2015-12-01 General Electric Company Components with micro cooled coating layer and methods of manufacture
US9003657B2 (en) 2012-12-18 2015-04-14 General Electric Company Components with porous metal cooling and methods of manufacture
US10329917B2 (en) 2013-03-05 2019-06-25 United Technologies Corporation Gas turbine engine component external surface micro-channel cooling
US20140302278A1 (en) 2013-04-09 2014-10-09 General Electric Company Components with double sided cooling features and methods of manufacture
US20150064019A1 (en) 2013-08-30 2015-03-05 General Electric Company Gas Turbine Components with Porous Cooling Features
US9476306B2 (en) 2013-11-26 2016-10-25 General Electric Company Components with multi-layered cooling features and methods of manufacture
US10329923B2 (en) 2014-03-10 2019-06-25 United Technologies Corporation Gas turbine engine airfoil leading edge cooling
US20150321289A1 (en) 2014-05-12 2015-11-12 Siemens Energy, Inc. Laser deposition of metal foam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573474B1 (en) * 2000-10-18 2003-06-03 Chromalloy Gas Turbine Corporation Process for drilling holes through a thermal barrier coating
US6746755B2 (en) * 2001-09-24 2004-06-08 Siemens Westinghouse Power Corporation Ceramic matrix composite structure having integral cooling passages and method of manufacture
US20070280832A1 (en) * 2006-06-06 2007-12-06 Siemens Power Generation, Inc. Turbine airfoil with floating wall mechanism and multi-metering diffusion technique
US7766617B1 (en) * 2007-03-06 2010-08-03 Florida Turbine Technologies, Inc. Transpiration cooled turbine airfoil
US20120125585A1 (en) * 2007-03-08 2012-05-24 Siemens Power Generation, Inc. Cmc wall structure with integral cooling channels
US8360726B1 (en) * 2009-09-17 2013-01-29 Florida Turbine Technologies, Inc. Turbine blade with chordwise cooling channels
US20140004310A1 (en) * 2011-04-27 2014-01-02 General Electric Company Wireless component and methods of fabricating a coated component using multiple types of fillers
US20130272850A1 (en) * 2012-04-17 2013-10-17 General Electric Company Components with microchannel cooling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095391A (zh) * 2022-06-30 2022-09-23 上海交通大学 增材制造的涡轮叶片近壁面冷却结构及其加工方法
CN115095391B (zh) * 2022-06-30 2023-12-12 上海交通大学 增材制造的涡轮叶片近壁面冷却结构及其加工方法

Also Published As

Publication number Publication date
US10415396B2 (en) 2019-09-17
US20190338651A1 (en) 2019-11-07
WO2017196698A1 (en) 2017-11-16
US20170328215A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
CN109154197A (zh) 具有外皮冷却回路的翼型件
CN109415943A (zh) 具有冷却回路的翼型件
US10648342B2 (en) Engine component with cooling hole
US11021967B2 (en) Turbine engine component with a core tie hole
US10577955B2 (en) Airfoil assembly with a scalloped flow surface
US20190145267A1 (en) Engine component with non-diffusing section
CN109072702A (zh) 具有冷却回路的发动机部件壁
CN109072703A (zh) 具有冷却回路的发动机部件壁和冷却方法
US10718217B2 (en) Engine component with cooling passages
US20180347374A1 (en) Airfoil with tip rail cooling
CN109891055A (zh) 用于涡轮发动机的翼型件以及冷却的对应方法
CN109415942A (zh) 翼型件,发动机部件和相应的冷却方法
US10443407B2 (en) Accelerator insert for a gas turbine engine airfoil
US20180051571A1 (en) Airfoil for a turbine engine with porous rib
CN109563742A (zh) 具有多孔式孔的发动机构件
CN107448243B (zh) 具有冷却回路的翼型件
CN109154198A (zh) 具有冷却回路的发动机部件壁
CN108019238A (zh) 具有冷却回路的翼型件组件
US10508548B2 (en) Turbine engine with a platform cooling circuit
US20190085706A1 (en) Turbine engine airfoil assembly
US20220228493A1 (en) Airfoil tip rail and method of cooling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104