CN109141692A - 基于复频辨识的圆珠式三维电容压力传感器 - Google Patents

基于复频辨识的圆珠式三维电容压力传感器 Download PDF

Info

Publication number
CN109141692A
CN109141692A CN201811252044.8A CN201811252044A CN109141692A CN 109141692 A CN109141692 A CN 109141692A CN 201811252044 A CN201811252044 A CN 201811252044A CN 109141692 A CN109141692 A CN 109141692A
Authority
CN
China
Prior art keywords
shearing force
sensing electrode
crown layer
measurement
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811252044.8A
Other languages
English (en)
Inventor
余建平
张玉良
李欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quzhou University
Original Assignee
Quzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quzhou University filed Critical Quzhou University
Priority to CN201811252044.8A priority Critical patent/CN109141692A/zh
Publication of CN109141692A publication Critical patent/CN109141692A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Power Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种基于复频辨识的圆珠式三维电容压力传感器。剪切力测量单元置于正压力测量单元上,剪切力测量单元内装有测量圆珠;正压力测量单元从下至上依次主要由下极板层、绝缘层和上极板层层叠构成,下极板层和上极板层的铜电极之间具有间隙,两片铜电极构成正向压力测量电容单元;剪切力测量单位包括传感电极和PDMS圆柱体,PDMS圆柱体为固定在上极板层周围上的环形结构,PDMS圆柱体内设有两道环形凹槽,两道环形凹槽内均安装有一对镓铟锡合金传感电极,测量圆珠置于PDMS圆柱体中。本发明传感器采用基于复频辨识的测量方法,简化了传感器的结构,降低了加工难度与加工成本,可广泛应用于人体组织非功能性病变的诊断中。

Description

基于复频辨识的圆珠式三维电容压力传感器
技术领域
本发明涉及一种压力传感器,尤其是涉及一种基于复频辨识的圆珠式三维电容压力传感器。
背景技术
随着医学技术的发展,人体内部组织的病变选择通过微创的方式进行诊断以及手术可以有效降低手术风险、手术创伤,恢复效果以及恢复速度也大幅优于开放式手术。内窥镜技术是广泛应用于微创手术的一种技术,通过直接获取人体内部组织表面的图像信息,可以有效准确的对人体内部组织与器官的病变进行诊断以及手术,但该技术只能获取组织表面的信息,对于人体组织内部的早期病变并无实际效果。考虑到肿瘤细胞的早期生成主要位于人体组织与器官的内部,因此需要集成其他传感技术以更好的进行诊断。由于肿瘤的硬度明显大于正常人体组织,故往往应用触觉压力传感器进行人体组织与器官内部病变的早期诊断。
近年来,国内外已开展诸多触觉压力传感器的研究,尤其是基于电容的触觉压力传感器,并逐渐应用于人体组织非功能性病变的诊断中,但在使用过程中以下重点及难题不断突显:
1)传统的电容电极往往采用铜等金属材料,导电性能良好,但金属材料的硬度与刚度较高,微小的压力难以产生较为明显的形变,这直接导致传感器的灵敏度难以达到测量的要求;
2)多维压力的测量需要传感器搭配多组电容测量单元,但电容测量单元数量的增加将导致传感器结构的复杂性,不仅增加加工难度,而且复杂的传感器结构将导致测量信号之间相互干扰,影响测量精度。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于提供一种基于复频辨识的圆珠式三维电容压力传感器。
本发明解决其技术问题所采用的技术方案是:
所述的传感器主要由正压力测量单元、剪切力测量单元和测量圆珠组合而成,剪切力测量单元置于正压力测量单元上,剪切力测量单元内装有测量圆珠;正压力测量单元从下至上依次主要由下极板层、绝缘层和上极板层层叠构成,下极板层上表面和上极板层下表面中心均内嵌固定有铜电极,绝缘层为环形结构层并位于下极板层和上极板层周围之间,使得下极板层和上极板层的铜电极之间具有间隙,两片铜电极构成正向压力测量电容单元CS0;剪切力测量单位包括镓铟锡合金传感电极和PDMS圆柱体,PDMS圆柱体为固定在上极板层周围上的环形结构,PDMS圆柱体内设有两道环形凹槽,两道环形凹槽内均安装有一对镓铟锡合金传感电极,每个镓铟锡合金传感电极均为半环弧形结构且对称布置,两道环形凹槽内的一对镓铟锡合金传感电极对称布置方向相垂直正交;测量圆珠置于PDMS圆柱体中,PDMS圆柱体的上端内边缘设有内凸缘,内凸缘的径向尺寸小于测量圆珠的径向尺寸,使得测量圆珠不会从PDMS圆柱体中脱出。
两道环形凹槽中,位于内圈的一道环形凹槽内的一对镓铟锡合金传感电极引出作为压力传感器的两个输入端,位于外圈的一道环形凹槽内的一对镓铟锡合金传感电极引出作为压力传感器的两个输出端,输入端和输出端呈90°正交排列,恰构成四个结构完全相同的电容单元。,即位于内圈的一道环形凹槽内的一个镓铟锡合金传感电极和位于外圈的一道环形凹槽内的一个镓铟锡合金传感电极构成一个电容单元,由此两两镓铟锡合金传感电极能构成四个剪切力测量电容单元。
两道环形凹槽之间的PDMS圆柱体内部还设有环形空槽腔,两道环形凹槽内的镓铟锡合金传感电极均向下延伸接触到上极板层的上表面。
具体实施中,分布于内圈的传感电极Si1和Si2两片弧度为176度,内径5.6mm、厚度0.4mm、宽度3.5mm,作为输入端;分布于外圈的传感电极So1和So2两片弧度为176度,内径8.6mm,厚度0.4mm,宽度3.5mm,作为输出端。
剪切力的测量采用复合频率激励的方法,将圆柱体内侧的两片电极定义为输入端,圆柱体外侧的两片电极定义为输出端,输出端的两个传感电极均经各自的运算放大器后和两个中心频率不同的带通滤波器同步连接,向输入端的两个传感电极分别输入不同频率的激励信号,从输出端的两个传感电极分别输出剪切力信号,以实现两维剪切力的测量,具体为:输入端的第一个传感电极Si1和输出端的第一个传感电极So1之间形成的第一剪切力测量电容单元的电容量为CS1,输入端的第一个传感电极Si1和输出端的第二个传感电极So2之间形成的第二剪切力测量电容单元的电容量为CS2,输入端的第二个传感电极Si2和输出端的第二个传感电极So2之间形成的第三剪切力测量电容单元的电容量为CS3,输入端的第二个传感电极Si2和输出端的第一个传感电极So1之间形成的第四剪切力测量电容单元的电容量为CS4;向输入端的第一个传感电极Si1输入频率为f1的激励信号Ui1,向输入端的第二个传感电极Si2输入频率为f2的激励信号Ui2,输出端的第一个传感电极So1的输出信号包含一组频率为f1的与第一剪切力测量电容单元CS1相关的电压信号和一组频率为f2的与第四剪切力测量电容单元CS4相关的电压信号,输出端传感电极So2的输出信号包含一组频率为f1的与第二剪切力测量电容单元CS2相关的电压信号和一组频率为f2的与第三剪切力测量电容单元CS3相关的电压信号,再通过设置中心频率分别为f1和f2的带通滤波器从两个输出端分离出分别与四个剪切力测量电容单元CS1、CS2、CS3、CS4相关的四组剪切力测量谐波分量作为剪切力数据,由此实现仅需四个传感电极即可实现四组电容量的测量。
对于正向压力测量电容单元CS0,向一片铜电极输入单频的激励信号,从另一片铜电极输出电信号作为正向压力数据。
测量圆珠直接接触被测对象,采用耐腐蚀的合金材料加工而成,主要实现接触力的准确传递。
所述的剪切力测量单位为外径10mm、内径5mm、高度为4mm的PDMS圆柱体。
所述的铜电极的直径为6mm,厚度为0.5mm,绝缘层为外径10mm、内径7mm、高度为0.5mm的PDMS圆环。
所述测量圆珠为直径5mm的耐腐蚀金属合金球。
所述的下极板层与上极板层均为直径10mm、高度为1.5mm的硅橡胶(PDMS)圆柱体。
本发明通过实时探测五个电容单元CS0、CS1、CS2、CS3、CS4的电容量大小与传感器测量的正向压力/剪切力之间的比例关系,通过测量CS0,CS1,CS2,CS3,CS4的具体数值即可实现三维压力测量。
本发明具有的有益效果是:
1)应用镓铟锡合金电极代替铜电极,镓铟锡合金液态金属在常温为液体状态,通过注射成型的方法,降低加工难度,使得导电性能良好,提高传感器的灵敏度;
2)本发明采用复合频率激励方式,将两片传感电极定义为输入端,另两片传感电极定义为输出端,仅采用四片传感电极即可实现四组电容量的同步检测,解决多维信息量的检测引起系统结构的复杂化。
本发明传感器通过采用特殊传感结构和复频辨识方式,简化了传感器的结构,降低了加工难度与加工成本,可广泛应用于人体组织非功能性病变的诊断中。
附图说明
图1是本发明传感器结构示意图。
图2是本发明传感器结构分解图。
图3是本发明传感器剖视图。
图4是本发明剪切力测量单元仰视图。
图5是本发明剪切力测量方法工作原理图。
图6是本发明剪切力测量方法等效电路图。
图中:1、正压力测量单元,2、剪切力测量单元,3、测量圆珠,4、下极板层,5、绝缘层,6、上极板层,7、铜电极,8、镓铟锡合金传感电极,9、PDMS圆柱体,10、运算放大器,11、带通滤波器,12、内部电容,13、内部阻抗。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
具体实施的圆珠式三维电容压力传感器如图1所示,从下至上依次由正压力测量单元1、剪切力测量单元2和测量圆珠3组合而成。
如图2、图3所示,正压力测量单元1从下至上依次由下极板层4、绝缘层5、上极板层6构成,下极板层4与上极板层6均以硅橡胶(PDMS)材料为基底,且同为直径10mm,高度为1.5mm的圆柱体,其中,下极板层4的上表面和上极板层6的下表面涂覆有直径为6mm,厚度为0.5mm的铜电极,绝缘层5为外径10mm,内径7mm,高度为0.5mm的PDMS圆环,两片铜电极7构成正向压力测量电容CS0
正压力测量单元1中上极板层6的铜电极7的变形量如下式所示:
式中,pt表示被测瞬态压力值,a表示铜电极7半径,D表示上极板层6的抗挠刚度,x表示被测点的位置,w(x,pt)表示在被测点x位置处铜电极7在被测瞬态压力值作用下的变形量。
由式(1)得到,此时正压力测量单元1的电容值为:
式中,ε表示介电常数,g0表示正压力测量单元两片铜电极7的初始间距,θ表示极坐标下的角度量。
如图2、图3和图4所示,剪切力测量单位2为外径10mm,内径5mm,高度为4mm的PDMS圆柱体,下表面分布有四片圆弧结构的镓铟锡合金传感电极8,两片弧度为176度,内径5.6mm,厚度0.4mm的传感电极Si1和Si2分布于圆柱体内侧,作为输入端,两片弧度为176度,内径8.6mm,厚度0.4mm的传感电极So1和So2位于圆柱体外侧,作为输出端,由于镓铟锡合金为液态金属,因此加工过程中,首先采用微压印的技术加工出有与所述电极尺寸相同腔体的PDMS圆柱体9,再通过注射成型的方法将镓铟锡合金注入腔体中。待剪切力测量单元2加工完成,再通过光敏胶水将剪切力测量单元2的下表面安装于正向压力测量单元1的上表面。
测量圆珠3安装下剪切力测量单元2内,且直接接触被测对象,采用耐腐蚀的合金材料加工而成,主要实现接触力的准确传递。
如图4所示,由于剪切力测量单元2的输入端电极和输出端传感电极呈90°正交排列,构成四个结构完全相同的电容单元,初始电容量完全相同,可以得到输入端电极的表面电荷Q为:
其中,r表示输入端传感电极距离圆柱体圆心的距离,L表示输入端电极的宽度,σ表示输入端电极的电荷面密度,S表示输入端电极的面积大小,E表示电场强度,Φ表示电势;
从式(3)得到,输入端传感电极与输出端传感电极之间的电势差V为:
其中,R表示输出端传感电极距离圆柱体圆心的距离,△Φ表示电势差;
四个电容单元的电容量表示为:
式中,ε表示介电常数,r1、r2、r3、r4表示四个电容单元各自距离圆柱体圆心的距离。
初始状态时,r1、r2、r3、r4大小相同,在本发明中均为2.8mm,当剪切力作用于测量圆珠3时,根据剪切力方向和大小的不同,r1、r2、r3、r4大小将发生不同的变化,这直接引起剪切力测量单元2的四个电容单元电容量产生变化,具体而言,四个电容单元的电容量可表示为:
其中,kx、ky分别表示传感器在X-Y方向的的弹性系数,Fx、Fy分别表示X方向剪切力和Y方向剪切力;CS1和CS3和的大小忽略受Y方向剪切力影响,CS2和CS4忽略受X方向剪切力影响。为进一步提升测量精度,采用差分的方法,构造Cx和Cy,可以完全消除耦合误差的存在:
本发明在剪切力测量中仅使用了四片电极,并将两片传感电极定义为输入端,另两片传感电极定义为输出端,采用四片传感电极即可实现四组电容量的同步检测,解决多维信息量的检测引起系统结构的复杂化。
信号测量中采用以下复频检测,将圆柱体内侧的两片电极定义为输入端,圆柱体外侧的两片电极定义为输出端,输出端的两个传感电极均经各自的运算放大器后和两个中心频率不同的带通滤波器同步连接,向输入端的两个传感电极分别输入不同频率的激励信号,从输出端的两个传感电极分别输出剪切力信号,以实现两维剪切力的测量,具体为:输入端的第一个传感电极Si1和输出端的第一个传感电极So1之间形成的第一剪切力测量电容单元的电容量为CS1,输入端的第一个传感电极Si1和输出端的第二个传感电极So2之间形成的第二剪切力测量电容单元的电容量为CS2,输入端的第二个传感电极Si2和输出端的第二个传感电极So2之间形成的第三剪切力测量电容单元的电容量为CS3,输入端的第二个传感电极Si2和输出端的第一个传感电极So1之间形成的第四剪切力测量电容单元的电容量为CS4;向输入端的第一个传感电极Si1输入频率为f1的激励信号Ui1,向输入端的第二个传感电极Si2输入频率为f2的激励信号Ui2,输出端的第一个传感电极So1的输出信号包含一组频率为f1的与第一剪切力测量电容单元CS1相关的电压信号和一组频率为f2的与第四剪切力测量电容单元CS4相关的电压信号,输出端传感电极So2的输出信号包含一组频率为f1的与第二剪切力测量电容单元CS2相关的电压信号和一组频率为f2的与第三剪切力测量电容单元CS3相关的电压信号,再通过设置中心频率分别为f1和f2的带通滤波器从两个输出端分离出分别与四个剪切力测量电容单元CS1、CS2、CS3、CS4相关的四组剪切力测量谐波分量作为剪切力数据,由此实现仅需四个传感电极即可实现四组电容量的测量。
图5为基于复合频率激励的多组电容量辨识的等效电路,其中Ri代表运算放大器10的内部阻抗12,Ci代表运算放大器10的内部电容13。假设输入两组输入信号定义为:
其中,Ui1(f1)表示频率为f1的一组激励信号,ui1表示激励信号幅值,Ui2(f2)表示表示频率为f2的另一组激励信号,ui2表示激励信号幅值;
谐波分量US1可以以矢量形式求解为:
其中,Ri表示运算放大器10的内部阻抗大小,Csum1表示CS1和Ci的总和,ka表示功率放大器Amp1的增益,kf1代表带通滤波器Bp1的中心频率。US2,US3,US4可以用类似的方法推导出来。
考虑到放大器的高输入阻抗和电容式传感器的共同激励频率,电容单元的电容量计算为:
由此可见,电容单元的电容量与正向压力和剪切力密切关系,能实现X-Y-Z三维压力与剪切力的三维力测量,结构简洁,优点明显,可广泛应用于人体组织非功能性病变的诊断中。

Claims (8)

1.一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:
所述的传感器主要由正压力测量单元(1)、剪切力测量单元(2)和测量圆珠(3)组合而成,剪切力测量单元(2)置于正压力测量单元(1)上,剪切力测量单元(2)内装有测量圆珠(3);正压力测量单元(1)从下至上依次主要由下极板层(4)、绝缘层(5)和上极板层(6)层叠构成,下极板层(4)上表面和上极板层(6)下表面中心均内嵌固定有铜电极(7),绝缘层(5)为环形结构层并位于下极板层(4)和上极板层(6)周围之间,使得下极板层(4)和上极板层(6)的铜电极(7)之间具有间隙,两片铜电极(7)构成正向压力测量电容单元CS0;剪切力测量单位(2)包括镓铟锡合金传感电极(8)和PDMS圆柱体(9),PDMS圆柱体(9)为固定在上极板层(6)周围上的环形结构,PDMS圆柱体(9)内设有两道环形凹槽,两道环形凹槽内均安装有一对镓铟锡合金传感电极(8),每个镓铟锡合金传感电极(8)均为半环弧形结构且对称布置,两道环形凹槽内的一对镓铟锡合金传感电极(8)对称布置方向相垂直正交;测量圆珠(3)置于PDMS圆柱体(9)中,PDMS圆柱体(9)的上端内边缘设有内凸缘,内凸缘的径向尺寸小于测量圆珠(3)的径向尺寸,使得测量圆珠(3)不会从PDMS圆柱体(9)中脱出。
2.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:两道环形凹槽中,位于内圈的一道环形凹槽内的一对镓铟锡合金传感电极(8)引出作为压力传感器的两个输入端,位于外圈的一道环形凹槽内的一对镓铟锡合金传感电极(8)引出作为压力传感器的两个输出端,输入端和输出端呈90°正交排列,恰构成四个结构完全相同的电容单元。
3.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:两道环形凹槽之间的PDMS圆柱体(9)内部还设有环形空槽腔,两道环形凹槽内的镓铟锡合金传感电极(8)均向下延伸接触到上极板层(6)的上表面。
4.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:输出端的两个传感电极(8)均经各自的运算放大器(10)后和两个中心频率不同的带通滤波器(11)同步连接,向输入端的两个传感电极(8)分别输入不同频率的激励信号,从输出端的两个传感电极(8)分别输出剪切力信号,以实现两维剪切力的测量,具体为:输入端的第一个传感电极(8)Si1和输出端的第一个传感电极(8)So1之间形成的第一剪切力测量电容单元的电容量为CS1,输入端的第一个传感电极(8)Si1和输出端的第二个传感电极(8)So2之间形成的第二剪切力测量电容单元的电容量为CS2,输入端的第二个传感电极(8)Si2和输出端的第二个传感电极(8)So2之间形成的第三剪切力测量电容单元的电容量为CS3,输入端的第二个传感电极(8)Si2和输出端的第一个传感电极(8)So1之间形成的第四剪切力测量电容单元的电容量为CS4;向输入端的第一个传感电极(8)Si1输入频率为f1的激励信号Ui1,向输入端的第二个传感电极(8)Si2输入频率为f2的激励信号Ui2,输出端的第一个传感电极(8)So1的输出信号包含一组频率为f1的与第一剪切力测量电容单元CS1相关的电压信号和一组频率为f2的与第四剪切力测量电容单元CS4相关的电压信号,输出端传感电极(8)So2的输出信号包含一组频率为f1的与第二剪切力测量电容单元CS2相关的电压信号和一组频率为f2的与第三剪切力测量电容单元CS3相关的电压信号,再通过设置中心频率分别为f1和f2的带通滤波器从两个输出端分离出分别与四个剪切力测量电容单元CS1、CS2、CS3、CS4相关的四组剪切力测量谐波分量作为剪切力数据。
5.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:所述的剪切力测量单位(2)为外径10mm、内径5mm、高度为4mm的PDMS圆柱体。
6.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:所述的铜电极(7)的直径为6mm,厚度为0.5mm,绝缘层(5)为外径10mm、内径7mm、高度为0.5mm的PDMS圆环。
7.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:所述测量圆珠(3)为直径5mm的耐腐蚀金属合金球。
8.根据权利要求1所述的一种基于复频辨识的圆珠式三维电容压力传感器,其特征在于:所述的下极板层(4)与上极板层(6)均为直径10mm、高度为1.5mm的硅橡胶(PDMS)圆柱体。
CN201811252044.8A 2018-10-25 2018-10-25 基于复频辨识的圆珠式三维电容压力传感器 Pending CN109141692A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811252044.8A CN109141692A (zh) 2018-10-25 2018-10-25 基于复频辨识的圆珠式三维电容压力传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811252044.8A CN109141692A (zh) 2018-10-25 2018-10-25 基于复频辨识的圆珠式三维电容压力传感器

Publications (1)

Publication Number Publication Date
CN109141692A true CN109141692A (zh) 2019-01-04

Family

ID=64809691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811252044.8A Pending CN109141692A (zh) 2018-10-25 2018-10-25 基于复频辨识的圆珠式三维电容压力传感器

Country Status (1)

Country Link
CN (1) CN109141692A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039533A (zh) * 2019-04-17 2019-07-23 苏州柔性智能科技有限公司 用于检测水果成熟度的多功能软体机械手
CN111049510A (zh) * 2019-12-25 2020-04-21 维沃移动通信有限公司 触控按键、控制方法及电子设备
CN113768478A (zh) * 2021-09-08 2021-12-10 南京戎智信息创新研究院有限公司 一种压力传感检测装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039533A (zh) * 2019-04-17 2019-07-23 苏州柔性智能科技有限公司 用于检测水果成熟度的多功能软体机械手
CN111049510A (zh) * 2019-12-25 2020-04-21 维沃移动通信有限公司 触控按键、控制方法及电子设备
EP4084335A4 (en) * 2019-12-25 2023-01-18 Vivo Mobile Communication Co., Ltd. TOUCH KEY, CONTROL METHOD AND ELECTRONIC DEVICE
CN111049510B (zh) * 2019-12-25 2023-10-27 维沃移动通信有限公司 触控按键、控制方法及电子设备
CN113768478A (zh) * 2021-09-08 2021-12-10 南京戎智信息创新研究院有限公司 一种压力传感检测装置

Similar Documents

Publication Publication Date Title
Duan et al. A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials
CN109141692A (zh) 基于复频辨识的圆珠式三维电容压力传感器
CN102023771B (zh) 感测基板和位置检测装置
CN104407466B (zh) 一种显示基板、显示面板和显示装置
CN106092430B (zh) 一种梳齿电容式压力传感器
CN107966481B (zh) 一种基于复合电容式结构的材质识别传感器及其制备方法
CN214149645U (zh) 一种基于弹性布的柔性可穿戴压力传感器
EP3748321A1 (en) Contact sensor having multi-functional layer, electronic skin and smart robot
CN104316224A (zh) 基于电容与压敏橡胶组合的三维力触觉传感单元
CN101982864B (zh) 可变电容器的可动电极、压力传感器及血压测量设备
CN101915788A (zh) 用于多相流持液率测量的具有液体电极的电容式传感器
CN109323782A (zh) 一种非阵列式超级电容式触觉传感器及应用
CN114323355B (zh) 用于电容薄膜规的压力测量系统、方法及电容薄膜规
CN106293188A (zh) 一种触控面板
CN104634832A (zh) Cmos mems电容式湿度传感器及其制备方法
CN107962579B (zh) 一种机器人灵巧手及材质检测识别系统
CN108613758A (zh) 一种基于零泊松比结构的电容式触觉传感器
CN108814769A (zh) 传感器、系统、压力检测电路、方法和电子皮肤
CN110319971A (zh) 一种双极电容式真空计及其对应的测量电路
CN208780368U (zh) 一种基于复频辨识的圆珠式三维电容压力传感器
CN107595433B (zh) 一种人工智能皮肤及其检测湿度和温度的方法
CN108896235A (zh) 一种mems柔性锰铜-康铜复合式超高压力传感器及制造方法
CN205405473U (zh) 一种内嵌式触摸屏及显示装置
CN206441191U (zh) 一种智能终端、电容式指纹传感器及其感测模块
CN206161582U (zh) 一种电容型土壤湿度传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination