CN109133550B - 一种污泥厌氧消化产甲烷同步降解菲的方法 - Google Patents

一种污泥厌氧消化产甲烷同步降解菲的方法 Download PDF

Info

Publication number
CN109133550B
CN109133550B CN201811047431.8A CN201811047431A CN109133550B CN 109133550 B CN109133550 B CN 109133550B CN 201811047431 A CN201811047431 A CN 201811047431A CN 109133550 B CN109133550 B CN 109133550B
Authority
CN
China
Prior art keywords
phenanthrene
sludge
anaerobic digestion
anaerobic
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811047431.8A
Other languages
English (en)
Other versions
CN109133550A (zh
Inventor
周俊
林超霸
费吉东
雷继萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201811047431.8A priority Critical patent/CN109133550B/zh
Publication of CN109133550A publication Critical patent/CN109133550A/zh
Application granted granted Critical
Publication of CN109133550B publication Critical patent/CN109133550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/006Electrochemical treatment, e.g. electro-oxidation or electro-osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种污泥厌氧消化产甲烷同步降解菲的方法。该方法包括以下步骤:将含有菲的污泥加入厌氧消化反应器中,接种产甲烷厌氧驯化污泥,在厌氧反应器中加入电解电极,在电极两端施加直流电压,并加入菲厌氧降解菌,搅拌使反应体系混合均匀,同时控制发酵温度进行厌氧消化反应,直至发酵周期结束。本发明结合厌氧消化和电化学系统的特点,反应体系中电化学反应与污泥厌氧消化耦合,向体系中添加菲降解菌以去除污泥中的菲,所述方法能有效地降解污泥中菲同时能提高厌氧消化产甲烷的效率,减小菲对环境的危害,提高污泥资源化利用效率,具有良好的经济和环境效益。

Description

一种污泥厌氧消化产甲烷同步降解菲的方法
技术领域
本发明属于环境保护及难降解有机污染物处理技术领域,涉及一种促进污泥厌氧消化产甲烷同步降解菲的方法。
背景技术
随着全球经济的飞速发展,环境及能源问题接踵而至。从而能在保护环境的同时解决能源问题的方法将倍受关注。城市污泥是一种优质的低劣生物质资源,我国每天产生污泥量超过10万吨(含水率80%),其中含有大量的可利用有机质,同时携带着污水中85%以上的有毒有害物质,其中最典型的一类有机污染物即为多环芳烃。
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs),是指两个或两个以上的苯环以链状、角状或串状排列组成的化合物,是有机质不完全燃烧或高温裂解的副产品。多环芳烃是一类广泛分布并稳定存在于自然环境中的有机污染物,具有高毒性、高生物富集性和难降解等特点。其中菲属于比较简单的低分子量PAHs,同时具有“K区”及“湾区”的最小单元,是极具代表性的一种多环芳烃。菲在环境中检出浓度一般比较高,且作为优先控制的多环芳烃类物质,菲降解的研究对于多环芳烃类物质的环境治理具有重要意义。
目前,不少研究者已在厌氧条件下筛选出菲降解菌,但是单一菌株降解菲的效率不高,并且在自然界中的菲所处环境复杂,因此通过污泥厌氧消化去除污泥中菲同时产清洁能源沼气是实现污泥的减量化、稳定化、资源化、无害化处置的有效方式之一。为保证污泥安全土地利用,需提高污泥厌氧消化降解菲的效率,控制菲含量。
生物电化学系统(Bioelectrochemical systems,BES)作为一种新型的产电产能并同步处理有机废水的技术,近年来逐渐引起了人们的广泛关注,并跃升成为一个研究热点。生物电化学在污泥厌氧消化过程中能为整个体系永久提供电子及接受电子,弥补还原力不足的缺陷。将污泥厌氧消化与电化学氧化/还原相结合是通过供应电子作为生物催化剂在阳极和阴极间传递,从而促进有机物的降解。
发明内容
本发明的目的在于克服现有技术中菲降解的效率不高的缺陷,提供一种促进污泥厌氧消化产甲烷同步降解菲的方法。所述的方法利用电化学与污泥厌氧消化耦合,同时向体系内添加菲降解菌以去除污泥中的菲,提高菲的降解率及合成甲烷的产率,同时解决污泥的处置问题,保护环境。
为实现上述发明目的,本发明采用以下技术方案:
一种污泥厌氧消化产甲烷同步降解菲的方法,其特征在于:将含有菲的污泥装入厌氧反应器中,接种产甲烷厌氧驯化污泥,在厌氧反应器中加入电解电极,在电极两端施加直流电压,并加入菲厌氧降解菌,搅拌使反应体系混合均匀,同时控制发酵温度进行厌氧消化反应,直至发酵周期结束。
所述方法中,外加直流稳压电源和加入菲厌氧降解菌同步进行,反应体系中电化学反应与污泥厌氧消化耦合,向体系中添加菲厌氧降解菌可以去除污泥中的菲,提高菲的降解率及合成甲烷的产率。
所述方法中,产甲烷厌氧驯化污泥接种量优选为20%~30%(体积比)。
所述方法中,菲厌氧降解菌可以选自现有技术中已知的厌氧条件下的菲降解菌或Clostridium sp.LZ25,菲降解菌优选为Clostridium sp.LZ25,所述的菲降解菌为梭状芽孢杆菌,其分类命名为Clostridium sp.LZ25,已保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC),保藏编号为:CGMCC NO:15046(保藏日期为:2017年12月11日,保藏地址为:中国.北京.中国科学院微生物研究所,朝阳区北辰西路1号院3号)。菲厌氧降解菌其投加量优选为107~109CFU/g干泥。
所述方法中,厌氧消化温度优选控制为(38±1)℃。
所述方法中,电极两端的直流电压优选为0.4~1.0V。
所述方法中,电解电极阳极的电极材料采用碳毡、碳棒、石墨等材料;阴极的电极材料采用碳纸、碳毡、钛网、不锈钢网等材料。优选阳极为碳毡,阴极为碳纸。
本发明有益效果:本发明采用电化学与污泥厌氧消化耦合体系,在体系中加菲降解菌,特别是Clostridium sp.LZ25实现对菲的高效率降解及甲烷的高效率合成,所述方法结合电化学与厌氧消化的特点,将污泥厌氧消化与MEC(Microbial Electrolysis Cell,微生物电解池)耦合相互促进,能显著提高甲烷合成效率;将菲降解菌应用在污泥厌氧消化体系中,显著提高菲的降解效率。本发明能有效促进污泥中有机污染物,同时利用污泥中有机质合成清洁能源甲烷,具有良好的经济、环保效益。
具体地,与传统污泥厌氧消化降解菲相比其主要优势体现在:
1)本发明利用电化学与菲降解菌厌氧消化耦合极大地促进污泥中菲的降解效率,并且适用于降解其他多环芳烃,对如何高效去除污泥中难降解有机污染物提供新思路。
2)本发明适用于大幅提高其他原料厌氧消化合成甲烷效率,实现对废弃物的高效利用。
3)电化学与污泥厌氧消化耦合不会造成二次污染,并且使污泥减量化,节约污泥处置成本。
4)污泥厌氧消化过程中可能缺乏对难降解有机污染物的还原力,而在电化学的帮助下能有效的弥补所缺的还原力。
附图说明
图1是本发明的电化学与污泥厌氧消化耦合的实验装置示意图。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由权利要求书来确定。
实施例1
一种促进污泥厌氧消化产甲烷同步降解菲的方法,具体步骤如下:
1.实验装置
如图1所示,污泥厌氧消化装置采用1L厌氧瓶,瓶中部及底部都设有取样口,在厌氧瓶中插入一对电解电极,电解电极外接直流恒压电源,提供电压为0.8V。阴极为碳毡,阳极为碳毡,电极大小均为3cm*6cm,阴阳极控制距离为3cm。实验采用排水集气法检测每日产气量。
2.实验运行
厌氧消化瓶中产甲烷厌氧驯化泥接种量为20%,控制菲含量为20mg/L,向电化学与污泥厌氧耦合消化体系中投加菲降解菌Clostridium sp.LZ25,投加量为109CFU/g干泥,充氮气除氧后用硅胶密封。机械搅拌使反应体系混合均匀,在38℃恒温培养箱中进行厌氧消化反应。每天对排水量及甲烷浓度进行检测,消化结束后,收集厌氧消化污泥,测定其中菲含量。
3.污泥样品处理
样品冷冻干燥后,经过100目钢筛筛分。称取样品0.5g污泥样品,以及等量干燥后无水硫酸钠于玻璃离心瓶中,加入10mL正己烷和10mL二氯甲烷,斡旋5min,超声1h,2000r离心10min后将上清液过层析柱从上向下依次经过无水硫酸钠(2cm)、硅胶(10cm)、无水硫酸钠(2cm)填充的层析柱进行净化。然后重复上述步骤对污泥样品二次提取,提取液经过旋转蒸发干,用内标定容至2mL,仪器待测。
4.污泥样品检测
使用高效液相色谱法测定菲,色谱柱使用安捷伦ZORBAX Eclipse PAH柱(4.6*250mm)波长254nm,柱温30℃,流动相为甲醇,流速0.8mL/min,淋洗时间为10min。
按照以上步骤,进行电化学与污泥厌氧消化耦合产甲烷同步降解菲的实验。
结果表明,实验组中甲烷总产气量为5845mL,污泥中菲的降解效率为63.8%。
实施例2
按照与实施例1基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:厌氧瓶中插入的阴极电极更换为钛网进行实验。
实验组中甲烷总产气量为5655mL,污泥中菲的降解效率为59.3%。
实施例3
按照与实施例1基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:厌氧瓶中插入的阴极电极更换为不锈钢网进行实验。
实验组中甲烷总产气量为6152mL,污泥中菲的降解效率为64.0%。
实施例4
按照与实施例1基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:厌氧瓶中插入的阴极电极更换为碳纸进行实验。
实验组中甲烷总产气量为6724mL,污泥中菲的降解效率为72.5%。
实施例5
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:厌氧瓶中插入的阳极电极更换为碳棒进行实验。
实验组中甲烷总产气量为6610mL,污泥中菲的降解效率为71.3%。
实施例6
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:厌氧瓶中插入的阳极电极更换为石墨进行实验。
实验组中甲烷总产气量为6599mL,污泥中菲的降解效率为70.9%。
实施例7
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:直流稳压电源提供电压更换为0.4V。
实验组中甲烷总产气量为6531mL,污泥中菲的降解效率为68%。
实施例8
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:直流稳压电源提供电压更换为0.6V。
实验组中甲烷总产气量为6649mL,污泥中菲的降解效率为72.0%。
实施例9
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:直流稳压电源提供电压更换为1.0V。
实验组中甲烷总产气量为6660mL,污泥中菲的降解效率为71.1%。
实施例10
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:菲降解菌Clostridium sp.LZ25投加量更改为108CFU/g干泥。
实验组中甲烷总产气量为6632mL,污泥中菲的降解效率为69.5%。
实施例11
按照与实施例4基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:菲降解菌Clostridium sp.LZ25投加量更改为107CFU/g干泥。
实验组中甲烷总产气量为6599mL,污泥中菲的降解效率为66.3%。
实施例12
按照与实施例5基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:菲降解菌Clostridium sp.LZ25更改为Klebsiellapneumoniae strain LZ6。
实验组中甲烷总产气量为6675mL,污泥中菲的降解效率为65.6%。
对比例1
污泥厌氧消化装置采用1L厌氧瓶,驯化泥接种量为20%,控制菲含量为20mg/L,充氮气除氧后用硅胶密封。机械搅拌使反应体系混合均匀,在38℃恒温培养箱中进行厌氧消化反应。每天对排水量及甲烷浓度进行检测,消化结束后,收集厌氧消化污泥,测定其中菲含量。
按照该步骤,进行污泥厌氧消化产甲烷同步降解菲的对照试验。
对照组中甲烷总产气量为4869mL,污泥中菲的降解效率为28.5%。
对比例2
按照与对比例1基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:向污泥厌氧消化体系中投加菲降解菌Clostridium sp.LZ25,投加量为109CFU/g干泥。
对照组中甲烷总产气量为5126mL,污泥中菲的降解效率为45.2%。
对比例3
按照与对比例1基本相同的方法进行污泥厌氧消化产甲烷同步降解菲,不同之处在于:在厌氧瓶中插入一对电解电极,电解电极外接直流恒压电源,提供电压为0.8V。阴极为碳纸,阳极为碳毡,电极大小均为3cm*6cm,阴阳极控制距离为3cm。
对照组中甲烷总产气量为5353mL,污泥中菲的降解效率为46.0%。
以上各实施例及对比例中甲烷总产气量和污泥中菲的降解效率见表1。
表1
Figure BDA0001793656220000071

Claims (7)

1.一种污泥厌氧消化产甲烷同步降解菲的方法,包括以下步骤:将含有菲的污泥装入厌氧消化反应器中,接种产甲烷厌氧驯化污泥,在厌氧消化反应器中加入电解电极,在电极两端施加直流电压,并加入菲厌氧降解菌,所述的菲厌氧降解菌为梭状芽孢杆菌(Clostridium sp.)LZ25,保藏号为CGMCC NO: 15046;搅拌使反应体系混合均匀,同时控制发酵温度进行厌氧消化反应,直至发酵周期结束。
2.根据权利要求1所述的方法,其特征在于,所述产甲烷厌氧驯化污泥接种量按体积比计为20%~30%。
3.根据权利要求1所述的方法,其特征在于,所述的菲厌氧降解菌的投加量为107~109CFU/g干泥。
4.根据权利要求1所述的方法,其特征在于,所述的电极两端的直流电压为0.4~1.0V。
5.根据权利要求1所述的方法,其特征在于,厌氧消化反应温度控制为38±1℃。
6.根据权利要求1所述的方法,其特征在于,所述的电解电极的阳极为碳毡、碳棒或石墨。
7.根据权利要求1所述的方法,其特征在于,所述的电解电极的阴极为碳毡、碳纸、钛网或不锈钢网。
CN201811047431.8A 2018-09-09 2018-09-09 一种污泥厌氧消化产甲烷同步降解菲的方法 Active CN109133550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811047431.8A CN109133550B (zh) 2018-09-09 2018-09-09 一种污泥厌氧消化产甲烷同步降解菲的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811047431.8A CN109133550B (zh) 2018-09-09 2018-09-09 一种污泥厌氧消化产甲烷同步降解菲的方法

Publications (2)

Publication Number Publication Date
CN109133550A CN109133550A (zh) 2019-01-04
CN109133550B true CN109133550B (zh) 2021-03-26

Family

ID=64824173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811047431.8A Active CN109133550B (zh) 2018-09-09 2018-09-09 一种污泥厌氧消化产甲烷同步降解菲的方法

Country Status (1)

Country Link
CN (1) CN109133550B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922554A (zh) * 2014-05-06 2014-07-16 中国科学院生态环境研究中心 微生物电介导促进污泥厌氧消化的方法
CN104478178A (zh) * 2014-12-05 2015-04-01 哈尔滨工业大学 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
CN104984994A (zh) * 2015-07-08 2015-10-21 华南理工大学 利用微生物电解池去除底泥中多氯联苯的装置及方法
CN105417693A (zh) * 2015-11-10 2016-03-23 中国科学院生态环境研究中心 复合型水解酸化水质调理装置
CN105621826A (zh) * 2016-01-19 2016-06-01 辽宁大学 一种预处理联合电化学技术促进剩余活性污泥厌氧消化产甲烷的方法
CN105906051A (zh) * 2016-06-06 2016-08-31 山东大学 一种电化学微生物自养脱氮污水处理方法及系统
KR101683074B1 (ko) * 2016-02-24 2016-12-07 (주)정봉 유기산 축적에 의한 바이오가스 생산 효율 저하 방지 기능을 갖는 유기성 폐기물을 이용한 바이오가스의 생산방법 및 시스템
CN207685098U (zh) * 2017-10-26 2018-08-03 河海大学 一种微生物电解池耦合厌氧膜生物反应器污泥减量装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922554A (zh) * 2014-05-06 2014-07-16 中国科学院生态环境研究中心 微生物电介导促进污泥厌氧消化的方法
CN104478178A (zh) * 2014-12-05 2015-04-01 哈尔滨工业大学 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
CN104984994A (zh) * 2015-07-08 2015-10-21 华南理工大学 利用微生物电解池去除底泥中多氯联苯的装置及方法
CN105417693A (zh) * 2015-11-10 2016-03-23 中国科学院生态环境研究中心 复合型水解酸化水质调理装置
CN105621826A (zh) * 2016-01-19 2016-06-01 辽宁大学 一种预处理联合电化学技术促进剩余活性污泥厌氧消化产甲烷的方法
KR101683074B1 (ko) * 2016-02-24 2016-12-07 (주)정봉 유기산 축적에 의한 바이오가스 생산 효율 저하 방지 기능을 갖는 유기성 폐기물을 이용한 바이오가스의 생산방법 및 시스템
CN105906051A (zh) * 2016-06-06 2016-08-31 山东大学 一种电化学微生物自养脱氮污水处理方法及系统
CN207685098U (zh) * 2017-10-26 2018-08-03 河海大学 一种微生物电解池耦合厌氧膜生物反应器污泥减量装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bea-Ven Chang等.Anaerobic Degradation of Phenanthrene and Pyrene in Mangrove.《Bulletin of environment contamination and toxicology》.2008,第145-149页. *
曹咏.电-厌氧微生物耦合体系降解废水中菲的特征研究.《中国优秀硕士学位论文全文数据库工程科技I辑》.2014,B027-189页. *

Also Published As

Publication number Publication date
CN109133550A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Yang et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition
Zhao et al. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell
Liu et al. Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge
Durruty et al. Evaluation of potato-processing wastewater treatment in a microbial fuel cell
Li et al. Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment
Yang et al. Coupling a photosynthetic microbial fuel cell (PMFC) with photobioreactors (PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent
Hafez et al. An integrated system for hydrogen and methane production during landfill leachate treatment
Zhu et al. Using straw as a bio-ethanol source to promote anaerobic digestion of waste activated sludge
CN111424056B (zh) 一种提升餐厨垃圾厌氧消化产沼效率的方法
Jeong et al. Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production
Liu et al. Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass
Xu et al. The effect of PBS on methane production in combined MEC-AD system fed with alkaline pretreated sewage sludge
CN109161476A (zh) 一种电发酵产甲烷的装置与方法
Wang et al. Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: Pilot-scale verification
CN103555566A (zh) 一种新型的促进厌氧消化产甲烷的外置电解设备
Wang et al. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors
KR101990059B1 (ko) 가스순환을 이용한 고순도 메탄 생산 장치 및 방법
CN107964552B (zh) 一种厌氧消化与mfc耦合提高甲烷合成效率的方法
CN109133550B (zh) 一种污泥厌氧消化产甲烷同步降解菲的方法
CN112679061A (zh) 污泥厌氧消化制备沼气的方法及获得的沼气
CN115872583A (zh) 一种基于生物炭-厌氧颗粒污泥增强厌氧产甲烷的方法
CN213707869U (zh) 一种用于处理含高浓度硫酸盐有机废水的新型厌氧反应器
CN114535246A (zh) 一种利用Fenton铁泥及含铁生物炭强化两相厌氧消化的装置与工艺
CN210866382U (zh) 一种微生物电解池
CN114314825A (zh) 一种养猪场废弃物资源化处置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhou Jun

Inventor after: Lin Chaoba

Inventor after: Fei Jidong

Inventor after: Lei Jiping

Inventor before: Lin Chaoba

Inventor before: Zhou Jun

Inventor before: Fei Jidong

Inventor before: Lei Jiping

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant