CN109147030B - 基于线特征的室内外场景联合建模方法 - Google Patents

基于线特征的室内外场景联合建模方法 Download PDF

Info

Publication number
CN109147030B
CN109147030B CN201810731060.9A CN201810731060A CN109147030B CN 109147030 B CN109147030 B CN 109147030B CN 201810731060 A CN201810731060 A CN 201810731060A CN 109147030 B CN109147030 B CN 109147030B
Authority
CN
China
Prior art keywords
point cloud
indoor
outdoor
rigid body
line structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810731060.9A
Other languages
English (en)
Other versions
CN109147030A (zh
Inventor
温程璐
张正
王程
侯士伟
李军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Sizhong Construction Co.,Ltd.
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810731060.9A priority Critical patent/CN109147030B/zh
Publication of CN109147030A publication Critical patent/CN109147030A/zh
Application granted granted Critical
Publication of CN109147030B publication Critical patent/CN109147030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Abstract

本发明公开了基于线特征的室内外场景联合建模方法,包括以下步骤:获得原始点云数据,所述原始点云数据包括室内点云和室外点云;对所述室内点云和室外点云分别进行墙面提取,获得墙面点云;针对所述墙面点云提取线结构体;基于所述线结构体,对室内点云和室外点云进行配准。本发明能够对不同质量的点云进行处理,表述简单,通过提取墙面提高了室内外场景的重合率,进而提升了配准的成功率。

Description

基于线特征的室内外场景联合建模方法
技术领域
本发明涉及三维重建技术领域,特别涉及基于线特征的室内外场景联合建模方法。
背景技术
近些年,三维重建得到了越来越多的关注。由于仪器和场景的限制,室外场景使用的往往是使用车载数据,或者静态扫描仪这些设备。室内场景相对较小,比较适合使用背负式这样便携的设备。因此得到的数据大多数是室内外场景分离的。另一方面,室外的GPS信号比较好,但是室内的GPS信号较差。通过一体化室内外点云数据,可以为室外场景提供更详尽的信息,为室内场景提供更加完整的信息(室内外数据可以互补)。另外还可以将室外点云的GPS坐标引入室内点云。
一体化室内外点云数据的主要难点在于:
1.室内数据与室外数据的来源不同,致使它们的数据质量不同,采用传统的手工特征算法(Spin-Images,FPFH,SHOT等)很难处理。
2.室内场景与室外场景被墙隔离开,Overlap(重叠率)很低,采用4PCS也很难处理。
Cohen等人使用室内和室外场景的稀疏SFM模型以及用于生成它们的图像作为输入,提出了通过语义信息来对齐建筑物的内部和外部的方法。该方法使用窗户检测来生成两个模型之间的对应关系,然后利用这一对应关系来进行配准,但该方法是基于图像的。Tobias Koch等人提出了一种利用3D线段自动跑配准室内和室外建筑模型的方法。虽然该算法将室内和室外场景结合在一起,但3D线条也是基于图像的三维重建的。
建筑物场景中线结构大量存在,线结构的表述比较简单,且有一定的抗噪作用。因此,使用线结构配准室内外场景有一定的潜力。
发明内容
为解决上述技术问题,本发明提供一种基于线特征的室内外场景联合建模方法,其能够对不同质量的点云进行处理,表述简单,通过提取墙面提高了室内外场景的重合率,进而提升了配准的成功率。
为实现上述目的,本发明采用以下技术方案:
基于线特征的室内外场景联合建模方法,包括以下步骤:
S1、获得原始点云数据,所述原始点云数据包括室内点云和室外点云;
S2、对所述室内点云和室外点云分别进行墙面提取,获得墙面点云;
S3、针对所述墙面点云提取线结构体;
S4、基于所述线结构体,对室内点云和室外点云进行配准。
优选地,所述步骤S2中的墙面提取通过采用关联马尔可夫网络模型进行语义分割实现。
优选地,所述步骤S2通过以下分步骤实现:
S21、基于八叉树将所述室内点云和室外点云分别划分成小块,获得点云分块,并对所述点云分块进行类别标注;
S22、利用FPFH特征和高度特征来描述点云分块;
S23、采用关联马尔可夫网络模型估计出点云分块的类别标签;
S24、将标记为墙面的点云分块进行合成,获得所述墙面点云。
优选地,所述步骤S3具体通过以下分步骤实现:
S31、对所述墙面点云进行超体素分割,对超体素的边缘进行直线拟合,获得直线段集合;
S32、利用k-means聚类算法在所述直线段集合中搜索潜在的门窗结构,进而提取出所述线结构体。
优选地,所述步骤S4具体通过以下分步骤实现:
S41、根据所述室内点云和室外点云对应的线结构体,确定一组刚体变换关系;
S42、采用公共点数作为距离函数,建立刚体变换关系求解模型,获得最优刚体变换关系。
优选地,所述步骤S41中的刚体变换关系具体通过以上方法确定:
考虑到所述室内点云和室外点云对应的线结构体为四边形,将室内点云对应的线结构体的四条边记为a、b、c、d,将室外点云对应的线结构体的四条边记为a’、b’、c’、d’,这样就可以确定4个对应关系;
根据4个匹配的顶点对,通过奇异值分解,可以确定刚体变换关系。
优选地,所述步骤S42具体通过以下方法实现:
将室内点云记为P,将室外点云记为Q,刚体变换记为
Figure GDA0002478182050000032
其中,R为3*3的旋转矩阵,T为三维的平移向量;
采用公共点数作为距离函数,建立NCP距离函数模型,即:
Figure GDA0002478182050000033
其中,NCP(R,T)定义为刚体变换后的两个点云P、Q中最近距离小于ε的点数,ε为预先设定的阈值,qi∈Q为变换后的pi到点云Q中距离最近的点;
建立刚体变换关系求解模型,即:
Figure GDA0002478182050000031
求解最大化NCP(R,T)的R和T,从而获得最优的刚体变换关系。
优选地,所述步骤S4还包括以下分步骤:
S43、利用迭代最近点(ICP)算法来优化配准结果。
采用上述技术方案后,本发明与背景技术相比,具有如下优点:
本发明能够对不同质量的点云进行处理,表述简单,通过提取墙面提高了室内外场景的重合率,进而提升了配准的成功率。
附图说明
图1为本发明的流程示意图;
图2a示出了室内点云,图2b示出了室内点云的线提取结果,图2c示出了室外点云,图2d示出了室外点云的线提取结果;
图3a示出了针对室内点云提取的线结构体,图3b示出了针对室外点云提取的线结构体。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例
请参阅图1,本发明公开了基于线特征的室内外场景联合建模方法,包括以下步骤:
S1、获得原始点云数据,原始点云数据包括室内点云和室外点云。
S2、对室内点云和室外点云分别进行墙面提取,获得墙面点云。该步骤通过以下分步骤实现:
S21、基于八叉树将室内点云和室外点云分别划分成小块,获得点云分块,并对点云分块进行类别标注,具体要标注的类别包括墙面、地面、天花板及其他。
S22、利用FPFH特征和高度特征来描述点云分块,记为
Figure GDA0002478182050000041
xi表示点云分块(patch)i的特征向量,xij表示与点云分块i相邻的点云分块j的特征向量,
Figure GDA0002478182050000042
表示点云分块i所属类别的特征向量。
S23、采用关联马尔可夫网络模型(AMNs模型)估计出点云分块的类别标签。
AMNs模型中用到的基本功能如下:
Φ(X,Y,W)=Φn(X,Y,Wn)+Φe(X,Y,We)+Φc(X,Y,Wc) (1)
其中,Φn代表节点(node),Φe代表边缘(edge),Φc代表团势函数(cliquepotentials),W=[Wn,We,Wc]是AMNs模型中的参数。
使用以下对数线性势函数来表示节点势能对提取的特征的依赖性:
Figure GDA0002478182050000051
其中,yi=lk代表节点i的类别标签值,
Figure GDA0002478182050000052
是当节点被分配为lk时使用的权重。
边缘势函数被定义为:
Figure GDA0002478182050000053
Figure GDA0002478182050000054
其中,lk和lo是相邻节点i和j的类别标签,E是边集,每条边由两个相邻节点组成。我们使用PnPotts模型作为能量函数,该模型可以有效地最小化。在AMNs对数线性模型中,
Figure GDA0002478182050000055
作为高阶能量项用来对模型求解:
log(Φc(X,Y,Wc))=∑c∈Clogφc(yc) (5)
Figure GDA0002478182050000056
其中C是团集。为了有效地解决以下目标函数(式(7)),我们应用功能梯度增强法来搜索势函数的空间,从而最好地模拟给定的训练数据。
Figure GDA0002478182050000057
其中λ是一个正则化项,
Figure GDA0002478182050000058
是计算推断标签(y)与真实标签
Figure GDA0002478182050000059
之间的汉明距离的损失函数。推断未标记场景的分类标签是在标记阶段进行的。通过α展开图切割方法最大化式(8)可以有效地估计点云分块的类别标签。
Figure GDA0002478182050000061
S24、将标记为墙面的点云分块进行合成,获得墙面点云。
S3、针对墙面点云提取线结构体。该步骤具体通过以下分步骤实现:
S31、对墙面点云进行超体素分割,对超体素的边缘进行直线拟合,获得直线段集合。本步骤的线提取结果如图2所示。
S32、利用k-means聚类算法在直线段集合中搜索潜在的门窗结构,进而提取出线结构体。
匹配室内和室外模型的关键任务在于找到两个场景中出现的相同结构,比如门窗。因此,我们需要先找到连接室内外场景的门窗,然后对室内和室外场景进行配准。
虑到门和窗户大部分是四边形结构,所以我们对潜在的门窗结构进行了优化,得到了正则化后的门窗,即DWsin={dwsi1,dwsi2,…,dwsin}和DWsout={dwsj1,dwsj2,…,dwsjm}。其中,DWsin表示室内的门窗结构,DWsout表示室外的门窗结构,n和m分别表示室内和室外的门窗数量。采用以下的方法来区分门和窗户:四边形中,如果最大长度>2m并且最大长度与最小长度之差>0.5m则被认为是门,否则是窗户。于是,室内和室外的门窗结构均被分成了门和窗户两类,即DWsindoor和DWsinwin,DWsoutdoor和DWsoutwin。本步骤的线结构体提取结果如图3所示。
S4、基于线结构体,对室内点云和室外点云进行配准。该步骤具体通过以下分步骤实现:
S41、根据室内点云和室外点云对应的线结构体,确定一组刚体变换关系。考虑到室内点云和室外点云对应的线结构体为四边形,将室内点云对应的线结构体的四条边记为a、b、c、d,将室外点云对应的线结构体的四条边记为a’、b’、c’、d’,这样就可以确定4个对应关系,即:
Figure GDA0002478182050000071
Figure GDA0002478182050000072
Figure GDA0002478182050000073
Figure GDA0002478182050000074
根据4个匹配的顶点对,通过奇异值分解,可以确定刚体变换关系。
S42、采用公共点数作为距离函数,建立刚体变换关系求解模型,获得最优刚体变换关系。
将室内点云记为P,将室外点云记为Q,刚体变换记为
Figure GDA0002478182050000076
其中,R为3*3的旋转矩阵,T为三维的平移向量。
考虑现实场景中从不同视角扫描到的点云数据往往存在较少的重叠部分,所以采用公共点数作为距离函数,建立NCP距离函数模型,即:
Figure GDA0002478182050000075
其中,NCP(R,T)定义为刚体变换后的两个点云P、Q中最近距离小于ε的点数,ε为预先设定的阈值,qi∈Q为变换后的pi到点云Q中距离最近的点;
建立刚体变换关系求解模型,即:
Figure GDA0002478182050000081
求解最大化NCP(R,T)的R和T,从而获得最优的刚体变换关系。
S43、利用迭代最近点(ICP)算法来优化配准结果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

1.基于线特征的室内外场景联合建模方法,其特征在于,包括以下步骤:
S1、获得原始点云数据,所述原始点云数据包括室内点云和室外点云;
S2、对所述室内点云和室外点云分别进行墙面提取,获得墙面点云;
S3、针对所述墙面点云提取线结构体;
S4、基于所述线结构体,对室内点云和室外点云进行配准;
所述步骤S4具体通过以下分步骤实现:
S41、根据所述室内点云和室外点云对应的线结构体,确定一组刚体变换关系;
S42、采用公共点数作为距离函数,建立刚体变换关系求解模型,获得最优刚体变换关系;
所述步骤S41中的刚体变换关系具体通过以下 方法确定:
考虑到所述室内点云和室外点云对应的线结构体为四边形,将室内点云对应的线结构体的四条边记为a、b、c、d,将室外点云对应的线结构体的四条边记为a’、b’、c’、d’,这样就可以确定4个对应关系;
根据4个匹配的顶点对,通过奇异值分解,可以确定刚体变换关系;
所述步骤S42具体通过以下方法实现:
将室内点云记为P,将室外点云记为Q,刚体变换记为
Figure FDA0002478182040000011
其中,R为3*3的旋转矩阵,T为三维的平移向量;
采用公共点数作为距离函数,建立NCP距离函数模型,即:
Figure FDA0002478182040000012
其中,NCP(R,T)定义为刚体变换后的两个点云P、Q中最近距离小于ε的点数,ε为预先设定的阈值,qi∈Q为变换后的pi到点云Q中距离最近的点;
建立刚体变换关系求解模型,即:
Figure FDA0002478182040000021
求解最大化NCP(R,T)的R和T,从而获得最优的刚体变换关系。
2.如权利要求1所述的基于线特征的室内外场景联合建模方法,其特征在于,所述步骤S2中的墙面提取通过采用关联马尔可夫网络模型进行语义分割实现。
3.如权利要求2所述的基于线特征的室内外场景联合建模方法,其特征在于,所述步骤S2通过以下分步骤实现:
S21、基于八叉树将所述室内点云和室外点云分别划分成小块,获得点云分块,并对所述点云分块进行类别标注;
S22、利用FPFH特征和高度特征来描述点云分块;
S23、采用关联马尔可夫网络模型估计出点云分块的类别标签;
S24、将标记为墙面的点云分块进行合成,获得所述墙面点云。
4.如权利要求1-3任一项所述的基于线特征的室内外场景联合建模方法,其特征在于,所述步骤S3具体通过以下分步骤实现:
S31、对所述墙面点云进行超体素分割,对超体素的边缘进行直线拟合,获得直线段集合;
S32、利用k-means聚类算法在所述直线段集合中搜索潜在的门窗结构,进而提取出所述线结构体。
5.如权利要求1所述的基于线特征的室内外场景联合建模方法,其特征在于,所述步骤S4还包括以下分步骤:
S43、利用迭代最近点(ICP)算法来优化配准结果。
CN201810731060.9A 2018-07-05 2018-07-05 基于线特征的室内外场景联合建模方法 Active CN109147030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810731060.9A CN109147030B (zh) 2018-07-05 2018-07-05 基于线特征的室内外场景联合建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810731060.9A CN109147030B (zh) 2018-07-05 2018-07-05 基于线特征的室内外场景联合建模方法

Publications (2)

Publication Number Publication Date
CN109147030A CN109147030A (zh) 2019-01-04
CN109147030B true CN109147030B (zh) 2020-06-30

Family

ID=64799706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810731060.9A Active CN109147030B (zh) 2018-07-05 2018-07-05 基于线特征的室内外场景联合建模方法

Country Status (1)

Country Link
CN (1) CN109147030B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595446B (zh) * 2019-08-19 2021-12-24 广东领盛装配式建筑科技有限公司 一种基于虚拟靠尺的建筑实测实量方法及装置
CN110794413B (zh) * 2019-11-13 2021-11-16 湖北大学 线性体素分割的激光雷达点云数据电力线检测方法和系统
CN112330699B (zh) * 2020-11-14 2022-09-16 重庆邮电大学 一种基于重叠区域对齐的三维点云分割方法
CN113066112B (zh) * 2021-03-25 2021-10-22 泰瑞数创科技(北京)有限公司 一种基于三维模型数据的室内外融合方法及装置
CN113989447A (zh) * 2021-10-14 2022-01-28 重庆数字城市科技有限公司 一种三维模型室内外一体化构建方法及系统
CN113989376B (zh) * 2021-12-23 2022-04-26 贝壳技术有限公司 室内深度信息的获取方法、装置和可读存储介质
CN115526922B (zh) * 2022-11-28 2023-04-28 湖南大学 基于分块标签描述子的航空发动机叶片点云数据配准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779345A (zh) * 2012-07-03 2012-11-14 河海大学 一种基于重心欧氏距离的点云精确配准方法
CN106097324A (zh) * 2016-06-07 2016-11-09 中国农业大学 一种非刚体三维形状对应点确定方法
CN106408581A (zh) * 2016-09-12 2017-02-15 厦门大学 一种快速的三维点云直线提取方法
GB2550567A (en) * 2016-05-20 2017-11-29 Nokia Technologies Oy Point Cloud Matching Method
CN108022262A (zh) * 2017-11-16 2018-05-11 天津大学 一种基于点的邻域重心向量特征的点云配准方法
CN108133458A (zh) * 2018-01-17 2018-06-08 视缘(上海)智能科技有限公司 一种基于目标物体空间点云特征的自动拼接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779345A (zh) * 2012-07-03 2012-11-14 河海大学 一种基于重心欧氏距离的点云精确配准方法
GB2550567A (en) * 2016-05-20 2017-11-29 Nokia Technologies Oy Point Cloud Matching Method
CN106097324A (zh) * 2016-06-07 2016-11-09 中国农业大学 一种非刚体三维形状对应点确定方法
CN106408581A (zh) * 2016-09-12 2017-02-15 厦门大学 一种快速的三维点云直线提取方法
CN108022262A (zh) * 2017-11-16 2018-05-11 天津大学 一种基于点的邻域重心向量特征的点云配准方法
CN108133458A (zh) * 2018-01-17 2018-06-08 视缘(上海)智能科技有限公司 一种基于目标物体空间点云特征的自动拼接方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Automatic Alignment of Indoor and Outdoor Building Models using 3D Line》;Tobias Koch等;《2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops》;20161231;正文第1节第1-4段,图1 *
《基于迭代马尔科夫网络的室内三维点云语义标注研究》;林思远;《中国优秀硕士学位论文全文数据库 信息科技辑》;20140815(第8期);正文第1.1、3.2.1、4.1、5.1节,表3.2 *

Also Published As

Publication number Publication date
CN109147030A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109147030B (zh) 基于线特征的室内外场景联合建模方法
Paul et al. FAB-MAP 3D: Topological mapping with spatial and visual appearance
Dick et al. Modelling and interpretation of architecture from several images
Kohli et al. Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
US8798965B2 (en) Generating three-dimensional models from images
US7885463B2 (en) Image segmentation using spatial-color Gaussian mixture models
CN111899172A (zh) 一种面向遥感应用场景的车辆目标检测方法
Delmerico et al. Building facade detection, segmentation, and parameter estimation for mobile robot localization and guidance
CN102959946A (zh) 基于相关3d点云数据来扩充图像数据的技术
Stumm et al. Location graphs for visual place recognition
CN107978017A (zh) 基于框线提取的室内结构快速建模方法
Kohli et al. Dynamic graph cuts and their applications in computer vision
Koch et al. Real estate image analysis: A literature review
Koch et al. Automatic alignment of indoor and outdoor building models using 3D line segments
CN116449384A (zh) 基于固态激光雷达的雷达惯性紧耦合定位建图方法
Tian et al. Knowledge-based building reconstruction from terrestrial video sequences
CN112241676A (zh) 一种地形杂物自动识别的方法
Wang et al. A robust three-stage approach to large-scale urban scene recognition
Díaz et al. Lifting gis maps into strong geometric context for scene understanding
Liu et al. 3D point cloud segmentation using GIS
Xu et al. 3D Reconstruction of tree-crown based on the UAV aerial images
Xie et al. SMRD: A Local Feature Descriptor for Multi-modal Image Registration
Li et al. Geometric object based building reconstruction from satellite imagery derived point clouds
CN111291634B (zh) 基于卷积受限玻尔兹曼机的无人机图像目标检测方法
Costa et al. 3D Reconstruction of Satellite Data-Survey

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210721

Address after: 361000 Floor 9, No. 171, Tapu East Road, Siming District, Xiamen City, Fujian Province

Patentee after: Xiamen Sizhong Construction Co.,Ltd.

Address before: 361000 Siming South Road, Xiamen, Fujian Province, No. 422

Patentee before: XIAMEN University

TR01 Transfer of patent right