CN109141421A - 欠驱动auv水下动态目标跟踪中的期望路径构造方法 - Google Patents

欠驱动auv水下动态目标跟踪中的期望路径构造方法 Download PDF

Info

Publication number
CN109141421A
CN109141421A CN201810771536.1A CN201810771536A CN109141421A CN 109141421 A CN109141421 A CN 109141421A CN 201810771536 A CN201810771536 A CN 201810771536A CN 109141421 A CN109141421 A CN 109141421A
Authority
CN
China
Prior art keywords
auv
target point
target
point sequence
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810771536.1A
Other languages
English (en)
Inventor
李晔
孙叶义
曹建
王友康
姜言清
安力
何佳雨
周子烨
王汝鹏
崔林涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201810771536.1A priority Critical patent/CN109141421A/zh
Publication of CN109141421A publication Critical patent/CN109141421A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Abstract

本发明提供的是一种欠驱动AUV水下动态目标跟踪中的期望路径构造方法。首先根据交互多模型方法得到当前时刻目标位置的估计值,通过超短基线与双目视觉定位系统得到当前时刻目标位置的观测值,然后通过卡尔曼滤波得到当前时刻目标位置的最优估计值;选择AUV位置、所选历史目标点序列、当前时刻目标的最优估计值作为期望目标点序列;引入几何约束条件,根据期望目标点序列构造三次样条曲线,选择该样条曲线作为AUV跟踪的期望路径曲线。该方法可以实时更新期望路径曲线,提高AUV应对目标不确定性以及瞬时干扰的影响,提高跟踪快速性和精度。

Description

欠驱动AUV水下动态目标跟踪中的期望路径构造方法
技术领域
本发明涉及的是一种水下航行器控制方法,具体地说是一种欠驱动AUV的期望路径构造方法。
背景技术
智能水下无人航行器(Autonomous Underwater Vehicle,AUV)作为高技术水下无人平台,在资源开发、海洋科学、水下救援等领域发挥了重要作用,成为各国重点发展的新型装备。
AUV的研究与应用是一个系统性工程,包括任务规划、方案设计、样机研制、布放与回收等,其中回收技术是实现AUV安全连续作业的关键技术。AUV通常自身携带能源工作,在任务完成后需要通过回收来完成补充能源、下载数据、设备检修等一系列操作。目前主要的回收方式包括水面母船回收和水下对接回收。水下对接回收通过AUV与固定或者移动的回收装置实现类似空/天对接的过程,使AUV完成返航、接近、对接、锁紧等一系列动作,具备自主、无人等优点,具有广阔的发展前景,在这种背景下,AUV的水下自主回收对接技术成为了国内外的一个研究热点。要实现AUV与母艇的动态对接,首先要保证AUV准确跟踪移动母艇的运动,也就是欠驱动AUV的动态目标跟踪问题。
目前现有技术中,对路径的光滑性和约束进行了一定的改进,但较难实现三维路径的跟踪,并且对于目标机动性的研究不够深入。欠驱动AUV水下目标跟踪中,由于海流干扰以及应急机动的影响,目标的运动存在机动性。并且由于各种约束的存在,如果单纯将跟踪方向指向当前目标,可能产生欠驱动AUV不能达到的运动状态。所以提出一种适用于欠驱动AUV水下动态目标跟踪的期望路径规划方法对于改善跟踪品质,提高对接成功率具有重要意义。
发明内容
本发明的目的在于提供一种可以实时更新期望路径曲线,提高AUV应对目标不确定性以及瞬时干扰的影响,提高跟踪快速性和精度的欠驱动AUV水下动态目标跟踪中的期望路径构造方法。
本发明的目的是这样实现的:
步骤一:基于交互多模型得到当前时刻目标位置的估计值;通过超短基线(USBL)和双目视觉定位系统得到当前时刻目标位置的观测值;根据得到估计值和观测值,通过卡尔曼滤波得到当前时刻目标位置的最优估计值;
步骤二:将当前时刻AUV位置与目标位置的最优估计值之间的部分或全部历史目标点作为所选历史目标点序列,选择当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置的最优估计值作为期望目标点序列;在所选期望目标点序列的基础上,引入几何约束条件,形成一条光滑的三次样条曲线路径;
步骤三:选择步骤二中的三次样条曲线路径作为当前时刻的期望路径,随着时间的推移,通过步骤一、步骤二期望路径不断更新。
本发明还可以包括:
1、设在k时刻,将AUV尚未经过的历史目标点位置信息作为已知信息,设历史目标点序列为(ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1),即AUV尚未经过的历史目标点的数目为n,当AUV距离目标较远、即n≥10时,取首端和末端各5个点,即
(ak-n,ak-n+1,ak-n+2,ak-n+3,ak-n+4,ak-5,ak-4,ak-3,ak-2,ak-1)为所选历史目标点序列,此时期望目标点序列为当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置最优估计值,共12个点;当AUV距离目标较近、即n<10时,则所选历史目标点序列为
(ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1),此时期望目标点序列为当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置最优估计值,共n+2个点,,其中ai=(ξiii)表示大地坐标系下点的位置坐标,设期望目标点序列数目为m、其序列为(p1,p2,...,pm),则表示为:
当n≥10时,m=12;
(p1,p2,...,pm)=(aAUV,ak-n,ak-n+1,ak-n+2,ak-n+3,ak-n+4,ak-5,ak-4,ak-3,ak-2,ak-1,ak)当n<10时,m=n+2;
(p1,p2,...,pm)=(aAUV,ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1,ak)。
2、三次样条曲线的几何约束包括起始约束与末段约束:
起始段约束要求路径在ηAUV处的切线方向与当前时刻的AUV艏向一致,且以当前时刻AUV的位置为路径起点,即:
其中:p1为第一个期望目标点,(ξAUVAUVAUV)表示当前时刻AUV的坐标,表示路径曲线在起点处的斜率,ψ表示AUV的艏向向量,α为正实数;
末段约束要求所规划路径的期望艏向不超过坞站锥形开角的一半,且以当前时刻目标位置为路径终点,即
其中:pm为最后一个期望目标点,(ξkkk)表示当前时刻目标的坐标,α坞站为坞站锥形开角大小,ψ为AUV艏向角。
本发明提供了一种欠驱动AUV水下动态目标跟踪中的期望路径构造方法。针对水下AUV与母艇的非合作式动态对接需求,考虑到母艇的运动状态存在机动性以及干扰的存在,提出了一种期望路径设计方法。首先根据交互多模型方法得到当前时刻目标位置的估计值,通过超短基线与双目视觉定位系统得到当前时刻目标位置的观测值,然后通过卡尔曼滤波得到当前时刻目标位置的最优估计值;选择AUV位置、所选历史目标点序列、当前时刻目标的最优估计值作为期望目标点序列;引入几何约束条件,根据期望目标点序列构造三次样条曲线,选择该样条曲线作为AUV跟踪的期望路径曲线。该方法可以实时更新期望路径曲线,提高AUV应对目标不确定性以及瞬时干扰的影响,提高跟踪快速性和精度。
与现有技术相比,本发明的有益效果是:利用目标运动的“记忆性”,将历史目标点序列引入到期望路径设计中,并考虑了路径设计中几何约束条件,使所设计的期望路径更利于欠驱动AUV的运动,同时对目标运动状态的估计更加准确,提高了跟踪精度,节省了时间。
附图说明
图1是本发明的流程图;
图2是本发明的目标跟踪示意图;
图3是本发明的仿真数据之三次样条曲线。
具体实施方式
下面举例对本发明做更详细的描述。
结合图1:
1.当开始执行目标跟踪时,在当前时刻,首先通过交互多模型方法得到运动目标的位置估计值,同时通过定位系统(包括超短基线USBL和双目视觉定位系统)得到当前时刻目标位置的测量值;根据卡尔曼滤波原理的到此时目标位置的最优估计值。
2.下一步是选择期望目标点序列,该序列由三部分组成:分别是当前时刻AUV位置,步骤1求得的目标位置最优估计值和所选历史目标点序列。
3.期望目标点序列后,根据这么目标点构造一条三次样条曲线,且构造过程基于引入的几何约束条件。
4.通过步骤1.2.3得到的三次样条曲线即期望跟踪路径,当时间进入到下一时刻时,继续从头执行该算法。
如图2所示,针对AUV 1与母艇5的对接过程,将坞站3安装在母艇5的背部,通过AUV1对坞站4的跟踪,AUV 1进入坞站4完成对接。视坞站4为被动目标,当要执行对接任务时,母艇5将返回对接海域,并做低速运动,其运动模型由交互多模型方法给出。AUV 1为主动体,通过控制AUV 1沿着期望的路径运动以实现对接的目的,期望路径通过以下步骤实现:
(1)首先选择常速度模型、水平常速度转弯模型以及Singer模型为交互多模型子系统,各模型之间的转移由马尔可夫概率转移矩阵确定,得到当前时刻目标位置的预测值。
(2)通过AUV 1与母艇5所配备的定位系统获得当前时刻坞站4位置的观测值。具体技术手段为:远距离跟踪阶段2采用声学定位技术,传感器为超短基线系统USBL(作用距离:2000m,测距精度:2%斜距,目标方位测量精度:±2°),AUV 1上搭载有USBL水听器,坞站4上搭载USBL信标。为保证母艇5自身的安全,只有AUV 1上的水听器会主动发声,坞站4上的信标只做应答响应。对于近距离对接阶段3,当光源进入摄像机视觉范围后,定位技术切换为光视觉定位,光视觉定位传感器为水下摄像机(作用距离:0.5m-30m,定位精度:厘米级)。在AUV 1艏部设置1部下视摄像机和1部与水平呈45°的前下视摄像机,坞站4上搭载规则布置的点光(水下540nm绿光LED灯)源。
(3)通过步骤(1)(2)得到当前时刻目标位置的估计值和观测值后,通过卡尔曼滤波得到当前时刻目标位置的最优观测值。
(4)选择步骤(3)中的最优观测值、AUV当前位置与所选历史目标点序列作为路径设计的期望目标点序列。历史目标点序列的选取规则为:假设在k时刻,将AUV尚未经过的历史目标点位置信息作为已知信息,设历史目标点序列为(ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1),即AUV尚未经过的历史目标点的数目为n。当AUV距离目标较远时,若n≥10,则取首端和末端各5个点,即(ak-n,ak-n+1,ak-n+2,ak-n+3,ak-n+4,ak-5,ak-4,ak-3,ak-2,ak-1)为所选历史目标点序列,此时期望目标点序列为当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置最优估计值,共12个点;当AUV距离目标较近时,若n<10,则所选历史目标点序列为(ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1),此时期望目标点序列为当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置最优估计值,共n+2个点,,其中ai=(ξiii)表示大地坐标系下点的位置坐标。设期望目标点序列数目为m,其序列为(p1,p2,...,pm),则可以表示为:
当n≥10时,m=12。
(p1,p2,...,pm)=(aAUV,ak-n,ak-n+1,ak-n+2,ak-n+3,ak-n+4,ak-5,ak-4,ak-3,ak-2,ak-1,ak)当n<10时,m=n+2。
(p1,p2,...,pm)=(aAUV,ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1,ak)
(5)根据步骤(4)所得到的期望目标点序列,引入构造三次样条曲线的几何约束包括起始约束与末段约束:
起始段约束要求路径在ηAUV处的切线方向与当前时刻的AUV艏向一致,且以当前时刻AUV的位置为路径起点。即:
其中:p1为第一个期望目标点,(ξAUVAUVAUV)表示当前时刻AUV的坐标,表示路径曲线在起点处的斜率,ψ表示AUV的艏向向量,α为正实数。
末段约束要求所规划路径的期望艏向不超过坞站锥形开角的一半,且以当前时刻目标位置为路径终点,即
其中:pm为最后一个期望目标点,(ξkkk)表示当前时刻目标的坐标,α坞站为坞站锥形开角大小,ψ为AUV艏向角。
(6)根据步骤(4)选定的期望目标点序列以及步骤(5)所引入的约束条件,三次样条曲线设计如下:
以仿真数据为例,如图3所示,已知期望目标点序列数目为9,其序列为(p1,p2,...,p9),设曲线为三次样条曲线,则可以得到三次样条曲线的表达式为:
Pi(t)=∑pi·F(t) i=1,2,...,8
其中:Pi(t)为路径的分段表示形式,表示路径的第i段曲线,Pi(t)|t=0表示分段曲线的起点,Pi(t)|t=1表示分段曲线的终点,pi表示第i段曲线的控制点,F(t)为三次样条的基函数。

