CN109149995A - 具有双工作模式的摩擦纳米发电机、装置及传感器 - Google Patents
具有双工作模式的摩擦纳米发电机、装置及传感器 Download PDFInfo
- Publication number
- CN109149995A CN109149995A CN201710511513.2A CN201710511513A CN109149995A CN 109149995 A CN109149995 A CN 109149995A CN 201710511513 A CN201710511513 A CN 201710511513A CN 109149995 A CN109149995 A CN 109149995A
- Authority
- CN
- China
- Prior art keywords
- friction nanometer
- power generator
- film material
- nanometer power
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明公开了一种具有双工作模式的摩擦纳米发电机、装置及传感器。该摩擦纳米发电机包括:第一发电部,包括:第一电极板和第一薄膜材料,其中,第一薄膜材料附着于第一电极板表面;第二发电部,包括:第二电极板和第二薄膜材料,其中,第二薄膜材料附着于第二电极板表面;以及导电颗粒,填充于第一发电部和第二发电部形成的空间中,并可与第一发电部、第二发电部接触摩擦;其中,导电颗粒与第一薄膜材料及第二薄膜材料均具有不同的电负性。该摩擦纳米发电机结构简单、成本低廉、易于集成且器件的厚度小,不需要直接与外界物体接触或者滑动摩擦,延长了使用寿命;可以同时实现两种工作模式,拓宽了使用范围。
Description
技术领域
本公开属于新能源技术领域,涉及一种具有双工作模式的摩擦纳米发电机、装置及传感器。
背景技术
随着微电子技术的进一步发展,微型电子设备的体积和功耗也随之降低,同时随着物联网的快速发展,人们亟需找到新的发电方式来满足微型电子设备及微型自驱动系统的发展。不同于传统发电机,微型发电机利用压电、热电和摩擦发电等技术,来收集周围环境的各种能量,如机械能和热能,将其转化为电能。这类发电机具有体积小、成本低等优点,有望在不久的将来取代电池,为微型电子设备及系统提供可持续的清洁能源。
摩擦纳米发电机自提出以来,就受到了广泛的关注。摩擦纳米发电机是利用两种摩擦材料之间的接触-分离、滑动等方式,来收集环境中的各种机械能,并将之转化为电能。目前,在能量收集、可穿戴设备、传感等领域都有着广泛的应用。但是,仍存在如下技术问题亟待解决:摩擦纳米发电机一般都需要两个摩擦层之间相互接触,因此,在收集机械能的过程之中就会对摩擦层造成磨损,进而影响摩擦纳米发电机的效率和寿命;此外,大部分摩擦纳米发电机都是基于一种工作模式,因而限定了发电机的应用范围。
发明内容
(一)要解决的技术问题
本公开提供了一种具有双工作模式的摩擦纳米发电机、装置及传感器,以至少部分解决以上所提出的技术问题。
(二)技术方案
根据本公开的一个方面,提供了一种具有双工作模式的摩擦纳米发电机,包括:第一发电部110,包括:第一电极板111和第一薄膜材料112,其中,第一薄膜材料112附着于第一电极板111表面;第二发电部120,包括:第二电极板121和第二薄膜材料122,其中,第二薄膜材料122附着于第二电极板121表面;以及导电颗粒300,填充于第一发电部110和第二发电部120形成的空间中,导电颗粒(300)表面为导体材料,并可与第一发电部110、第二发电部120互相碰撞并且互相摩擦;其中,导电颗粒300与第一薄膜材料112具有不同的电负性,与第二薄膜材料122也具有不同的电负性。
在本公开的一些实施例中,该摩擦纳米发电机还包括:外壳200,设置于第一发电部110和第二发电部120的外侧,将第一发电部110、第二发电部120以及导电颗粒300封闭。
在本公开的一些实施例中,该摩擦纳米发电机可以同时实现两种工作模式,这两种工作模式包括:该摩擦纳米发电机位于与外界物体500直接接触的物体内部,将外界的振动能转化成电能;以及该摩擦纳米发电机位于与外界物体500直接接触的物体内部,将外界物体的机械能转化成电能。
在本公开的一些实施例中,机械能通过包括接触摩擦和滑动摩擦的方式转化为电能。
在本公开的一些实施例中,与外界物体500直接接触的物体包括:地板、球体、桌子、垫子、地毯、显示屏或微型电子设备。
在本公开的一些实施例中,第一电极板111和第二电极板121位于外壳200的内壁相对的两个面上;和/或第一电极板111和第二电极板121的面积相同。
在本公开的一些实施例中,第一电极板111和第二电极板121的材料为导电的金属材料、氧化物材料或者有机材料;和/或导电颗粒300表面的材料为以下材料中的一种或几种:Al、Fe和不锈钢;和/或外壳200为绝缘材料;和/或第一薄膜材料112和第二薄膜材料122为绝缘材料。
在本公开的一些实施例中,第一薄膜材料112和第二薄膜材料122为聚合物高分子材料。
在本公开的一些实施例中,导电颗粒300的填充度α,满足:0%<α≤1000%,其中,填充度α的含义为:导电颗粒密排后的面积与薄膜材料面积的比值乘以100%。
在本公开的一些实施例中,导电颗粒300的直径介于20μm~20cm之间。
在本公开的一些实施例中,第一薄膜材料112和第二薄膜材料122之间的距离d满足:0<d≤20cm。
根据本公开的另一个方面,提供了一种装置,具有承受冲击的能力,其中,在该装置的表面下包括至少一个以上所述的任一种摩擦纳米发电机。
在本公开的一些实施例中,该装置为地板,以上公开的任一种摩擦纳米发电机设置在地板背面的凹槽中。
在本公开的一些实施例中,地板的材料为以下材料中的一种或几种:大理石、木质、水磨石、环氧树脂、瓷砖或者塑胶。
在本公开的一些实施例中,该装置为以下装置中的一种:坐垫、地毯、桌子或椅子。
在本公开的一些实施例中,该装置包括外皮和内胆,将以上公开的任一种摩擦纳米发电机置入外皮和内胆所形成的空间中。
根据本公开的又一个方面,提供了一种传感器,包括以上公开的任一种摩擦纳米发电机,或者包括以上公开的可以承受冲击的装置。
(三)有益效果
从上述技术方案可以看出,本公开提供的具有双工作模式的摩擦纳米发电机、装置及传感器,具有以下有益效果:该摩擦纳米发电机结构简单、成本低廉、易于集成且器件的厚度小,可置入诸如地板、坐垫、球体等与外界物体直接接触的物体中,该摩擦纳米发电机的摩擦层不需要直接与外界物体接触或者滑动摩擦,延长了使用寿命;既可以实现振动式发电,又可以实现摩擦式发电,且两种工作模式可以同时实现,拓宽了使用范围。
附图说明
图1为根据本公开一些实施例具有双工作模式的摩擦纳米发电机置入地板的结构示意图。
图2为根据本公开一些实施例具有双工作模式的摩擦纳米发电机第一种工作模式的发电原理的剖面示意图,(a)至(d)为一个振动的周期过程中对应的摩擦纳米发电机的状态示意图;其中,(a)为导电颗粒在静止状态下与第二薄膜接触时,对应的摩擦纳米发电机的状态示意图;(b)为导电颗粒在吸收外界振动能后,向上运动的过程中靠近第一薄膜时,对应的摩擦纳米发电机的状态示意图;(c)为导电颗粒在向上运动的过程中与第一薄膜接触时,对应的摩擦纳米发电机的状态示意图;(d)为导电颗粒向下运动的过程中靠近第二薄膜时,对应的摩擦纳米发电机的状态示意图。
图3为根据本公开一些实施例具有双工作模式的摩擦纳米发电机第二种工作模式的发电原理的剖面示意图,(a)至(d)为外界物体与地板接触以及远离的过程中对应的摩擦纳米发电机的状态示意图;其中,(a)为外界物体与地板接触后,对应的摩擦纳米发电机的状态示意图;(b)为外界物体与地板远离过程中,对应的摩擦纳米发电机的状态示意图;(c)为外界物体与地板达到静电感应的最远距离时,对应的摩擦纳米发电机的状态示意图;(d)为外界物体再次靠近地板过程中,对应的摩擦纳米发电机的状态示意图。
图4为根据本公开一些实施例篮球自由落体后在地板上振动、摩擦,置入地板中的摩擦纳米发电机在不同填充度下的开路电压和短路电流输出曲线图。
图5为根据本公开一些实施例具有双工作模式的摩擦纳米发电机置入足球的剖面结构示意图。
【符号说明】
10-摩擦纳米发电机;
110-第一发电部;
111-第一电极板; 112-第一薄膜材料;
120-第二发电部;
121-第二电极板; 122-第二薄膜材料;
200-外壳;
300-导电颗粒;
400-地板; 500-外界物体;
600-球类;
610-外皮; 620-内胆。
具体实施方式
本公开提供了一种具有双工作模式的摩擦纳米发电机、装置及传感器,将摩擦纳米发电机设置于诸如地板、坐垫、球体等与外界物体直接接触的物体中,该摩擦纳米发电机的摩擦层不需要直接与外界物体接触或者滑动摩擦,延长了使用寿命;既可以实现振动式发电,又可以实现摩擦式发电,且两种工作模式可以同时实现,拓宽了使用范围。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
在本公开的第一个示例性实施例中,提供了一种内嵌于地板内的具有双工作模式的摩擦纳米发电机。图1为根据本公开一些实施例具有双工作模式的摩擦纳米发电机置入地板的结构示意图,由图1可知,本实施例中具有双工作模式的摩擦纳米发电机10内嵌于地板400下方,位于地板背面的凹槽中,该摩擦纳米发电机10包括:
第一发电部110,包括:第一电极板111和第一薄膜材料112,其中,第一薄膜材料112附着于第一电极板111表面;
第二发电部120,包括:第二电极板121和第二薄膜材料122,其中,第二薄膜材料122附着于第二电极板121表面;
外壳200,为封闭结构,设置于第一发电部110和第二发电部120之外;
导电颗粒300,填充于外壳200、第一发电部110和第二发电部120形成的空间中;
其中,导电颗粒300与第一薄膜材料112具有不同的电负性,与第二薄膜材料122也具有不同的电负性。
下面对本实施例的摩擦纳米发电机的各组成部分进行详细介绍。
外壳200为封闭结构,用以限制导电颗粒的振动范围,本实施例中外壳200选用绝缘材料;
第一发电部110和第二发电部120作为该摩擦纳米发电机的两个电极部分,二者相对设置于外壳200的内壁相对的两个面上,第一发电部和第二发电部可以为平板状也可以为弧形等几何形状,其相对的表面可以是平整的表面,也可以是粗糙的表面;第一薄膜材料112和第二薄膜材料122的表面,本实施例优选平整的表面;
第一发电部110和第二发电部120的面积大小没有限制,并且第一发电部110和第二发电部120的面积可以相同,也可以不同,各自面积的大小设置取决于对该摩擦纳米发电机器件的设计和外壳200的尺寸;本实施例优选第一发电部110与第二发电部120相对表面的面积相同;
第一电极板111和第二电极板121的材料可以为导电的金属材料、氧化物材料或者有机材料,在本实施例中优选金属材料;
第一薄膜材料112和第二薄膜材料122为绝缘材料,可以选用聚合物高分子材料,其附着于电极板的方式可以为:胶粘、旋涂或物理沉积等,保证薄膜材料可以较好的粘附在电极板上;
第一薄膜材料112和第二薄膜材料122互相面对面设置,二者表面可以是平面,也可以有各种微米和纳米级的修饰来增加表面粗糙程度;而实现表面粗糙程度的方式包括现有的刻蚀技术,比如干法刻蚀及其他物理方法;
第一薄膜112和第二薄膜122之间的距离d满足:0<d≤20cm,本实施例第一薄膜112和第二薄膜122的间距为4mm;
导电颗粒300可以整体为导电材料,也可以仅有表面为导电材料。导电颗粒的直径介于20μm-20cm之间,在本实例中其直径为1mm。
导电颗粒300填充于外壳200、第一发电部110和第二发电部120形成的空间中,填充度α,满足:0%<α≤1000%,其中填充度α的定义为:导电颗粒密排后的面积与薄膜材料面积的比值乘以100%,填充度为0的含义为:不填充导电颗粒;导电颗粒的材料为Al、Fe或不锈钢等,只要满足与第一薄膜材料112以及第二薄膜材料122等具有不同电负性的金属材料均可,这里以Al、Fe或不锈钢作为举例说明;
地板400的厚度介于1mm~1000mm之间;本公开不局限于本实施例所列举的厚度范围,实际情况中其他厚度的地板也满足条件。
本实施例中的外界物体可以是摩擦材料,比如说将该摩擦纳米发电机置于地板中,利用鞋子与地板摩擦发电;外界物体也可以是人体的各个部位,比如说,将该摩擦纳米发电机置于排球中,利用手掌与排球进行接触-分离,从而产生静电感应用于发电。
在本公开的第二个示例性实施例中公开了一种装置,具有承受冲击的能力,其中,在该装置的表面下包括至少一个以上公开的摩擦纳米发电机。本实施例中以地板为例,以上公开的摩擦纳米发电机设置在地板背面的凹槽中,该地板的材料可以是大理石、木质、水磨石、环氧树脂、瓷砖或塑胶等。
该装置还可以是其他物体,包括:坐垫、地毯、球体、桌子、椅子等。
该装置可以是包括外皮和内胆的球体,将以上公开的任一种摩擦纳米发电机置入外皮和内胆所形成的空间中。不过不局限于球体,可以是其他类型的包括外皮和内胆的装置,本实施例仅仅作为例子进行解释。
在本公开的第三个示例性实施例中,介绍具有双工作模式的摩擦纳米发电机的两种工作模式。
本公开具有双工作模式的摩擦纳米发电机的第一种工作模式为:通过将该摩擦纳米发电机置入与外界物体直接接触的物体中,当有外界振动时,导电颗粒300会产生相应的振动,利用导电颗粒300的上、下振动在第一薄膜材料112和第二薄膜材料122上产生接触电荷,并在第一电极板111和第二电极板121上产生感应电荷,随着导电颗粒300的振动位置变化而在第一电极板111和第二电极板121上产生感应电势差,从而在第一电极板和第二电极板连通外电路后,便将振动能转化成电能。
图2为根据本公开一些实施例具有双工作模式的摩擦纳米发电机第一种工作模式的发电原理的剖面示意图,(a)至(d)为一个振动的周期过程中对应的摩擦纳米发电机的状态示意图。本实施例中以在地板上拍打篮球或者人意外跌倒为例,说明该摩擦纳米发电机的第一种工作模式。
当在地板上拍打篮球或者人意外跌倒后时,振动能传递给导电颗粒300,引起导电颗粒300在第一电极板111和第二电极板121之间振动。由于导电颗粒300与第一薄膜材料112和第二薄膜材料122之间均存在电负性差异,因此在接触后会产生等量的异性接触电荷,图2中(a)至(d)以导电颗粒300带正电荷,第一薄膜材料112和第二薄膜材料122带负电荷为例作为说明。另外,由于第一薄膜材料112和第二薄膜材料122为绝缘材料,因此其电荷量不随导电颗粒300的振动而变化,通观图2中(a)至(d)可得。取振动过程中的某一个振动周期来看,导电颗粒300在静止状态下与第二薄膜材料122接触,在第二电极板121和第一电极板111中感应出等量的异种电荷量,如图2中(a)所示;然后当外界的振动能传递给摩擦纳米发电机时,导电颗粒300向上运动,如图2中(b)的空心箭头所示,导致第一电极板111的电势较高,产生了感应电势差,那么电子就由第二电极板121向第一电极板111运动,产生电流,图2中(b)如实心箭头显示的是电子流向;当导电颗粒300上升到接触第一薄膜材料112时,情况与图2中(a)类似,此刻达到电势平衡,在外电路中没有瞬时电流,如图2中(c)所示;当导电颗粒300向下运动,与图2中(b)同样的道理,第二电极板121的电势较高,产生了感应电势差,那么电子就由第一电极板111向第二电极板121运动,产生电流,图2中(d)如实心箭头显示的是电子流向,如此循环往复,产生源源不断的电能。
由上可知,当在地板上拍打篮球或者人意外跌倒后,内嵌于地板背面凹槽的摩擦纳米发电机将篮球或者人体的振动能转化成电能进行输出,因而可以将该摩擦纳米发电机置入地板内收集振动能量或者作为传感器监测人的意外跌倒。
本公开具有双工作模式的摩擦纳米发电机的第二种工作模式为:通过将该摩擦纳米发电机置入与外界物体直接接触的物体中,当外界物体与置入摩擦纳米发电机的物体接触摩擦后,在外界物体与置入物体之间产生接触电荷,当外界物体离开置入物体后,置入物体表面电荷仍存在,那么便引起第一电极板和第二电极板之间产生感应电势差,从而在第一电极板和第二电极板连通外电路后,便将外界物体的机械能通过摩擦的方式转换成电能。
图3为根据本公开一些实施例具有双工作模式的摩擦纳米发电机第二种工作模式的发电原理的剖面示意图,(a)至(d)为外界物体与地板接触以及远离的过程中对应的摩擦纳米发电机的状态示意图。本实施例中以人在地板上行走为例,说明该摩擦纳米发电机的第二种工作模式。
人在地板上行走过程中,当人踩在地板上时,鞋底与木板之间发生电荷转移,在地板上产生接触电荷,本实施例中以外界物体500带负电荷,地板400带正电荷为例进行举例说明;然后在脚离开地板后,地板表面的电荷仍然存在,这样由于静电感应,便在第一电极板和第二电极板中产生感应电荷,并且二者具有电势差,那么在第一电极板和第二电极板连通外电路后,便将人走路时的机械能转换成电能。取接触-分离过程中的某一个周期来看,当外界物体500与地板400接触时,如图3中(a)所示,产生了等量的异种电荷;随着外界物体500向上运动,离开地板400表面,其运动方向如图3中(b)的空心箭头所示,运动的某一个时刻,由于地板400表面的正电荷仍然存在,那么第一电极板111和第二电极板121相比,第一电极板111的电势较高,使得电子从第二电极板121流向第一电极板111,如图3中(b)实心箭头显示的电子流向;当外界物体500与地板400达到静电感应的最远距离时,此时对应第一电极板111和第二电极板121之间达到平衡,不存在电势差,因此在外电路中此时不存在瞬时电流,对应图3中(c)所示情况;接着随着外界物体500向地板400靠近,第一电极板111的电势相对变低,那么电子从第一电极板111流向第二电极板121,如图2中(d)实心箭头所示的电子流向,如此,循环往复,产生源源不断的电能。
由上可知,当人在地板上行走时,内嵌于地板背面凹槽的摩擦纳米发电机会将人体走路的机械能通过接触摩擦的方式转化成电能进行输出,因此可以将该摩擦纳米发电机置入地板内收集人行走的能量,并用于监测人的移动。
在本公开的第四个示例性实施例中公开了一种传感器,该传感器包括至少一个以上公开的摩擦纳米发电机或者至少一个包含该摩擦纳米发电机的装置。本实施例中以摩擦纳米发电机置入地板,作为传感器监测人的意外跌倒为例进行说明。该传感器的结构示意图如图1所示,可以利用摩擦纳米发电机的第一种工作模式进行传感,其工作原理参照图2中(a)~(d)图;也可以利用摩擦纳米发电机的第二种工作模式进行传感,其工作原理参照图3中(a)~(d)图。
需要强调的是,以上实施例中产生振动能和机械能的方式只是例子而已,在实际应用中只要能产生振动或者摩擦的情形都适用,第二种工作模式中转化的方式不局限于接触摩擦,还可以是滑动摩擦,比如利用清洁工具擦地板,清洁工具与地板之间属于滑动摩擦,在接触-分离过程中会产生相应的感应电势差,从而将机械能转化成电能;此外,以上描述的两种工作模式是同时存在的,在振动存在的同时也具有摩擦过程,而上面将两种工作模式分开描述是为了更加清晰的表述这两种工作模式。
根据本公开第一个实施例的具有双工作模式的摩擦纳米发电机进行了不同填充度的实验,将填充度分别为0%,60%,80%,100%,120%及140%的摩擦纳米发电机分别置入地板中,该摩擦纳米发电机的第一电极板和第二电极板连通到外电路,让篮球从80cm高处自由落体到内嵌摩擦纳米发电机的地板上,然后测试其开路电压和短路电流输出情况。图4为根据本公开一些实施例篮球自由落体后在地板上振动、摩擦,置入地板中的摩擦纳米发电机在不同填充度下的开路电压和短路电流输出曲线图。输出结果如图4所示,在填充度为0%,即不填充导电颗粒时,对应的开路电压和短路电流的值即为第二种工作模式输出的电能,此种情况对应篮球下落后与地板进行摩擦产生的那部分电能;在填充度分别为60%,80%,100%,120%及140%时,整体输出的开路电压和短路电流中包括由于篮球振动产生的那部分电能和篮球与地板进行摩擦产生的电能,为两种工作模式的叠加输出结果。从图4可以看出,本实验中填充度为100%对应的输出能量最高,在实际应用中可以依据实际情况参考进行填充导电颗粒的填充量设计。
在本公开的第五个示例性实施例中,介绍了一种将该具有双工作模式的摩擦纳米发电机置入球类中的结构。将若干个摩擦纳米发电机植入球体的外壳内,在拍球时,随着球体运动导电颗粒与上下的薄膜材料互相碰撞产生电能,同时球体与地面碰撞也可以产生摩擦发电。
图5为根据本公开一些实施例具有双工作模式的摩擦纳米发电机置入足球的剖面结构示意图。如图5所示,足球包括外皮610和内胆620,将摩擦纳米发电机10置入外皮610和内胆620所形成的空间中,该摩擦纳米发电机10沿径向分布,根据外皮610和内胆620所形成空间的大小和该摩擦纳米发电机10的尺寸确定该摩擦纳米发电机的个数,使该摩擦纳米发电机稳定固定于外皮610和内胆620所形成的空间中,保证发电的稳定和持续性。
需要明确的是,本实施例只是作为一个具体的例子和示意,来描述如何将本公开提供的具有双工作模式的摩擦纳米发电机置入其他可以与外界物体直接接触的物体中,不用于限制置入方式,也不用于限制外界物体或者置入物体。并且,以上描述的将摩擦纳米发电机置入球类的方式还可以是在球类的外皮610和内胆620形成的空间中设置弹簧或者其他固定装置,用于将该摩擦纳米发电机置入,或者本领域技术人员可以想到的常见做法,这里不作赘述。
综上所述,本公开实施例介绍了具有双工作模式的摩擦纳米发电机的结构以及两种工作模式、含有该摩擦纳米发电机的装置和传感器,将该摩擦纳米发电机设置于诸如地板、坐垫、球体等与外界物体直接接触的物体中,该摩擦纳米发电机的摩擦层不需要直接与外界物体接触或者滑动摩擦,延长了使用寿命;既可以实现振动式发电,又可以实现摩擦式发电,且两种工作模式可以同时实现,拓宽了使用范围。
应该注意的是上述实施例对本公开进行说明而不是对本公开进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
再者,说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意含及代表该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能作出清楚区分。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (17)
1.一种具有双工作模式的摩擦纳米发电机,包括:
第一发电部(110),包括:第一电极板(111)和第一薄膜材料(112),其中,第一薄膜材料(112)附着于第一电极板(111)表面;
第二发电部(120),包括:第二电极板(121)和第二薄膜材料(122),其中,第二薄膜材料(122)附着于第二电极板(121)表面;以及
导电颗粒(300),填充于第一发电部(110)和第二发电部(120)形成的空间中,所述导电颗粒(300)表面为导体材料;
其中,导电颗粒(300)与第一薄膜材料(112)具有不同的电负性,与第二薄膜材料(122)也具有不同的电负性。
2.根据权利要求1所述的摩擦纳米发电机,还包括:
外壳(200),设置于第一发电部(110)和第二发电部(120)的外侧,将第一发电部(110)、第二发电部(120)以及导电颗粒(300)封闭。
3.根据权利要求2所述的摩擦纳米发电机,可以同时实现两种工作模式,所述两种工作模式包括:
所述摩擦纳米发电机位于与外界物体(500)直接接触的物体内部,将外界的振动能转化成电能;以及
所述摩擦纳米发电机位于与外界物体(500)直接接触的物体内部,将外界物体的机械能转化成电能。
4.根据权利要求3所述的摩擦纳米发电机,其中,所述机械能通过包括接触摩擦和滑动摩擦的方式转化为电能。
5.根据权利要求3或4所述的摩擦纳米发电机,其中,所述与外界物体(500)直接接触的物体包括:地板、球体、桌子、垫子、地毯、显示屏或微型电子设备。
6.根据权利要求2至5任一项所述的摩擦纳米发电机,其中,所述第一电极板(111)和第二电极板(121)位于外壳(200)的内壁相对的两个面上;和/或
所述第一电极板(111)和第二电极板(121)的面积相同。
7.根据权利要求2至6任一项所述的摩擦纳米发电机,其中,
所述第一电极板(111)和第二电极板(121)的材料为导电的金属材料、氧化物材料或者有机材料;和/或
所述导电颗粒(300)表面的材料为以下材料中的一种或几种:Al、Fe和不锈钢;和/或
所述外壳(200)为绝缘材料;和/或
所述第一薄膜材料(112)和第二薄膜材料(122)为绝缘材料。
8.根据权利要求7所述的摩擦纳米发电机,其中,
所述第一薄膜材料(112)和第二薄膜材料(122)为聚合物高分子材料。
9.根据权利要求1至8任一项所述的摩擦纳米发电机,其中,所述导电颗粒(300)的填充度α,满足:0%<α≤1000%,其中,填充度α的含义为:导电颗粒密排后的面积与薄膜材料面积的比值乘以100%。
10.根据权利要求1至9任一项所述的摩擦纳米发电机,其中,所述导电颗粒(300)的直径介于20μm~20cm之间。
11.根据权利要求1至10任一项所述的摩擦纳米发电机,其中,所述第一薄膜材料(112)和第二薄膜材料(122)之间的距离距离d满足:0<d≤20cm。
12.一种装置,具有承受冲击的能力,其中,在所述装置的表面下包括至少一个权利要求1至11任一项所述的摩擦纳米发电机。
13.根据权利要求12所述的装置,其中,所述装置为地板,所述的摩擦纳米发电机设置在所述地板背面的凹槽中。
14.根据权利要求13所述的装置,其中,所述地板的材料为以下材料中的一种或几种:大理石、木质、水磨石、环氧树脂、瓷砖或者塑胶。
15.根据权利要求12所述的装置,其中,所述装置为以下装置中的一种:坐垫、地毯、桌子或椅子。
16.根据权利要求12所述的装置,包括外皮和内胆,将所述摩擦纳米发电机置入所述外皮和内胆所形成的空间中。
17.一种传感器,其中,包括权利要求1至11任一项所述的摩擦纳米发电机,或者包括权利要求12或13所述的可以承受冲击的装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710511513.2A CN109149995B (zh) | 2017-06-28 | 2017-06-28 | 具有双工作模式的摩擦纳米发电机、装置及传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710511513.2A CN109149995B (zh) | 2017-06-28 | 2017-06-28 | 具有双工作模式的摩擦纳米发电机、装置及传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109149995A true CN109149995A (zh) | 2019-01-04 |
CN109149995B CN109149995B (zh) | 2020-12-11 |
Family
ID=64803673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710511513.2A Active CN109149995B (zh) | 2017-06-28 | 2017-06-28 | 具有双工作模式的摩擦纳米发电机、装置及传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109149995B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110108395A (zh) * | 2019-06-14 | 2019-08-09 | 清华大学深圳研究生院 | 一种触滑觉传感器及其制备方法 |
CN110425006A (zh) * | 2019-07-12 | 2019-11-08 | 中国地质大学(武汉) | 一种基于摩擦纳米发电原理的两相流流型传感器 |
CN110847549A (zh) * | 2019-11-27 | 2020-02-28 | 重庆大学 | 一种自驱动空气负离子产生地板 |
CN112039365A (zh) * | 2020-08-20 | 2020-12-04 | 合肥工业大学 | 一种基于液态金属的振动能量收集装置及其应用 |
CN113054867A (zh) * | 2021-04-19 | 2021-06-29 | 华南理工大学 | 一种双工作模式电源及其制备方法与应用 |
CN113446089A (zh) * | 2021-07-29 | 2021-09-28 | 暨南大学 | 一种汽车尾气过滤装置 |
CN113532625A (zh) * | 2021-07-29 | 2021-10-22 | 重庆大学 | 振动传感器和背电极式振动传感器 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8536760B1 (en) * | 2013-01-23 | 2013-09-17 | K-Technology Usa, Inc. | Ball-electric power generator |
CN103780127A (zh) * | 2013-04-15 | 2014-05-07 | 国家纳米科学中心 | 一种摩擦纳米发电机 |
US20150061460A1 (en) * | 2013-09-02 | 2015-03-05 | Samsung Electronics Co., Ltd. | Textile-based energy generator |
CN104578892A (zh) * | 2013-10-12 | 2015-04-29 | 纳米新能源(唐山)有限责任公司 | 一体式摩擦发电机及振动传感器 |
CN104993773A (zh) * | 2015-07-16 | 2015-10-21 | 上海电力学院 | 一种复合能源电池装置及其制备方法 |
CN105099256A (zh) * | 2014-04-18 | 2015-11-25 | 北京纳米能源与系统研究所 | 基于静电感应的发电机和发电方法 |
CN105577024A (zh) * | 2014-11-06 | 2016-05-11 | 北京纳米能源与系统研究所 | 一种振动型摩擦发电机 |
CN105991061A (zh) * | 2015-02-11 | 2016-10-05 | 北京纳米能源与系统研究所 | 一种收集流体流动能量的复合型发电机 |
CN106602924A (zh) * | 2016-11-18 | 2017-04-26 | 北京纳米能源与系统研究所 | 一种收集振动能量的摩擦纳米发电机和振动传感器 |
CN106655873A (zh) * | 2016-07-29 | 2017-05-10 | 北京纳米能源与系统研究所 | 摩擦纳米发电机、应用其的监测装置和自驱动卡片灯 |
-
2017
- 2017-06-28 CN CN201710511513.2A patent/CN109149995B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8536760B1 (en) * | 2013-01-23 | 2013-09-17 | K-Technology Usa, Inc. | Ball-electric power generator |
CN103780127A (zh) * | 2013-04-15 | 2014-05-07 | 国家纳米科学中心 | 一种摩擦纳米发电机 |
US20150061460A1 (en) * | 2013-09-02 | 2015-03-05 | Samsung Electronics Co., Ltd. | Textile-based energy generator |
CN104578892A (zh) * | 2013-10-12 | 2015-04-29 | 纳米新能源(唐山)有限责任公司 | 一体式摩擦发电机及振动传感器 |
CN105099256A (zh) * | 2014-04-18 | 2015-11-25 | 北京纳米能源与系统研究所 | 基于静电感应的发电机和发电方法 |
CN105577024A (zh) * | 2014-11-06 | 2016-05-11 | 北京纳米能源与系统研究所 | 一种振动型摩擦发电机 |
CN105991061A (zh) * | 2015-02-11 | 2016-10-05 | 北京纳米能源与系统研究所 | 一种收集流体流动能量的复合型发电机 |
CN104993773A (zh) * | 2015-07-16 | 2015-10-21 | 上海电力学院 | 一种复合能源电池装置及其制备方法 |
CN106655873A (zh) * | 2016-07-29 | 2017-05-10 | 北京纳米能源与系统研究所 | 摩擦纳米发电机、应用其的监测装置和自驱动卡片灯 |
CN106602924A (zh) * | 2016-11-18 | 2017-04-26 | 北京纳米能源与系统研究所 | 一种收集振动能量的摩擦纳米发电机和振动传感器 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110108395A (zh) * | 2019-06-14 | 2019-08-09 | 清华大学深圳研究生院 | 一种触滑觉传感器及其制备方法 |
CN110108395B (zh) * | 2019-06-14 | 2024-01-16 | 清华大学深圳研究生院 | 一种触滑觉传感器及其制备方法 |
CN110425006A (zh) * | 2019-07-12 | 2019-11-08 | 中国地质大学(武汉) | 一种基于摩擦纳米发电原理的两相流流型传感器 |
CN110847549A (zh) * | 2019-11-27 | 2020-02-28 | 重庆大学 | 一种自驱动空气负离子产生地板 |
CN110847549B (zh) * | 2019-11-27 | 2020-11-06 | 重庆大学 | 一种自驱动空气负离子产生地板 |
CN112039365A (zh) * | 2020-08-20 | 2020-12-04 | 合肥工业大学 | 一种基于液态金属的振动能量收集装置及其应用 |
CN112039365B (zh) * | 2020-08-20 | 2021-08-13 | 合肥工业大学 | 一种振动能量收集器及其应用 |
CN113054867A (zh) * | 2021-04-19 | 2021-06-29 | 华南理工大学 | 一种双工作模式电源及其制备方法与应用 |
CN113446089A (zh) * | 2021-07-29 | 2021-09-28 | 暨南大学 | 一种汽车尾气过滤装置 |
CN113532625A (zh) * | 2021-07-29 | 2021-10-22 | 重庆大学 | 振动传感器和背电极式振动传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN109149995B (zh) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109149995A (zh) | 具有双工作模式的摩擦纳米发电机、装置及传感器 | |
He et al. | Smart floor with integrated triboelectric nanogenerator as energy harvester and motion sensor | |
Gao et al. | Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy | |
Yang et al. | A fully verified theoretical analysis of contact‐mode triboelectric nanogenerators as a wearable power source | |
Jin et al. | Self-powered safety helmet based on hybridized nanogenerator for emergency | |
Wu et al. | An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant | |
Yang et al. | Harvesting energy from the natural vibration of human walking | |
Rui et al. | Super-durable and highly efficient electrostatic induced nanogenerator circulation network initially charged by a triboelectric nanogenerator for harvesting environmental energy | |
Lin et al. | Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor | |
Dhakar et al. | Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures | |
Kim et al. | Triboelectric nanogenerator based on the internal motion of powder with a package structure design | |
Huang et al. | Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT) | |
Wang et al. | Superwettable hybrid dielectric based multimodal triboelectric nanogenerator with superior durability and efficiency for biomechanical energy and hydropower harvesting | |
Deng et al. | Pressure-type generator for harvesting mechanical energy from human gait | |
CN107959438A (zh) | 一种基于摩擦起电的柔性可拉伸发电装置 | |
Fu et al. | Non‐Contact Triboelectric Nanogenerator | |
Chen et al. | A fully encapsulated piezoelectric--triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. | |
Tao et al. | Development of bipolar-charged electret rotatory power generator and application in self-powered intelligent thrust bearing | |
Shen et al. | Multifunctional self-powered electronics based on a reusable low-cost polypropylene fabric triboelectric nanogenerator | |
CN109510505A (zh) | 一种摩擦纳米发电机 | |
KR20150142810A (ko) | 섬유 기반 마찰 전기 나노 발전 소자 및 이를 이용한 발전 유닛 | |
CN105978394A (zh) | 柔性自发电式加速度传感器 | |
CN106655875A (zh) | 可拉伸摩擦发电机和制备方法 | |
Gunawardhana et al. | Scalable textile manufacturing methods for fabricating triboelectric nanogenerators with balanced electrical and wearable properties | |
Zhang et al. | A flexible droplet-based triboelectric-electromagnetic hybrid generator for raindrop energy harvesting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |