CN109150304A - A kind of calculation method of free space light intensity channel up to capacity - Google Patents

A kind of calculation method of free space light intensity channel up to capacity Download PDF

Info

Publication number
CN109150304A
CN109150304A CN201811295357.1A CN201811295357A CN109150304A CN 109150304 A CN109150304 A CN 109150304A CN 201811295357 A CN201811295357 A CN 201811295357A CN 109150304 A CN109150304 A CN 109150304A
Authority
CN
China
Prior art keywords
capacity
channel
fso
given
objective function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811295357.1A
Other languages
Chinese (zh)
Other versions
CN109150304B (en
Inventor
马帅
贺阳
张凡
杨瑞鑫
李世银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201811295357.1A priority Critical patent/CN109150304B/en
Publication of CN109150304A publication Critical patent/CN109150304A/en
Application granted granted Critical
Publication of CN109150304B publication Critical patent/CN109150304B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Complex Calculations (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种自由空间光强信道可达容量的计算方法,用于实现自由空间光学(FSO)信道的容量。在峰值约束和平均光功率约束下,寻求FSO信道的容量可以视为一个混合连续离散优化问题,其中目标函数是不可积。为克服这一困难,本发明采用数值积分方法近似目标函数及其梯度。然后,证明了原始函数和近似值之间的差距可以任意小。基于近似函数,本发明提出一种不精确的梯度下降法来解决混合连续离散优化问题,理论上表明所获得的最优解收敛于最优离散分布,可以实现FSO信道容量。最后,仿真结果验证了该方法的性能提出的方法,其可实现的速率高于现有的方法。

The invention discloses a method for calculating the reachable capacity of a free space optical intensity channel, which is used to realize the capacity of a free space optical (FSO) channel. Under the peak constraint and the average optical power constraint, seeking the capacity of the FSO channel can be regarded as a hybrid continuous discrete optimization problem, where the objective function is non-integrable. To overcome this difficulty, the present invention adopts the numerical integration method to approximate the objective function and its gradient. Then, it is shown that the gap between the original function and the approximation can be arbitrarily small. Based on the approximation function, the present invention proposes an imprecise gradient descent method to solve the mixed continuous discrete optimization problem, which theoretically shows that the obtained optimal solution converges to the optimal discrete distribution and can realize the FSO channel capacity. Finally, the simulation results verify the performance of the proposed method, and its achievable rate is higher than the existing methods.

Description

一种自由空间光强信道可达容量的计算方法A method for calculating the reachable capacity of a free-space optical intensity channel

技术领域technical field

本发明涉及通信领域,尤其涉及一种自由空间光强信道可达容量的计算方法。The invention relates to the field of communications, in particular to a method for calculating the reachable capacity of a free-space optical intensity channel.

背景技术Background technique

免费空间光学(FSO)由于其广泛的免许可频谱,低电磁干扰,高安全性和高数据速率(参考文献:[1]、[2]、[3]、[4]),通信最近在学术界和工业界引起了广泛的研究关注。不同于传统的射频通信,FSO通信采用强度调制和直接检测(IM/DD)方案。为了满足眼睛安全和实际照明的考虑,应通过满足峰值和平均光功率来控制发射信号限制。在这种设置下,(参考文献:[5]、[6])已经证明了FSO的容量实现分布信道在有限的一组点上是离散的,因而实现RF的经典信道容量的高斯分布不能应用于FSO信道。到目前为止,对于FSO信道如何有效地搜索信道的可达容量离散分布还是未知的,而目前的方法只是在每个信噪比(SNR)点进行穷举搜索。Free Space Optics (FSO), due to its wide license-exempt spectrum, low electromagnetic interference, high security and high data rates (refs: [1], [2], [3], [4]), has recently gained a lot of attention in academic communication It has aroused extensive research attention in the world and industry. Different from traditional radio frequency communication, FSO communication adopts intensity modulation and direct detection (IM/DD) scheme. To meet eye safety and practical lighting considerations, emission signal limits should be controlled by meeting peak and average optical power. In this setting, (refs: [5], [6]) it has been shown that the capacity of the FSO realizes that the distributed channel is discrete over a limited set of points, and thus the Gaussian distribution of the classical channel capacity that realizes the RF cannot be applied on the FSO channel. So far, it is unknown how to efficiently search the discrete distribution of the reachable capacity of the channel for FSO channels, and current methods only perform an exhaustive search at each signal-to-noise ratio (SNR) point.

为了规避低效率计算,FSO信道容量的上下界已经得出。在参考文献[7]、[8]、[9]、[10]中,容量受平均光学限制研究了功率约束。基于球体包装方法,作者在参考文献[7]中导出上限和下限,两个边界之间的差距约为0.5每次传输的比特。在参考文献[8]中,通过最大化源熵提出了下限在一系列离散的非均匀分布上,上界也是通过球体包装论证。参考文献[8]中的两个边界渐近地描述了FSO信道低信噪比时的容量。通过利用一种新的近似方法来获得内在体积单形,参考文献[9]中发展的上界改进了参考文献[7],参考文献[8]中的结果。作者在参考文献[10]导出了上限和下限,并且边界之间的间隙趋于零平均光功率趋于无穷大。基于新的递归方法,上限在参考文献[11]中提出,它进一步改进了参考文献[10]中的球体填充上限。In order to avoid inefficient calculations, upper and lower bounds for the FSO channel capacity have been derived. In refs [7], [8], [9], [10], the capacity is limited by the average optical limit and the power constraint is studied. Based on the sphere packing method, the authors derive upper and lower bounds in Ref. [7], the gap between the two bounds is about 0.5 bits per transmission. In Ref. [8], the lower bound is proposed by maximizing the source entropy over a series of discrete non-uniform distributions, and the upper bound is also demonstrated by sphere packing. Two boundaries in Ref. [8] asymptotically describe the capacity of an FSO channel at low signal-to-noise ratio. The upper bound developed in ref. [9] improves the results in ref. [7], ref. [8] by exploiting a new approximation method to obtain the intrinsic volume simplex. The authors derived upper and lower bounds in Ref. [10], and the gap between the boundaries tends to zero and the average optical power tends to infinity. Based on a new recursive method, the upper bound is proposed in Ref. [11], which further improves the sphere-filling upper bound in Ref. [10].

此外,参考文献[10]、[11]、[12]、[13]研究了峰值和平均值下的容量界限光功率限制。对于平均功率与峰值功率的固定比率,差距当SNR变得无限大时,参考文献[10]中的上限和下限之间趋于零。此外,通过使用截断高斯分布,显示了参考文献[11]中导出的下界在高信噪比时接近球形填充上限(参考文献[10])。通过最大化来源在参考文献[12]中推导出具有离散非均匀输入分布的可实现速率,在高信噪比时紧张。在峰值光功率,平均光功率和电气功率约束,封闭形式下界(称为ABG下界)在参考文献[13]中发展使用熵权不等式和拉格朗日函数法。Furthermore, references [10], [11], [12], [13] investigate the capacity bound optical power limit at both peak and average values. For a fixed ratio of average power to peak power, the gap between the upper and lower bounds in Ref. [10] tends to zero as the SNR becomes infinite. Furthermore, by using a truncated Gaussian distribution, it was shown that the lower bound derived in Ref. [11] is close to the upper bound of spherical padding at high SNR (Ref. [10]). The achievable rates with discrete non-uniform input distributions are derived in Ref. [12] by maximizing the source, straining at high signal-to-noise ratios. Under peak optical power, average optical power and electrical power constraints, closed-form lower bounds (called ABG lower bounds) are developed in Ref. [13] using entropy weight inequality and Lagrangian function methods.

总之,现有的论文侧重于FSO信道容量的下限或上限,数值结果证明了信道界限的紧密性。然而,现有的工作没有直接给出如何用离散输入分布实现FSO信道容量。因此,没有理论方法可有效地获得FSO通信系统的信道容量。In conclusion, existing papers focus on the lower or upper bound of the FSO channel capacity, and the numerical results demonstrate the tightness of the channel bounds. However, existing work does not directly show how to achieve FSO channel capacity with discrete input distributions. Therefore, there is no theoretical method to efficiently obtain the channel capacity of an FSO communication system.

参考文献:[1]T.Komine and M.Nakagawa,“Fundamental analysis forvisible-light communication system using led lights,”IEEETrans.Consum.Electron,vol.50,no.1,pp.100–107,Feb.2004.References: [1] T.Komine and M.Nakagawa, "Fundamental analysis forvisible-light communication system using led lights," IEEETrans.Consum.Electron,vol.50,no.1,pp.100–107,Feb.2004 .

[2]H.Elgala,R.Mesleh,and H.Haasn,“Indoor optical wirelesscommunication:potential and state-of-the-art,,”IEEE Commun.Mag.,vol.49,no.9,pp.56–62,Dec.2011.[2] H. Elgala, R. Mesleh, and H. Haasn, "Indoor optical wireless communication: potential and state-of-the-art," IEEE Commun.Mag., vol.49, no.9, pp.56 –62, Dec. 2011.

[3]A.Jovicic,J.Li,and T.Richardson,“Visible light communication:opportunities,challenges and the path to market,”IEEE Commun.Mag.,vol.51,no.12,pp.26–32,Dec.2013.[3] A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag., vol. 51, no. 12, pp. 26–32 , Dec.2013.

[4]P.H.Pathak,X.Feng,P.Hu,and P.Mohapatra,“Visible lightcommunication,networking,and sensing:a survey,potential and challenges,”IEEECommun.Surveys Tuts.,vol.17,no.4,pp.2047–2077,Sept.2015.[4] P.H.Pathak, X.Feng, P.Hu, and P.Mohapatra, "Visible lightcommunication, networking, and sensing: a survey, potential and challenges," IEEECommun.Surveys Tuts.,vol.17,no.4, pp. 2047–2077, Sept. 2015.

[5]J.G.Smith,“The information capacity of amplitude-andvarianceconstrained scalar gaussian channels,”Inf.Contr.,vol.18,no.3,pp.203–219,Feb.1971.[5] J.G.Smith, "The information capacity of amplitude-and varianceconstrained scalar gaussian channels," Inf.Contr., vol.18, no.3, pp.203–219, Feb.1971.

[6]S.H.T.Chan and F.Kschischang,“Capacity-achieving probabilitymeasure for conditionally gaussian channels withbounded inputs,”IEEETrans.Inf.Theory,vol.51,no.6,pp.2073–2088,Jun.2005.[6] S.H.T.Chan and F.Kschischang, "Capacity-achieving probability measure for conditionally gaussian channels with bounded inputs," IEEE Trans.Inf.Theory, vol.51, no.6, pp.2073–2088, Jun.2005.

[7]J.W.M.C.J.Wang Q.Hu.and J.Wang,“Tight bounds on channel capacityfor dimmable visible light communications,”J.Lightwave Technol.,vol.31,no.23,pp.3771–3779,Dec.2013.[7] J.W.M.C.J.Wang Q.Hu.and J.Wang, “Tight bounds on channel capacity for dimmable visible light communications,” J.Lightwave Technol., vol.31, no.23, pp.3771–3779, Dec.2013.

[8]A.A.Farid and S.Hranilovic,“Capacity bounds for wireless opticalintensity channels with gaussian noise,”IEEE Trans.Inf.Theory,vol.56,no.12,pp.6066–6077,Dec.2010.[8] A.A.Farid and S.Hranilovic, "Capacity bounds for wireless opticalintensity channels with gaussian noise," IEEE Trans.Inf.Theory, vol.56, no.12, pp.6066–6077, Dec.2010.

[9]Q.W.Rui Jiang Zhaocheng Wang.and L.Dai,“A tight upper bound onchannel capacity for visible light communications,”IEEE Commun.lett.,vol.20,no.1,pp.1089–7798,Jan.2016.[9] Q.W.Rui Jiang Zhaocheng Wang.and L.Dai, "A tight upper bound onchannel capacity for visible light communications," IEEE Commun.lett., vol.20, no.1, pp.1089–7798, Jan.2016 .

[10]A.Lapidoth,S.M.Moser,and M.Wigger,“On the capacity of free-spaceoptical intensity channels,”IEEE Trans.Inf.Theory,vol.55,no.10,pp.4449–4461,Oct.2009.[10] A. Lapidoth, S.M. Moser, and M. Wigger, "On the capacity of free-spaceoptical intensity channels," IEEE Trans.Inf.Theory, vol.55, no.10, pp.4449–4461, Oct. 2009.

[11]A.Chaaban,J.-M.Morvan,and M.-S.Alouini,“Free-space opticalcommunications:capacity bounds,approximations,and a new sphere-packingperspective,”IEEE J.Sel.Areas Comm.,vol.64,no.3,pp.1176–1191,Mar.2016.[11] A.Chaaban, J.-M.Morvan, and M.-S.Alouini, "Free-space opticalcommunications: capacity bounds, approximations, and a new sphere-packing perspective," IEEE J.Sel.Areas Comm., vol.64, no.3, pp.1176–1191, Mar.2016.

[12]A.A.Farid and S.Hranilovic,“Channel capacity and non-uniformsignaling for free-space optical intensity channels,”IEEE J.Sel.Areas Comm.,vol.17,no.9,pp.1553–1563,Dec.2009.[12] A.A.Farid and S.Hranilovic, "Channel capacity and non-uniformsignaling for free-space optical intensity channels," IEEE J.Sel.Areas Comm., vol.17, no.9, pp.1553–1563, Dec. .2009.

[13]S.Ma,R.Yang,H.Li,Z.-L.Dong,H.Gu,and S.Li,“Achievable rate withclosed-form for siso channel and broadcast channel in visible lightcommunication networks,”J.Lightwave Technol.,vol.35,no.14,pp.2778–2787,Jul.2017.[13]S.Ma,R.Yang,H.Li,Z.-L.Dong,H.Gu,and S.Li,“Achievable rate with closed-form for siso channel and broadcast channel in visible lightcommunication networks,”J .Lightwave Technol., vol. 35, no. 14, pp. 2778–2787, Jul. 2017.

发明内容SUMMARY OF THE INVENTION

本发明的目的是开发一种有效的方法,在峰值和平均光功率约束下来找到能够达到FSO信道容量的最优分布,具体的,本发明提供了一种自由空间光强信道可达容量的计算方法,包括如下步骤:The purpose of the present invention is to develop an effective method to find the optimal distribution that can reach the FSO channel capacity under the constraints of peak and average optical power. Specifically, the present invention provides a calculation of the reachable capacity of a free-space optical intensity channel method, including the following steps:

步骤1,设定信道模型;Step 1, set the channel model;

步骤2,求解信道模型的容量;Step 2, solve the capacity of the channel model;

步骤3,求取信道模型的容量的最优解。Step 3: Obtain the optimal solution of the capacity of the channel model.

步骤1包括:设定一个典型的IM/DD(intensity modulation and directDetection,强度调制/直流检测)FSO(Free-space optical,自由空间光强)信道,它包含一个LED或激光二极管LD作为发射器,一个单光子探测器PD作为接收器;Step 1 includes: setting a typical IM/DD (intensity modulation and directDetection) FSO (Free-space optical, free-space optical intensity) channel, which contains an LED or a laser diode LD as a transmitter, A single photon detector PD acts as a receiver;

输入信号X的峰值光功率和平均光功率都是约束,使得0≤X≤A,并且其中,A为信号的幅值,为信号的均值,μ为电功率;在FSO信道上,接收信号Y由下式给出:Both the peak optical power and the average optical power of the input signal X are constrained such that 0≤X≤A, and Among them, A is the amplitude of the signal, is the mean value of the signal, μ is the electrical power; on the FSO channel, the received signal Y is given by:

Y=X+Z (1)Y=X+Z (1)

其中Z是独立的高斯噪声,其均值为零,方差为σ2where Z is an independent Gaussian noise with zero mean and variance σ 2 .

由于信息是嵌入在光信号的强度中,发送的信号X应该是实的非负的。此外,由于眼睛安全标准和实用照明要求,信号X的峰值光功率和平均光功率都应该是约束,使得0≤X≤A,并且 Since the information is embedded in the intensity of the optical signal, the transmitted signal X should be real non-negative. Furthermore, due to eye safety standards and practical lighting requirements, both the peak optical power and the average optical power of the signal X should be constrained such that 0≤X≤A, and

步骤2包括:Step 2 includes:

对于步骤1设定的信道模型,其容量被定义为在给出的所有可能的输入分布在输入输出信道中的最大互信息CFSOFor the channel model set in step 1, its capacity is defined as the maximum mutual information C FSO distributed over the input and output channels given all possible inputs:

其中I(X;Y)为互信息,H(Y)为Y的熵,H(Y|X)为联合熵,P(X)表示X的分布,fY(y)表示Y概率密度函数(pdf,probability density function),显然,fY(y)是P(X)的函数。where I(X; Y) is the mutual information, H(Y) is the entropy of Y, H(Y|X) is the joint entropy, P(X) is the distribution of X, and f Y (y) is the probability density function of Y ( pdf, probability density function), obviously, f Y (y) is a function of P(X).

步骤3包括:Step 3 includes:

步骤3-1,设定输入信号X是离散的随机变量,具有K个非负实数{xk}1≤k≤K,满足:Step 3-1, set the input signal X to be a discrete random variable with K non-negative real numbers {x k } 1≤k≤K , satisfying:

式中Pr{X=xk}=pk表示X=xk时对应的的概率值为pk,xk是第k个点,pk是xk相应的概率,为正整数;In the formula, Pr{X=x k }=p k indicates that the corresponding probability value is p k when X=x k , x k is the kth point, and p k is the corresponding probability of x k , is a positive integer;

步骤3-2:噪声Z遵循高斯分布,fY(y)的pdf转化为如下形式:Step 3-2: The noise Z follows a Gaussian distribution, and the pdf of f Y (y) is transformed into the following form:

求解信道模型的容量等效地写为以下优化问题:Solving the capacity of the channel model is equivalently written as the following optimization problem:

由于变量K,{pk}1≤k≤K和{xk}1≤k≤K,上述优化问题是一个混合离散非凸问题。此外,目标函数(5a)是不可积的,并且没有目标函数(5a)的解析表达式。因此,上述优化问题难以解决。本发明将开发一种有效的方法来搜索最优的输入分布。Due to the variables K, {p k } 1≤k≤K and {x k } 1≤k≤K , the above optimization problem is a mixed discrete non-convex problem. Furthermore, the objective function (5a) is not integrable, and there is no analytical expression for the objective function (5a). Therefore, the above optimization problem is difficult to solve. The present invention will develop an efficient method to search for the optimal input distribution.

步骤3-3,进行如下定义:Step 3-3, define as follows:

式中φ(p)为目标函数,Υ为约束集,1K是K×1向量,其中所有元素都等于1,则问题(5a)即步骤3-2中的优化问题等效改写为如下问题(7):where φ(p) is the objective function, Υ is the constraint set, 1 K is the K×1 vector, where all elements are equal to 1, then the problem (5a), the optimization problem in step 3-2, is equivalently rewritten as the following problem (7):

s.t.p∈Υ (7b)s.t.p∈Υ (7b)

改写后的问题中有三个关键变量,即K,p和x;当K和x固定,该问题是变量p的凸问题;这使得必须减少设计变量通过固定变量x。There are three key variables in the rephrased problem, namely K, p and x; when K and x are fixed, the problem is a convex problem of variable p; this makes it necessary to reduce the design variables by fixing the variable x.

步骤3-4,使用等间距固定x:Steps 3-4, use equal spacing to fix x:

从[0,A]范围中等间隔选择K值{xk}1≤k≤K,即:Select K values {x k } 1≤k≤K from the range [0,A] at medium intervals, namely:

设定命题1:设定K*是问题(7)的最优解,γ表示中任意两点之间的最小距离,即 表示任意两点,对于给定的ε0>0,当存在一个序列{xl}1≤l≤K满足:Set Proposition 1: Set K * and is the optimal solution of problem (7), γ represents The minimum distance between any two points in represents any two points, for a given ε 0 > 0, when There exists a sequence {x l } 1≤l≤K satisfying:

为k*所能取值的集合; is the set of values that k * can take;

证明:不失一般性,假设是一个上升顺序。其中k=2,...,K*,让γ表示最小的dk,即 Proof: Without loss of generality, suppose is an ascending order. where k=2,...,K * , let γ denote the smallest dk , namely

对于一个给定的精度ε0>0,构造一个序列{xk}1≤k≤K,其中一个足够大(一般为20)的满足下式For a given precision ε 0 > 0, construct a sequence {x k } 1≤k≤K , one of which is large enough (usually 20) satisfy the following formula

|xk-xk+1|≤ε0 (10)|x k -x k+1 |≤ε 0 (10)

式中xk在(8)中定义。where x k is defined in (8).

因此,对于任何点其中存在点xl满足:Therefore, for any point in There exists a point x l that satisfies:

在命题1下,最优解是直接的。一定是在给定任意精度下包含某些{xk}1≤k≤K。由于K大于K*,因此在{xk}1≤k≤K中可能存在许多冗余点。但是,这种冗余不会影响目标函数实现最大值,因为冗余点的影响可以通过优化p的pdf来降低。因此,对于某个给定的K,可以确定一个在{xk}1≤k≤K中的子集近似最优如命题1所示。Under Proposition 1, the optimal solution is direct. must contain some {x k } 1≤k≤K at a given arbitrary precision. Since K is greater than K*, there may be many redundant points in {x k } 1≤k≤K . However, this redundancy does not affect the objective function to achieve the maximum value, because the influence of redundant points can be reduced by optimizing the pdf of p. Therefore, for a given K, a subset of {x k } 1≤k≤K can be determined to be approximately optimal As Proposition 1 shows.

步骤3-5,采用梯度投影法来解决问题(7)。Steps 3-5, use gradient projection to solve problem (7).

步骤3-5包括:Steps 3-5 include:

步骤3-5-1,让表示目标函数即公式(7a)的梯度,由下式给出:Step 3-5-1, let represents the gradient of the objective function, Eq. (7a), given by:

步骤3-5-2,但是,不管是目标函数φ(p)还是梯度都没有一个解析表达式。为了解决这个问题,采用数值积分方法分别对φ(p)和进行近似:由于0≤X≤A,并且Z遵循高斯分布,[-τ1,A+τ1]和[-τ2,A+τ2]分别表示φ(p)和的积分区间,τ1、τ2表示积分的微小间隔,是为了近似取的两个很小的值(可以取0~1之间的数,比如0.4、0.5),其中τ1>0和τ2>0,让分别表示目标函数φ(p)的近似值和的近似值,即:Step 3-5-2, however, whether it is the objective function φ(p) or the gradient Neither has an analytic expression. In order to solve this problem, the numerical integration method is used for φ(p) and Approximation: Since 0≤X≤A, and Z follows a Gaussian distribution, [-τ 1 ,A+τ 1 ] and [-τ 2 ,A+τ 2 ] denote φ(p) and The integral interval of , τ 1 and τ 2 represent the small interval of the integral, which are two very small values to be approximated (numbers between 0 and 1 can be taken, such as 0.4 and 0.5), where τ 1 >0 and τ 2 > 0, let and respectively represent the approximate value of the objective function φ(p) and approximation, namely:

让p0表示一个可行的初始点,pn表示第n个迭代可行点,其中n=1,2,...,不精确的梯度梯度投影迭代pn和pn+1由下式给出:Let p 0 denote a feasible initial point and p n the nth iteration feasible point, where n = 1, 2, ..., the inexact gradient The gradient projection iterations pn and pn+1 are given by:

式中αn∈(0,1]是第n次迭代的步长,where α n ∈(0,1] is the step size of the nth iteration,

式中,根据投影定义(16),投影操作(15b)是找到一个向量使得它与之间距离最小,投影(15b)构成如下优化问题:In the formula, According to the projection definition (16), the projection operation (15b) is to find a vector make it with The distance between them is the smallest, and the projection (15b) constitutes the following optimization problem:

pn+1≥0 (17d)p n+1 ≥ 0 (17d)

问题(17)是一个凸二次规划问题,并且可以通过使用现成的凸优化求解器有效地解决,如CVX。Problem (17) is a convex quadratic programming problem and can be solved efficiently by using off-the-shelf convex optimization solvers such as CVX.

符号:粗体字的小写字母和大写字母分别代表矢量和矩阵。转置和Frobenius范数,秩,矩阵的迹和Kronecker积分别表示为(·)T和||·||, 将X的元素四舍五入到最接近的整数。Symbols: Lowercase and uppercase letters in bold font represent vectors and matrices, respectively. The transpose and Frobenius norm, rank, trace and Kronecker product of a matrix are denoted as ( ) T and || |||, respectively, and Round the elements of X to the nearest whole number.

有益效果:本发明解决了自由空间光通信信道容量的问题,解决的是原始的问题,之前的方法都是近似,达不到比较好的效果(和穷举相比),穷举法非常耗时还要准确的精度才能给出准确的解,本发明的仿真结果能达到和穷举一样好的效果,提出了一种不精确的梯度下降法来解决混合连续离散优化问题,理论上表明所获得的最优解收敛于最优离散分布,可以实现FSO信道容量。。Beneficial effects: The present invention solves the problem of free space optical communication channel capacity, and solves the original problem. The previous methods are all approximate and cannot achieve better results (compared with the exhaustive method), and the exhaustive method is very expensive. In order to give an accurate solution, the simulation result of the present invention can achieve the same effect as exhaustive, and an imprecise gradient descent method is proposed to solve the mixed continuous discrete optimization problem. Theoretically, it shows that the The obtained optimal solution converges to the optimal discrete distribution, which can realize the FSO channel capacity. .

附图说明Description of drawings

下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述或其他方面的优点将会变得更加清楚。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments, and the advantages of the above or other aspects of the present invention will become clearer.

图1a为给出了在φ=2条件下,在不同SNR条件下,点数和可达速率之间的关系。Figure 1a shows the relationship between the number of points and the achievable rate under different SNR conditions under the condition of φ=2.

图1b为给出了在φ=3条件下,在不同SNR条件下,点数和可达速率之间的关系。Figure 1b shows the relationship between the number of points and the achievable rate under different SNR conditions under the condition of φ=3.

图1c为给出了在φ=4条件下,在不同SNR条件下,点数和可达速率之间的关系。Figure 1c shows the relationship between the number of points and the achievable rate under different SNR conditions under the condition of φ=4.

图2为在φ=4,在不同的点数K条件下,离散最大熵和本发明提出的最优的信道容量随着SNR的变化图。Fig. 2 is a graph showing the variation of discrete maximum entropy and the optimal channel capacity proposed by the present invention with SNR under the condition of φ=4 and different number of points K.

图3为在φ=4,离散最大熵,穷举法得出的信道容量和本发明所提最优信道容量随着SNR的变化图。FIG. 3 is a graph showing the channel capacity obtained by the exhaustive method and the optimal channel capacity proposed by the present invention with SNR at φ=4, discrete maximum entropy.

具体实施方式Detailed ways

下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

本发明提供了一种自由空间光强信道可达容量的计算方法,包括如下步骤:The present invention provides a method for calculating the reachable capacity of a free-space optical intensity channel, comprising the following steps:

步骤1,设定信道模型;Step 1, set the channel model;

步骤2,求解信道模型的容量;Step 2, solve the capacity of the channel model;

步骤3,求取信道模型的容量的最优解。Step 3: Obtain the optimal solution of the capacity of the channel model.

步骤1包括:设定一个典型的IM/DD(intensity modulation and directDetection,强度调制/直流检测)FSO(Free-space optical,自由空间光强)信道,它包含一个LED或激光二极管LD作为发射器,一个单光子探测器PD作为接收器;Step 1 includes: setting a typical IM/DD (intensity modulation and directDetection) FSO (Free-space optical, free-space optical intensity) channel, which contains an LED or a laser diode LD as a transmitter, A single photon detector PD acts as a receiver;

输入信号X的峰值光功率和平均光功率都是约束,使得0≤X≤A,并且其中,A为信号的幅值,为信号的均值,μ为电功率;在FSO信道上,接收信号Y由下式给出:Both the peak optical power and the average optical power of the input signal X are constrained such that 0≤X≤A, and Among them, A is the amplitude of the signal, is the mean value of the signal, μ is the electrical power; on the FSO channel, the received signal Y is given by:

Y=X+Z (1)Y=X+Z (1)

其中Z是独立的高斯噪声,其均值为零,方差为σ2where Z is an independent Gaussian noise with zero mean and variance σ 2 .

由于信息是嵌入在光信号的强度中,发送的信号X应该是实的非负的。此外,由于眼睛安全标准和实用照明要求,信号X的峰值光功率和平均光功率都应该是约束,使得0≤X≤A,并且 Since the information is embedded in the intensity of the optical signal, the transmitted signal X should be real non-negative. Furthermore, due to eye safety standards and practical lighting requirements, both the peak optical power and the average optical power of the signal X should be constrained such that 0≤X≤A, and

步骤2包括:Step 2 includes:

对于步骤1设定的信道模型,其容量被定义为在给出的所有可能的输入分布在输入输出信道中的最大互信息CFSOFor the channel model set in step 1, its capacity is defined as the maximum mutual information C FSO distributed over the input and output channels given all possible inputs:

其中I(X;Y)为互信息,H(Y)为Y的熵,H(Y|X)为联合熵,P(X)表示X的分布,fY(y)表示Y概率密度函数(pdf,probability density function),显然,fY(y)是P(X)的函数。where I(X; Y) is the mutual information, H(Y) is the entropy of Y, H(Y|X) is the joint entropy, P(X) is the distribution of X, and f Y (y) is the probability density function of Y ( pdf, probability density function), obviously, f Y (y) is a function of P(X).

步骤3包括:Step 3 includes:

步骤3-1,设定输入信号X是离散的随机变量,具有K个非负实数{xk}1≤k≤K,满足:Step 3-1, set the input signal X to be a discrete random variable with K non-negative real numbers {x k } 1≤k≤K , satisfying:

式中Pr{X=xk}=pk表示X=xk时对应的的概率值为pk,xk是第k个点,pk是xk相应的概率,为正整数;In the formula, Pr{X=x k }=p k indicates that the corresponding probability value is p k when X=x k , x k is the kth point, and p k is the corresponding probability of x k , is a positive integer;

步骤3-2:噪声Z遵循高斯分布,fY(y)的pdf转化为如下形式:Step 3-2: The noise Z follows a Gaussian distribution, and the pdf of f Y (y) is transformed into the following form:

求解信道模型的容量等效地写为以下优化问题:Solving the capacity of the channel model is equivalently written as the following optimization problem:

由于变量K,{pk}1≤k≤K和{xk}1≤k≤K,上述优化问题是一个混合离散非凸问题。此外,目标函数(5a)是不可积的,并且没有目标函数(5a)的解析表达式。因此,上述优化问题难以解决。本发明将开发一种有效的方法来搜索最优的输入分布。Due to the variables K, {p k } 1≤k≤K and {x k } 1≤k≤K , the above optimization problem is a mixed discrete non-convex problem. Furthermore, the objective function (5a) is not integrable, and there is no analytical expression for the objective function (5a). Therefore, the above optimization problem is difficult to solve. The present invention will develop an efficient method to search for the optimal input distribution.

步骤3-3,进行如下定义:Step 3-3, define as follows:

式中φ(p)为目标函数,Υ为约束集,式中1K是K×1向量,其中所有元素都等于1,则问题(5a)即步骤3-2中的优化问题等效改写为如下问题(7):where φ(p) is the objective function, Υ is the constraint set, where 1 K is a K×1 vector, in which all elements are equal to 1, then problem (5a), the optimization problem in step 3-2, is equivalently rewritten as The following question (7):

s.t.p∈Υ (7b)s.t.p∈Υ (7b)

改写后的问题中有三个关键变量,即K,p和x;当K和x固定,该问题是变量p的凸问题;这使得必须减少设计变量通过固定变量x。There are three key variables in the rephrased problem, namely K, p and x; when K and x are fixed, the problem is a convex problem of variable p; this makes it necessary to reduce the design variables by fixing the variable x.

步骤3-4,使用等间距固定x:Steps 3-4, use equal spacing to fix x:

从[0,A]范围中等间隔选择K值{xk}1≤k≤K,即:Select K values {x k } 1≤k≤K from the range [0,A] at medium intervals, namely:

设定命题1:设定K*是问题(7)的最优解,γ表示中任意两点之间的最小距离,即 表示任意两点,对于给定的ε0>0,当存在一个序列{xl}1≤l≤K满足:Set Proposition 1: Set K * and is the optimal solution of problem (7), γ represents The minimum distance between any two points in represents any two points, for a given ε 0 > 0, when There exists a sequence {x l } 1≤l≤K satisfying:

为k*所能取值的集合; is the set of values that k * can take;

证明:不失一般性,假设是一个上升顺序。其中k=2,...,K*,让γ表示最小的dk,即 Proof: Without loss of generality, suppose is an ascending order. where k=2,...,K * , let γ denote the smallest dk , namely

对于一个给定的精度ε0>0,构造一个序列{xk}1≤k≤K,其中一个足够大(一般为20)的满足下式For a given precision ε 0 > 0, construct a sequence {x k } 1≤k≤K , one of which is large enough (usually 20) satisfy the following formula

|xk-xk+1|≤ε0 (10)|x k -x k+1 |≤ε 0 (10)

式中xk在(8)中定义。where x k is defined in (8).

因此,对于任何点其中存在点xl满足:Therefore, for any point in There exists a point x l that satisfies:

在命题1下,最优解是直接的。一定是在给定任意精度下包含某些{xk}1≤k≤K。由于K大于K*,因此在{xk}1≤k≤K中可能存在许多冗余点。但是,这种冗余不会影响目标函数实现最大值,因为冗余点的影响可以通过优化p的pdf来降低。因此,对于某个给定的K,可以确定一个在{xk}1≤k≤K中的子集近似最优如命题1所示。Under Proposition 1, the optimal solution is direct. must contain some {x k } 1≤k≤K at a given arbitrary precision. Since K is greater than K * , there may be many redundant points in {x k } 1≤k≤K . However, this redundancy does not affect the objective function to achieve the maximum value, because the influence of redundant points can be reduced by optimizing the pdf of p. Therefore, for a given K, a subset of {x k } 1≤k≤K can be determined to be approximately optimal As Proposition 1 shows.

步骤3-5,采用梯度投影法来解决问题(7)。Steps 3-5, use gradient projection to solve problem (7).

步骤3-5包括:Steps 3-5 include:

步骤3-5-1,让表示目标函数即公式(7a)的梯度,由下式给出:Step 3-5-1, let represents the gradient of the objective function, Eq. (7a), given by:

步骤3-5-2,但是,不管是目标函数φ(p)还是梯度都没有一个解析表达式。为了解决这个问题,采用数值积分方法分别对φ(p)和进行近似:由于0≤X≤A,并且Z遵循高斯分布,[-τ1,A+τ1]和[-τ2,A+τ2]分别表示φ(p)和的积分区间,τ1、τ2表示积分的微小间隔,是为了近似取的两个很小的值,其中τ1>0和τ2>0,让分别表示目标函数φ(p)的近似值和的近似值,即:Step 3-5-2, however, whether it is the objective function φ(p) or the gradient Neither has an analytic expression. In order to solve this problem, the numerical integration method is used for φ(p) and Approximation: Since 0≤X≤A, and Z follows a Gaussian distribution, [-τ 1 ,A+τ 1 ] and [-τ 2 ,A+τ 2 ] denote φ(p) and The integral interval of , τ 1 and τ 2 represent the small interval of the integral, which are two very small values taken for approximation, where τ 1 >0 and τ 2 >0, let and respectively represent the approximate value of the objective function φ(p) and An approximation of , namely:

让p0表示一个可行的初始点,pn表示第n个迭代可行点,其中n=1,2,...,不精确的梯度梯度投影迭代pn和pn+1由下式给出:Let p 0 denote a feasible initial point and p n the nth iteration feasible point, where n = 1, 2, ..., the inexact gradient The gradient projection iterations pn and pn+1 are given by:

式中αn∈(0,1]是第n次迭代的步长,where α n ∈(0,1] is the step size of the nth iteration,

式中,根据投影定义(16),投影操作(15b)是找到一个向量pn+1∈Υ,使得它与之间距离最小,投影(15b)构成如下优化问题:In the formula, According to the projection definition (16), the projection operation (15b) is to find a vector pn+1∈Υ such that it is the same as The distance between them is the smallest, and the projection (15b) constitutes the following optimization problem:

pn+1≥0 (17d)p n+1 ≥ 0 (17d)

问题(17)是一个凸二次规划问题,并且可以通过使用现成的凸优化求解器有效地解决,如CVX。Problem (17) is a convex quadratic programming problem and can be solved efficiently by using off-the-shelf convex optimization solvers such as CVX.

步骤3-5-2中,采用直线回溯线在(15a)中选择合适的步长以达到递减,具体包括:In step 3-5-2, a straight backtracking line is used to select an appropriate step size in (15a) to achieve decrement, which specifically includes:

步骤3-5-2-1,初始化:选择K≥2,λK-1≤0,设置c2,c3为迭代停止参数;Step 3-5-2-1, initialization: select K≥2, λ K-1 ≤0, set c 2 , c 3 as iteration stop parameters;

步骤3-5-2-2,设n=0,选择一个可行的初始点p0∈Y;Step 3-5-2-2, set n=0, select a feasible initial point p 0 ∈ Y;

步骤3-5-2-3,n=n+1,然后计算 Step 3-5-2-3, n=n+1, then calculate and

步骤3-5-2-4,计算步长αnStep 3-5-2-4, calculation step size α n ;

步骤3-5-2-5,计算 Step 3-5-2-5, calculation

步骤3-5-2-6,如果||pn-pn-1||≤c2,则停止,然后否则,转向步骤3-5-2-3;Step 3-5-2-6, stop if ||p n -p n-1 ||≤c 2 , then Otherwise, go to step 3-5-2-3;

步骤3-5-2-7,如果|λKK-1|≤c3,则停止,然后输出popt=pn,Kopt=K,否则K=K+1,然后转向步骤3-5-2-2,其中,Kopt表示离散点{xk}的最佳数量,λK-1为目标函数的初始值,popt为满足条件的最优的概率值。Step 3-5-2-7, if |λ KK-1 |≤c 3 , stop, then output p opt = pn , K opt =K, otherwise K=K+1, then turn to step 3 -5-2-2, where K opt represents the optimal number of discrete points {x k }, λ K-1 is the initial value of the objective function, and p opt is the optimal probability value that satisfies the conditions.

由于最优离散分布{K*,x*,p*}是有限个数值中唯一的一个离散随机变量,可以通过简单的一维搜索获得最佳数量Kopt,K=K+1用于下一次迭代,其中K的初始化不小于2。总之,上述方法中列出了所提出的不精确梯度下降法。Since the optimal discrete distribution {K * ,x * ,p * } is the only discrete random variable in a finite number of values, the optimal number K opt can be obtained by a simple one-dimensional search, K=K+1 for the next time Iterate, where K is initialized not less than 2. In summary, the proposed imprecise gradient descent method is listed in the above methods.

步骤3-5-2-4包括:Steps 3-5-2-4 include:

步骤3-5-2-4-1,选择 为初始步长,ρ为步长缩减因子,c为一个参数,一般取0和1之间的数;Step 3-5-2-4-1, select is the initial step size, ρ is the step size reduction factor, and c is a parameter, generally a number between 0 and 1;

步骤3-5-2-4-2,重复直到满足:Steps 3-5-2-4-2, repeat until:

其中 为下一次迭代的目标函数值,为这次迭代的值,为投影;in is the objective function value for the next iteration, is the value of this iteration, for projection;

步骤3-5-2-4-3,←表示赋值,即把这一次迭代的步长乘以步长缩减因子赋值给下一次的步长;Step 3-5-2-4-3, ← means assignment, that is, multiply the step size of this iteration by the step size reduction factor and assign it to the next step size;

步骤3-5-2-4-4,结束重复;Step 3-5-2-4-4, end the repetition;

步骤3-5-2-4-5,当时终止;Steps 3-5-2-4-5, when terminated;

不精确梯度下降法的最优性:值得指出的是,如果τ1的值足够大,[-τ1,A+τ1]以任意小的差距接近[-∞,∞]。此外,下面的定理表明近似值可以以任意小的误差接近φ(p)。Optimality of Inexact Gradient Descent: It is worth pointing out that if the value of τ 1 is large enough, [-τ 1 ,A+τ 1 ] approaches [-∞,∞] by an arbitrarily small margin. Furthermore, the following theorem shows that the approximation φ(p) can be approximated with arbitrarily small errors.

定理1:对于给定的精度ε1>0,存在一个足够大的参数满足τ1>σTheorem 1: For a given precision ε 1 > 0, there is a parameter large enough to satisfy τ 1

然后有:Then there is:

其中,φ(p)和分别在(6d)和(14a)中给出,此外, where φ(p) and are given in (6d) and (14a), respectively, in addition,

证明如下:The proof is as follows:

εtotal代表和φ(p)之间的误差,由下式给出ε total represents and φ(p), given by

其中,in,

此外,εtotal绝对值的上限由下式给出:Furthermore, the upper bound for the absolute value of ε total is given by:

的上界为: The upper bound is:

由于(y-xk)2≥y2,不等式(25b)成立,对于y≤-τ1≤0。Since (yx k ) 2 ≥ y 2 , inequality (25b) holds for y≤-τ 1 ≤0.

在下文中,将显示随着τ1的增加,(25c)的右两项变为零。具体而言,该式的积分由下式给出:In the following, it will be shown that as τ 1 increases, the right term of (25c) becomes zero. Specifically, the integral of this formula is given by:

此外,该式的积分由下式给出:Furthermore, this formula The integral of is given by:

将(26b)和(27b)代入(25c),得到了:Substituting (26b) and (27b) into (25c), we get:

其中, in,

此外,由于有:Furthermore, since Have:

该式上限为:the formula The upper limit is:

由于(y-xk)2≥(y-A)2,不等式(30b)成立,对于y≥A+τ1Since (yx k ) 2 ≥(yA) 2 , inequality (30b) holds for y≥A+τ 1 .

在下文中,将显示随着τ1的增加,(25c)的右两项变为零。In the following, it will be shown that as τ 1 increases, the right term of (25c) becomes zero.

该式的积分由下式给出:integral of the formula is given by:

此外,该术语的积分由下式给出:In addition, the integral of the term is given by:

通过将(31b)和(32b)代入(30c),得到了:By substituting (31b) and (32b) into (30c), we get:

同样,因为时,有:Likewise, because , there are:

通过组合(22a),(29)和(34),有By combining (22a), (29) and (34), we have

当τ1≥σ时,两者都是非负单调递减函数,When τ 1 ≥σ, and Both are non-negative monotonically decreasing functions,

然后 Then

因为erfc(x)是非负单调递减函数和 Because erfc(x) is a non-negative monotonically decreasing function and Have

因此,对于任何给定的精度ε1>0,存在一个大参数τ1>σ满足:Therefore, for any given precision ε 1 > 0, there exists a large parameter τ 1 >σ such that:

然后有:Then there is:

同样,对于一个足够大的τ2可以以任意小的差距接近 Likewise, for a sufficiently large τ 2 , can be approached by arbitrarily small gaps

定理2:对于给定的精度ε2>0,存在τ2≥σ满足:Theorem 2: For a given precision ε 2 > 0, there exists τ 2 ≥σ satisfying:

然后,有:Then, there is:

分别在(13)和(14b)中给出。 and are given in (13) and (14b), respectively.

证明如下:The proof is as follows:

表示之间的矢量差,由下式给出:Assume express and The vector difference between , given by:

此外,的元素可以写成:also, The elements can be written as:

其中,in,

此外,元素的绝对值的上限:also, The upper limit of the absolute value of an element:

那么范数差的上界为:So and The upper bound of the norm difference is:

在下文中,将表明随着τ2的增加,(42)的右项将变为零。具体而言,术语由下式给出:In the following, it will be shown that as τ 2 increases, the right-hand term of (42) will become zero. Specifically, the term is given by:

然后,该术语的积分由下式给出:Then, the integral of the term is given by:

此外,这个式的积分由下式给出:Furthermore, the integral of this formula is given by:

最后,这个式的积分由下式给出:Finally, the integral of this formula is given by:

通过将(44b),(45b)和(46)代入(43c),得到了:By substituting (44b), (45b) and (46) into (43c), we get:

而且,该术语的上限:Moreover, the term The upper limit of:

然后,该术语的积分由下式给出:Then, the integral of the term is given by:

此外,这个式子的积分由下式给出:Furthermore, the integral of this formula is given by:

最后,这个式的积分由下式给出:Finally, the integral of this formula is given by:

通过将(49b),(50b)和(51)代入(48c),得到了:By substituting (49b), (50b) and (51) into (48c), we get:

通过结合(47)和(52),有:By combining (47) and (52), we have:

同样,当τ2≥σ时,两者都是非负单调递减函数,然后 Similarly, when τ 2 ≥σ, and Both are non-negative monotonically decreasing functions, then

由于erfc(x)是非负单调递减函数和 Since erfc(x) is a non-negative monotonically decreasing function and Have

因此,对于任何给定的精度ε2>0,存在一个大的参数τ2>σ满足:Therefore, for any given precision ε 2 > 0, there exists a large parameter τ 2 >σ such that:

然后有:Then there is:

因此,根据不精确的梯度下降法,最优离散输入分布可以有效地被计算。而且,通过算法2获得的概率分布的序列{pn}收敛到最优分布,这由以下证明定理:Therefore, according to the inexact gradient descent method, the optimal discrete input distribution can be computed efficiently. Moreover, the sequence {p n } of probability distributions obtained by Algorithm 2 converges to the optimal distribution, which is proved by the following theorem:

定理3:(收敛性分析)对于一个给定的K,{pn}收敛于问题(12)的最优解,相应地,{φ(pn)}对应的收敛到问题(12)的最优值。Theorem 3: (Convergence Analysis) For a given K, {p n } converges to the optimal solution of problem (12), correspondingly, {φ(p n )} converges to the optimal solution of problem (12) correspondingly. figure of merit.

证明如下:The proof is as follows:

假设{pn}收敛于一个非平稳点需要证明这一点:Suppose {p n } converges to a non-stationary point Need to prove this:

根据参考文献[14]D.P.Bertsekas and D.P.Bertsekas.,NonlinearProgramming.,Athena Scientific,1999中命题2.3.1的证明,条件(56a)成立,以及以下不等式成立,According to the proof of Proposition 2.3.1 in reference [14] D.P. Bertsekas and D.P. Bertsekas., Nonlinear Programming., Athena Scientific, 1999, condition (56a) holds, and the following inequality holds,

其中, in,

然后,有:Then, Have:

由于(57)成立不等式(58c)也成立;不等式(58d)由于时,等式成立,其中|κ|=||en||。Since (57) holds, inequality (58c) also holds; inequality (58d) holds because when , the equation holds, where |κ|=|| en ||.

根据定理2,||en||的值可以任意小。因此,存在一个参数κ满足此外,由于是非平稳的,条件(56b)成立。According to Theorem 2, the value of ||e n || can be arbitrarily small. Therefore, there exists a parameter κ that satisfies Furthermore, since is non-stationary, and condition (56b) holds.

根据参考文献[14]D.P.Bertsekas and D.P.Bertsekas.,NonlinearProgramming.,Athena Scientific,1999中命题2.3.1可知,{pn}的每个极限点都是稳定的。此外,因为问题(12)具有固定K所以是凸的,所以稳定点是全局最优点。According to Proposition 2.3.1 in Reference [14] DPBertsekas and DPBertsekas., Nonlinear Programming., Athena Scientific, 1999, every limit point of {p n } is stable. Furthermore, since problem (12) is convex with fixed K, the stable point is the global optimum.

定理3保证了本发明提出的方法得到的解是可达容量分布,即最优的输入离散分布。在实施例中,将数值仿真验证本发明的理论结果。Theorem 3 guarantees that the solution obtained by the method proposed in the present invention is the reachable capacity distribution, that is, the optimal input discrete distribution. In the examples, numerical simulations were performed to verify the theoretical results of the present invention.

实施例Example

数值结果用于说明所提出的不精确的梯度下降法的性能和信源熵最大化方法,通过最大化信源熵来近似信道容量,将其设置为基准方法。此外,还比较了穷举搜索方法,随着点数的增加计算复杂度,定义参数其 Numerical results are used to illustrate the performance of the proposed imprecise gradient descent method and source entropy maximization method, which approximates the channel capacity by maximizing the source entropy, which is set as the benchmark method. In addition, the exhaustive search method is also compared. As the number of points increases, the computational complexity is

图1a,图1b和图1c分别给出了在φ=2,φ=3和φ=4条件下,在不同SNR条件下,点数和可达速率之间的关系。在图1a中,可以观察到不精确梯度算法得到的可达速率高于最大信源熵的方法。此外,随着K的增加,不精确梯度方法的可达速率也在增加,然而,最大信源熵方法是开始递增随后递减。这是因为最大信源熵的目标函数H(X),代替了互信息I(X;Y)。随着SNR的递增,不精确梯度投影方法和最大信源熵方法的可达速率增加,但是两者的差距在递减。相同的结果在图1b和图1c,比较图1a、图1b和图1c,可以看出随着φ的增加,两个方法的可达速率都在增加,然而两者的差距在递减。Figure 1a, Figure 1b and Figure 1c show the relationship between the number of points and the achievable rate under different SNR conditions under the conditions of φ=2, φ=3 and φ=4, respectively. In Fig. 1a, it can be observed that the imprecise gradient algorithm obtains a higher achievable rate than the method with maximum source entropy. Furthermore, as K increases, the achievable rate of the imprecise gradient method also increases, however, the maximum source entropy method starts to increase and then decreases. This is because the objective function H(X) of maximum source entropy replaces the mutual information I(X; Y). As the SNR increases, the achievable rates of the imprecise gradient projection method and the maximum source entropy method increase, but the gap between them decreases. The same results are shown in Fig. 1b and Fig. 1c. Comparing Fig. 1a, Fig. 1b and Fig. 1c, it can be seen that with the increase of φ, the attainable rate of both methods increases, but the gap between them decreases.

图2绘制了在φ=4下,不同的点数K和可达速率之间的关系。图2展示出不精确梯度法的可达速率高于最大信源熵的。随着SNR的增加,一个较大的K可以实现最优的信道容量。Figure 2 plots the relationship between the number of points K and the achievable rate at φ=4. Figure 2 shows that the achievable rate of the imprecise gradient method is higher than that of the maximum source entropy. As the SNR increases, a larger K can achieve the optimal channel capacity.

在图3中,给出了在φ=4下,在不同的SNR下,达到可达速率的最优的点数K,穷举法也被比较。在图3中,不精确梯度的可达速率高于最大信源熵的,特别在高信噪比条件。此外,不精确梯度的可达速率和穷举法相同,这也可以证明不精确梯度的最优性。In Fig. 3, under φ=4, under different SNRs, the optimal number of points K to reach the achievable rate is given, and the exhaustive method is also compared. In Figure 3, the achievable rate of the imprecise gradient is higher than that of the maximum source entropy, especially at high signal-to-noise ratio conditions. In addition, the reachability rate of the imprecise gradient is the same as the exhaustive method, which can also prove the optimality of the imprecise gradient.

最后,三种方法的计算时间如表所示。表1是在φ=4,SNR=0dB条件下,不同点数完成了三种方法的CPU时间。所有模拟使用MATLAB(R2016b),具有3.4GHz CPU和16GB RAM。此外,最大化信源熵方法利用1stOpt软件来求解非线性方程。如表1所示。随着K点数的增加,穷举方法耗费的CPU时间迅速增加,而提出的方法的CPU时间缓慢增加。注意,最大化信源熵方法的CPU时间几乎没有变化。这是因为非线性方程是由1stOpt软件计算的,这是最大化信源熵方法关键的步骤。表2是最优信道容量参数。Finally, the computation times of the three methods are shown in the table. Table 1 shows the CPU time of the three methods with different points under the condition of φ=4 and SNR=0dB. All simulations use MATLAB (R2016b) with 3.4GHz CPU and 16GB RAM. In addition, the maximizing source entropy method utilizes 1stOpt software to solve nonlinear equations. As shown in Table 1. As the number of K points increases, the CPU time consumed by the exhaustive method increases rapidly, while the CPU time of the proposed method increases slowly. Note that the CPU time of the maximizing source entropy method is almost unchanged. This is because the nonlinear equation is calculated by the 1stOpt software, which is a key step in the method of maximizing the source entropy. Table 2 is the optimal channel capacity parameters.

表1计算时间比较(φ=4,SNR=0dB)Table 1 Comparison of calculation time (φ=4, SNR=0dB)

表2最优信道容量参数Table 2 Optimal channel capacity parameters

参数parameter 取值value 噪声功率σ<sup>2</sup>Noise powerσ<sup>2</sup> 11 φ,即PARφ, or PAR [2,3,4][2,3,4] 峰值光功率peak optical power sqrt(NOISE_VARIANCE)*10.^(SNR/10)sqrt(NOISE_VARIANCE)*10.^(SNR/10) 峰值peak SOURCE_VARIANCE*PARSOURCE_VARIANCE*PAR

本发明提出不精确的梯度下降法来解决混合连续离散优化问题,理论上表明所获得的最优解收敛于最优离散分布,可以实现FSO信道容量。。The invention proposes an imprecise gradient descent method to solve the mixed continuous discrete optimization problem, and theoretically shows that the obtained optimal solution converges to the optimal discrete distribution and can realize the FSO channel capacity. .

本发明提供了一种自由空间光强信道可达容量的计算方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。The present invention provides a method for calculating the reachable capacity of a free-space optical intensity channel. There are many specific methods and approaches for realizing the technical solution. The above are only the preferred embodiments of the present invention. For those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made, and these improvements and modifications should also be regarded as the protection scope of the present invention. All components not specified in this embodiment can be implemented by existing technologies.

Claims (7)

1.一种FSO信道可达容量的计算方法,其特征在于,包括如下步骤:1. a calculation method of FSO channel reachable capacity, is characterized in that, comprises the steps: 步骤1,设定信道模型;Step 1, set the channel model; 步骤2,求解信道模型的容量;Step 2, solve the capacity of the channel model; 步骤3,求取信道模型的容量的最优解。Step 3: Obtain the optimal solution of the capacity of the channel model. 2.根据权利要求1所述的方法,其特征在于,步骤1包括:设定一个典型的IM/DD FSO自由空间光强信道,它包含一个LED或激光二极管LD作为发射器,一个单光子探测器PD作为接收器;2. The method according to claim 1, wherein step 1 comprises: setting a typical IM/DD FSO free space light intensity channel, which comprises an LED or a laser diode LD as a transmitter, a single photon detection The device PD acts as a receiver; 输入信号X的峰值光功率和平均光功率都是约束,使得0≤X≤A,并且其中,A为信号的幅值,为信号的均值,μ为电功率;在FSO信道上,接收信号Y由下式给出:Both the peak optical power and the average optical power of the input signal X are constrained such that 0≤X≤A, and Among them, A is the amplitude of the signal, is the mean value of the signal, μ is the electrical power; on the FSO channel, the received signal Y is given by: Y=X+Z (1)Y=X+Z (1) 其中Z是独立的高斯噪声,其均值为零,方差为σ2where Z is an independent Gaussian noise with zero mean and variance σ 2 . 3.根据权利要求2所述的方法,其特征在于,步骤2包括:3. The method according to claim 2, wherein step 2 comprises: 对于步骤1设定的信道模型,其容量被定义为在给出的所有可能的输入分布在输入输出信道中的最大互信息CFSOFor the channel model set in step 1, its capacity is defined as the maximum mutual information C FSO distributed over the input and output channels given all possible inputs: 其中I(X;Y)为互信息,H(Y)为Y的熵,H(Y|X)为联合熵,P(X)表示X的分布,fY(y)表示Y概率密度函数pdf,fY(y)是P(X)的函数。where I(X; Y) is the mutual information, H(Y) is the entropy of Y, H(Y|X) is the joint entropy, P(X) is the distribution of X, and f Y (y) is the probability density function pdf of Y , f Y (y) is a function of P(X). 4.根据权利要求3所述的方法,其特征在于,步骤3包括:4. The method according to claim 3, wherein step 3 comprises: 步骤3-1,设定输入信号X是离散的随机变量,具有K个非负实数{xk}1≤k≤K,满足:Step 3-1, set the input signal X to be a discrete random variable with K non-negative real numbers {x k } 1≤k≤K , satisfying: 式中Pr{X=xk}=pk表示X=xk时对应的的概率值为pk,xk是第k个点,pk是xk相应的概率,为正整数;In the formula, Pr{X=x k }=p k indicates that the corresponding probability value is p k when X=x k , x k is the kth point, and p k is the corresponding probability of x k , is a positive integer; 步骤3-2:噪声Z遵循高斯分布,fY(y)的pdf转化为如下形式:Step 3-2: The noise Z follows a Gaussian distribution, and the pdf of f Y (y) is transformed into the following form: 求解信道模型的容量等效地写为以下优化问题:Solving the capacity of the channel model is equivalently written as the following optimization problem: 步骤3-3,进行如下定义:Step 3-3, define as follows: 式中φ(p)为目标函数,Υ为约束集,1K是K×1向量,其中所有元素都等于1,则问题(5a)即步骤3-2中的优化问题等效改写为如下问题(7):where φ(p) is the objective function, Υ is the constraint set, 1 K is the K×1 vector, where all elements are equal to 1, then the problem (5a), the optimization problem in step 3-2, is equivalently rewritten as the following problem (7): s.t.p∈Υ (7b)s.t.p∈Υ (7b) 改写后的问题中有三个关键变量,即K,p和x;当K和x固定,该问题是变量p的凸问题;There are three key variables in the rewritten problem, namely K, p and x; when K and x are fixed, the problem is a convex problem of variable p; 步骤3-4,使用等间距固定x:Steps 3-4, use equal spacing to fix x: 从[0,A]范围中等间隔选择K值{xk}1≤k≤K,即:Select K values {x k } 1≤k≤K from the range [0,A] at medium intervals, namely: 设定命题1:设定K*是问题(7)的最优解,γ表示中任意两点之间的最小距离,即 表示任意两点,对于给定的ε0>0,当存在一个序列{xl}1≤l≤K满足:Set Proposition 1: Set K * and is the optimal solution of problem (7), γ represents The minimum distance between any two points in represents any two points, for a given ε 0 > 0, when There exists a sequence {x l } 1≤l≤K satisfying: 为k*所能取值的集合; is the set of values that k * can take; 步骤3-5,采用梯度投影法来解决问题(7)。Steps 3-5, use gradient projection to solve problem (7). 5.根据权利要求4所述的方法,其特征在于,步骤3-5包括:5. The method according to claim 4, wherein steps 3-5 comprise: 步骤3-5-1,让表示目标函数即公式(7a)的梯度,由下式给出:Step 3-5-1, let represents the gradient of the objective function, Eq. (7a), given by: 步骤3-5-2,采用数值积分方法分别对φ(p)和进行近似:由于0≤X≤A,并且Z遵循高斯分布,[-τ1,A+τ1]和[-τ2,A+τ2]分别表示φ(p)和的积分区间,其中τ1>0和τ2>0,τ1、τ2表示积分的微小间隔,是为了近似取的两个很小的值,让分别表示目标函数φ(p)的近似值和的近似值,即:Step 3-5-2, using numerical integration method to calculate φ(p) and Approximation: Since 0≤X≤A, and Z follows a Gaussian distribution, [-τ 1 ,A+τ 1 ] and [-τ 2 ,A+τ 2 ] denote φ(p) and , where τ 1 >0 and τ 2 >0, τ 1 and τ 2 represent the small interval of the integral, which are two very small values to be approximated, let and respectively represent the approximate value of the objective function φ(p) and An approximation of , namely: 让p0表示一个可行的初始点,pn表示第n个迭代可行点,其中n=1,2,...,不精确的梯度梯度投影迭代pn和pn+1由下式给出:Let p 0 denote a feasible initial point and p n the nth iteration feasible point, where n = 1, 2, ..., the inexact gradient The gradient projection iterations pn and pn+1 are given by: 式中αn∈(0,1]是第n次迭代的步长,where α n ∈(0,1] is the step size of the nth iteration, 式中,根据投影定义(16),投影操作(15b)是找到一个向量pn+1∈Υ,使得它与之间距离最小,投影(15b)构成如下优化问题:In the formula, According to the projection definition (16), the projection operation (15b) is to find a vector p n+1 ∈ Υ such that it is the same as The distance between them is the smallest, and the projection (15b) constitutes the following optimization problem: pn+1≥0 (17d)。p n+1 ≥ 0 (17d). 6.根据权利要求5所述的方法,其特征在于,步骤3-5-2中,采用直线回溯线在(15a)中选择合适的步长以达到递减,具体包括:6. The method according to claim 5, characterized in that, in step 3-5-2, a straight backtracking line is used to select an appropriate step size in (15a) to achieve decreasing, specifically comprising: 步骤3-5-2-1,初始化:选择K≥2,λK-1≤0,设置c2,c3为迭代停止参数;Step 3-5-2-1, initialization: select K≥2, λ K-1 ≤0, set c 2 , c 3 as iteration stop parameters; 步骤3-5-2-2,设n=0,选择一个可行的初始点p0∈Y;Step 3-5-2-2, set n=0, select a feasible initial point p 0 ∈ Y; 步骤3-5-2-3,n=n+1,然后计算 Step 3-5-2-3, n=n+1, then calculate and 步骤3-5-2-4,计算步长αnStep 3-5-2-4, calculation step size α n ; 步骤3-5-2-5,计算 Step 3-5-2-5, calculation 步骤3-5-2-6,如果||pn-pn-1||≤c2,则停止,然后否则,转向步骤3-5-2-3;Step 3-5-2-6, stop if ||p n -p n-1 ||≤c 2 , then Otherwise, go to step 3-5-2-3; 步骤3-5-2-7,如果|λKK-1|≤c3,则停止,然后输出popt=pn,Kopt=K,否则K=K+1,然后转向步骤3-5-2-2,其中,Kopt表示离散点{xk}的最佳数量,λK-1为目标函数的初始值,popt为满足条件的最优的概率值。Step 3-5-2-7, if |λ KK-1 |≤c 3 , stop, then output p opt = pn , K opt =K, otherwise K=K+1, then turn to step 3 -5-2-2, where K opt represents the optimal number of discrete points {x k }, λ K-1 is the initial value of the objective function, and p opt is the optimal probability value that satisfies the conditions. 7.根据权利要求6所述的方法,其特征在于,步骤3-5-2-4包括:7. The method according to claim 6, wherein step 3-5-2-4 comprises: 步骤3-5-2-4-1,选择ρ,c∈(0,1),为初始步长,ρ为步长缩减因子,c为一个参数,一般取0和1之间的数;Step 3-5-2-4-1, select ρ,c∈(0,1), is the initial step size, ρ is the step size reduction factor, and c is a parameter, generally a number between 0 and 1; 步骤3-5-2-4-2,重复直到满足:Steps 3-5-2-4-2, repeat until: 其中 为下一次迭代的目标函数值,为这次迭代的值,为投影;in is the objective function value for the next iteration, is the value of this iteration, for projection; 步骤3-5-2-4-3,←表示赋值;Step 3-5-2-4-3, ← means assignment; 步骤3-5-2-4-4,结束重复;Step 3-5-2-4-4, end the repetition; 步骤3-5-2-4-5,当时终止。Steps 3-5-2-4-5, when terminated when.
CN201811295357.1A 2018-11-01 2018-11-01 Method for calculating reachable capacity of free space light intensity channel Expired - Fee Related CN109150304B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811295357.1A CN109150304B (en) 2018-11-01 2018-11-01 Method for calculating reachable capacity of free space light intensity channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811295357.1A CN109150304B (en) 2018-11-01 2018-11-01 Method for calculating reachable capacity of free space light intensity channel

Publications (2)

Publication Number Publication Date
CN109150304A true CN109150304A (en) 2019-01-04
CN109150304B CN109150304B (en) 2020-02-07

Family

ID=64807129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811295357.1A Expired - Fee Related CN109150304B (en) 2018-11-01 2018-11-01 Method for calculating reachable capacity of free space light intensity channel

Country Status (1)

Country Link
CN (1) CN109150304B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431598A (en) * 2020-03-31 2020-07-17 中国矿业大学 A new calculation method of inner and outer boundary of MAC capacity area in VLC network
CN111565072A (en) * 2020-04-10 2020-08-21 中国矿业大学 Uplink capacity area and optimal wave speed optimization method in visible light communication network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304831A1 (en) * 2007-06-08 2008-12-11 Miller Ii Robert Raymond Mesh free-space optical system for wireless local area network backhaul
CN101958871A (en) * 2010-09-16 2011-01-26 西安工业大学 An adaptive FSO-OFDM transmission system and transmission method
CN104467964A (en) * 2014-11-10 2015-03-25 北京邮电大学 Method for optimizing communication speed of indoor visible light communication
CN105871460A (en) * 2016-03-24 2016-08-17 北京邮电大学 Peer-to-peer visible light communication terminal mode collaborative determination method based on game theory
CN106209234A (en) * 2016-07-19 2016-12-07 中国科学技术大学 A kind of acquisition methods of MIMO visible light communication channel capacity limit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304831A1 (en) * 2007-06-08 2008-12-11 Miller Ii Robert Raymond Mesh free-space optical system for wireless local area network backhaul
CN101958871A (en) * 2010-09-16 2011-01-26 西安工业大学 An adaptive FSO-OFDM transmission system and transmission method
CN104467964A (en) * 2014-11-10 2015-03-25 北京邮电大学 Method for optimizing communication speed of indoor visible light communication
CN105871460A (en) * 2016-03-24 2016-08-17 北京邮电大学 Peer-to-peer visible light communication terminal mode collaborative determination method based on game theory
CN106209234A (en) * 2016-07-19 2016-12-07 中国科学技术大学 A kind of acquisition methods of MIMO visible light communication channel capacity limit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUAI MA等: ""ACHIEVABLE RATE WITH CLOSED-FORM FOR SISO CHANNEL AND BROADCAST CHANNEL IN VISIBLE LIGHT COMMUNICATION NETWORKS"", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431598A (en) * 2020-03-31 2020-07-17 中国矿业大学 A new calculation method of inner and outer boundary of MAC capacity area in VLC network
CN111565072A (en) * 2020-04-10 2020-08-21 中国矿业大学 Uplink capacity area and optimal wave speed optimization method in visible light communication network
CN111565072B (en) * 2020-04-10 2021-06-01 中国矿业大学 An optimization method for uplink capacity area and optimal wave speed in visible light communication network

Also Published As

Publication number Publication date
CN109150304B (en) 2020-02-07

Similar Documents

Publication Publication Date Title
Shapiro et al. Ultimate channel capacity of free-space optical communications
CN103997775B (en) Frequency division multiplexing multiuser MIMO efficiency optimization methods
Moser et al. Capacity results on multiple-input single-output wireless optical channels
Chakraborty et al. Outage capacity of MIMO Poisson fading channels
Dang et al. Joint beamforming for intelligent reflecting surface aided wireless communication using statistical CSI
Zhao et al. A low complexity power allocation scheme for NOMA-based indoor VLC systems
Chaaban et al. Capacity bounds for the Gaussian IM-DD optical multiple-access channel
CN109150304B (en) Method for calculating reachable capacity of free space light intensity channel
Ma et al. Achieving channel capacity of visible light communication
Sahraei et al. Compute-and-forward: Finding the best equation
Egan et al. Dynamic interference for uplink SCMA in large-scale wireless networks without coordination
Qian et al. Optimization design of RIS-assisted high-capacity visible light communications based on HDMA
Abdallah et al. Adaptive discrete rate and power transmission for spectrum sharing systems
Ma et al. Robust joint signal and interference alignment in cognitive radio networks with ellipsoidal channel state information uncertainties
Agrell The channel capacity increases with power
Sharda et al. Diversity-multiplexing tradeoff for indoor visible light communication
Ahmed et al. An information-theoretic branch-and-prune algorithm for discrete phase optimization of RIS in massive MIMO
Bereyhi et al. Matching pursuit based scheduling for over-the-air federated learning
Liu et al. Optical intelligent reflecting surface configuration for NOMA-based MISO VLC systems
Mao et al. Massive OAM‐MIMO transmission scheme for 5G networks and beyond
Huang et al. Two simplified multiuser detection algorithms for uplink SCMA systems via generalized approximate message passing
Mitra et al. Non-orthogonal multiple access for visible light communications with ambient light and user mobility
Zhu et al. Distributed average consensus with deterministic quantization: An ADMM approach
Feng et al. Optimal IA design and performance analysis for MIMO–OFDM systems with imperfect CSI
Al‐qudah et al. Cognitive interference channel: achievable rate region and power allocation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200207