Claims (3)

1.一种欠驱动AUV水下动态目标跟踪中的期望路径构造方法,其特征是:
步骤一:基于交互多模型得到当前时刻目标位置的估计值;通过超短基线和双目视觉定位系统得到当前时刻目标位置的观测值;根据得到估计值和观测值,通过卡尔曼滤波得到当前时刻目标位置的最优估计值;
步骤二:将当前时刻AUV位置与目标位置的最优估计值之间的部分或全部历史目标点作为所选历史目标点序列,选择当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置的最优估计值作为期望目标点序列;在所选期望目标点序列的基础上,引入几何约束条件,形成一条光滑的三次样条曲线路径;
步骤三:选择步骤二中的三次样条曲线路径作为当前时刻的期望路径,随着时间的推移,通过步骤一、步骤二期望路径不断更新。
2.根据权利要求1所述的欠驱动AUV水下动态目标跟踪中的期望路径构造方法,其特征是:设在k时刻,将AUV尚未经过的历史目标点位置信息作为已知信息,设历史目标点序列为(ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1),即AUV尚未经过的历史目标点的数目为n,当AUV距离目标较远、即n≥10时,取首端和末端各5个点,即(ak-n,ak-n+1,ak-n+2,ak-n+3,ak-n+4,ak-5,ak-4,ak-3,ak-2,ak-1)为所选历史目标点序列,此时期望目标点序列为当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置最优估计值,共12个点;当AUV距离目标较近、即n<10时,则所选历史目标点序列为(ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1),此时期望目标点序列为当前时刻AUV位置、所选历史目标点序列、当前时刻目标位置最优估计值,共n+2个点,,其中ai=(ξiii)表示大地坐标系下点的位置坐标,设期望目标点序列数目为m、其序列为(p1,p2,...,pm),则表示为:
当n≥10时,m=12;
(p1,p2,...,pm)=(aAUV,ak-n,ak-n+1,ak-n+2,ak-n+3,ak-n+4,ak-5,ak-4,ak-3,ak-2,ak-1,ak)当n<10时,m=n+2;
(p1,p2,...,pm)=(aAUV,ak-n,ak-n+1,ak-n+2,...,ak-3,ak-2,ak-1,ak)。
3.根据权利要求1或2所述的欠驱动AUV水下动态目标跟踪中的期望路径构造方法,其特征是:三次样条曲线的几何约束包括起始约束与末段约束,
起始段约束要求路径在ηAUV处的切线方向与当前时刻的AUV艏向一致,且以当前时刻AUV的位置为路径起点,即:
其中:p1为第一个期望目标点,(ξAUVAUVAUV)表示当前时刻AUV的坐标,表示路径曲线在起点处的斜率,ψ表示AUV的艏向向量,α为正实数;
末段约束要求所规划路径的期望艏向不超过坞站锥形开角的一半,且以当前时刻目标位置为路径终点,即
其中:pm为最后一个期望目标点,(ξkkk)表示当前时刻目标的坐标,α坞站为坞站锥形开角大小,ψ为AUV艏向角。
CN201810771536.1A 2018-07-13 2018-07-13 欠驱动auv水下动态目标跟踪中的期望路径构造方法 Pending CN109141421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810771536.1A CN109141421A (zh) 2018-07-13 2018-07-13 欠驱动auv水下动态目标跟踪中的期望路径构造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810771536.1A CN109141421A (zh) 2018-07-13 2018-07-13 欠驱动auv水下动态目标跟踪中的期望路径构造方法

Publications (1)

Publication Number Publication Date
CN109141421A true CN109141421A (zh) 2019-01-04

Family

ID=64800719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810771536.1A Pending CN109141421A (zh) 2018-07-13 2018-07-13 欠驱动auv水下动态目标跟踪中的期望路径构造方法

Country Status (1)

Country Link
CN (1) CN109141421A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828458A (zh) * 2019-02-26 2019-05-31 中国海洋大学 一种波浪滑翔器路径跟踪控制方法
CN111174790A (zh) * 2019-12-03 2020-05-19 河海大学 一种地形剖面跟踪路径的形成方法
CN111347423A (zh) * 2020-01-19 2020-06-30 天津大学 工业机器人传送带动态跟踪涂胶方法
CN112486168A (zh) * 2020-11-19 2021-03-12 哈尔滨工程大学 一种基于回转圆的移动式对接轨迹规划方法
CN113984045A (zh) * 2021-10-13 2022-01-28 湖南航天机电设备与特种材料研究所 水下机器人移动式对接目标运动状态估计方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768539A (zh) * 2012-06-26 2012-11-07 哈尔滨工程大学 基于迭代的自主水下航行器三维曲线路径跟踪控制方法
CN105501415A (zh) * 2015-12-15 2016-04-20 浙江大学 一种用于深海auv入坞的末端自动对接装置及方法
CN106950974A (zh) * 2017-04-19 2017-07-14 哈尔滨工程大学 欠驱动自主水下航行器的对三维路径进行理解及跟踪控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768539A (zh) * 2012-06-26 2012-11-07 哈尔滨工程大学 基于迭代的自主水下航行器三维曲线路径跟踪控制方法
CN105501415A (zh) * 2015-12-15 2016-04-20 浙江大学 一种用于深海auv入坞的末端自动对接装置及方法
CN106950974A (zh) * 2017-04-19 2017-07-14 哈尔滨工程大学 欠驱动自主水下航行器的对三维路径进行理解及跟踪控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
姜言清: "AUV回收控制的关键技术研究", 《中国优秀博硕士学位论文全文数据库(博士)·工程科技Ⅱ辑》 *
孙叶义等: "海流干扰下海洋观测平台动力定位", 《机器人》 *
李晔等: "考虑几何约束的AUV回收路径规划", 《机器人》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828458A (zh) * 2019-02-26 2019-05-31 中国海洋大学 一种波浪滑翔器路径跟踪控制方法
CN111174790A (zh) * 2019-12-03 2020-05-19 河海大学 一种地形剖面跟踪路径的形成方法
CN111347423A (zh) * 2020-01-19 2020-06-30 天津大学 工业机器人传送带动态跟踪涂胶方法
CN111347423B (zh) * 2020-01-19 2022-08-05 天津大学 工业机器人传送带动态跟踪涂胶方法
CN112486168A (zh) * 2020-11-19 2021-03-12 哈尔滨工程大学 一种基于回转圆的移动式对接轨迹规划方法
CN112486168B (zh) * 2020-11-19 2022-05-20 哈尔滨工程大学 一种基于回转圆的移动式对接轨迹规划方法
CN113984045A (zh) * 2021-10-13 2022-01-28 湖南航天机电设备与特种材料研究所 水下机器人移动式对接目标运动状态估计方法及系统
CN113984045B (zh) * 2021-10-13 2024-01-16 湖南航天机电设备与特种材料研究所 水下机器人移动式对接目标运动状态估计方法及系统

Similar Documents

Publication Publication Date Title
Li et al. AUV docking experiments based on vision positioning using two cameras
CN109141421A (zh) 欠驱动auv水下动态目标跟踪中的期望路径构造方法
Wang et al. Roboat: An autonomous surface vehicle for urban waterways
Wang et al. Visual navigation and docking for a planar type AUV docking and charging system
CN109238291B (zh) 一种水面无人船导引缆回收自主水下航行器的规划方法
Corke et al. Experiments with underwater robot localization and tracking
Mandić et al. Underwater object tracking using sonar and USBL measurements
CN109521797A (zh) 无人船引导水下航行器群的优化割草型编队控制方法
CN104881045A (zh) 嵌入式视觉引导下仿生机器鱼三维追踪控制方法
Page et al. Underwater docking approach and homing to enable persistent operation
Liu et al. A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm
Liu et al. Ocean explorations using autonomy: Technologies, strategies and applications
Esteba et al. Docking of non-holonomic AUVs in presence of ocean currents: A comparative survey
Sans-Muntadas et al. Spiral path planning for docking of underactuated vehicles with limited FOV
Sujit et al. AUV docking on a moving submarine using a KR navigation function
Zhang et al. An underwater docking system based on UUV and recovery mother ship: design and experiment
CN112880678A (zh) 一种复杂水域环境中无人艇航行规划方法
Page et al. AUV docking and recovery with USV: An experimental study
Inzartsev et al. Detection and inspection of local bottom objects with the help of a group of special-purpose AUVs
CN112987798A (zh) 基于声光联合导引重型auv动/静态目标自主对接方法
Yu et al. Underwater cable tracking control of under-actuated AUV
Zhang et al. Subsea cable tracking by a 5-DOF AUV
CN112034866B (zh) 一种水下机器人跟踪制导的方法及装置
Zhang et al. Terminal stage guidance method for underwater moving rendezvous and docking based on monocular vision
CN108170976B (zh) 一种水下潜艇动态回收auv过程中的安全性分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104