CN109129487B - 在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法 - Google Patents

在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法 Download PDF

Info

Publication number
CN109129487B
CN109129487B CN201811121035.5A CN201811121035A CN109129487B CN 109129487 B CN109129487 B CN 109129487B CN 201811121035 A CN201811121035 A CN 201811121035A CN 109129487 B CN109129487 B CN 109129487B
Authority
CN
China
Prior art keywords
neural network
periodic
taylor
vector
motion planning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811121035.5A
Other languages
English (en)
Other versions
CN109129487A (zh
Inventor
张智军
梁俊杰
陈思远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Shunde Zhike Intelligent Technology Co ltd
South China University of Technology SCUT
Original Assignee
Foshan Shunde Zhike Intelligent Technology Co ltd
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Shunde Zhike Intelligent Technology Co ltd, South China University of Technology SCUT filed Critical Foshan Shunde Zhike Intelligent Technology Co ltd
Priority to CN201811121035.5A priority Critical patent/CN109129487B/zh
Publication of CN109129487A publication Critical patent/CN109129487A/zh
Application granted granted Critical
Publication of CN109129487B publication Critical patent/CN109129487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1643Programme controls characterised by the control loop redundant control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法,其包括:1)采用二次型优化在角加速度层上对机械臂的逆运动学解析,设计了角加速度雅可比等式;2)角速度范数等价为角加速度范数,建立标准二次规划方案;3)通过泰勒微分法离散化周期节律神经网络,得到泰勒型离散周期节律神经网络求解器并用其进行求解标准二次规划法案;4)将求解结果通过控制器驱动各关节电机使机械臂由初始位置开始进行重复运动规划。本发明实现了机械臂实际轨迹与期望路径的重合,使得机械臂能够重复运动规划,并且本发明成功的离散化了周期节律神经网络,使其更容易在硬件中得以实现,并且在硬件中实现了周期噪声的抑制。

Description

在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机 械臂重复运动规划方法
技术领域
本发明涉及冗余度机械臂控制领域,具体涉及一种在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法。
背景技术
冗余度机械臂是一种自由度大于任务空间所需最少自由度的末端能动机械装置,其运动任务包括焊接、油漆、组装、挖掘和绘图等,广泛应用于装备制造、产品加工、机器作业等国民经济生产活动中。冗余度机械臂的逆运动学问题是指已知机械臂末端位姿,确定机械臂的关节角问题。当冗余度机械臂末端任务为一个封闭曲线时,其各个关节可能回不到初始位置,这种现象叫做关节角偏差现象,或称非重复运动问题;而重复运动规划方案就是要设计适当的指标,使得机械臂末端执行完封闭曲线任务时,各个关节角都能够回到其初始位置。
以往的重复运动解析方法没有考虑到周期噪声的影响,得到的结果均为默认周期噪声不存在的,这不符合实际情况。事实上周期噪声存在于各种控制系统中,从而减小控制性能,甚至导致失控。周期噪声可能会产生于旋转因子,例如电机与振动元件。冗余机械臂也会受到周期噪声的干扰,可能会因此导致冗余机械臂重复运动规划失败。
发明内容
针对现有技术中的缺点,本发明至少提供如下技术方案:
一种在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法,其特征在于包括如下步骤:
1)采用二次型优化方案在角加速度层上对机械臂的逆运动学解析,设计的最小性能指标可为角速度范数及扭矩范数,受约束于带角速度和位置反馈的角加速度雅可比等式;
2)进行角速度指标与角加速度指标的等价变换,将所述二次型优化转化为标准二次规划;
3)将周期节律神经网络通过泰勒微分法离散化,得到泰勒型离散周期节律神经网络求解器;
4)将所述标准二次规划用泰勒型离散周期节律神经网络求解器进行求解;
5)将所述求解的结果驱动机械臂运动。
进一步的,所述步骤1)的二次型优化方案设计为:最小化
Figure BDA0001811283130000021
受约束于带角速度和位置反馈的角加速度雅可比等式
Figure BDA0001811283130000022
其中σ∈[0,1]是权重参数,
Figure BDA0001811283130000023
是关节角速度矢量,a(t)是一个参数矢量,
Figure BDA0001811283130000024
代表关节扭矩矢量,M(θ)∈Rn×n是一个惯性矩阵,
Figure BDA0001811283130000025
是离心力和科里奥利力矢量,g(θ)∈Rn是重力矢量,J是机械臂的雅可比矩阵,θ和
Figure BDA0001811283130000026
分别是关节角矢量和关节角速度矢量,
Figure BDA0001811283130000027
表示关节加速度矢量,r(t)和
Figure BDA0001811283130000028
分别表示机械臂末端执行器位置矢量和速度矢量,
Figure BDA0001811283130000029
表示机械臂末端执行器加速度矢量,λa,λb∈R作为反馈控制系数。
进一步的,所述步骤2)具体为,进行角速度指标
Figure BDA00018112831300000210
与角加速度指标
Figure BDA00018112831300000211
的等价变换,二次型优化转化为一个标准二次规划,设计所述标准二次规划的性能指标为最小化xTQx/2+μTx,受约束于Jx=y,其中,表示转置,
Figure BDA00018112831300000212
Q:=(1-σ)I+σM(θ),其中I∈Rn×n是单位矩阵;
Figure BDA00018112831300000213
θ(0)是关节初始角,α和β都是正权重系数;
Figure BDA0001811283130000031
进一步的,所述标准二次规划转化为一个矩阵方程WX=Y的求解,其中
Figure BDA0001811283130000032
m为笛卡尔空间的维数,n为关节空间的维数,λ表示拉格朗日乘子矢量。
进一步的,所述步骤3)具体为,通过泰勒微分法
Figure BDA0001811283130000033
τ是采样周期,k=0,1,2,3,...,将周期节律神经网络
Figure BDA0001811283130000034
以及χ(t)=χ(t-T)+ρ(WX-Y)离散化得到泰勒型离散周期节律神经网络:
Figure BDA0001811283130000035
χk=χk-T/τ+ρ(WkXk-Yk) (4)
其中,γ>0设计来调节收敛速度,F(·)表示激活函数,φ(t)代表各种周期噪声,χ(t)∈Rn+m是一个辅助矢量,T是周期噪声
Figure BDA0001811283130000036
的周期,而ρ>0是一个反馈系数,Xk:=X(t=kτ),Vk:=W-1(t=kτ),
Figure BDA0001811283130000037
Wk:=W(t=kτ),Yk:=Y(t=kτ),χk:=χ(t=kτ),φk:=φ(t=kτ),
Figure BDA0001811283130000038
进一步的,所述矩阵方程,用泰勒型离散周期节律神经网络求解器求解的结果驱动机械臂进行重复运动规划。
进一步的,所述激活函数为线性激活函数、sinh激活函数、bipolar sigmoid激活函数或tunable激活函数;所述周期噪声为周期随机噪声、常数噪声、方波噪声或三角波噪声。
与现有技术相比,本发明至少具有如下技术效果:
本发明的冗余度机械臂重复运动规划方法基于泰勒型离散周期节律神经网络,实现了机械臂实际轨迹与期望路径的重合,使得机械臂能够重复运动规划,并且本发明成功的离散化了周期节律神经网络,使其更容易在硬件中得以实现,并且在硬件中实现了周期噪声的抑制。
附图说明
图1为本发明实施例的在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法的流程图。
图2为机械臂在周期随机噪声干扰下发生非重复运动问题示意图。
图3为实现本发明的机械臂在周期随机噪声干扰下重复运动规划示意图。
具体实施方式
下面结合附图对本发明做进一步的说明,但本发明的实施方式不限于此。
本实施例提供了一种基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法,其流程图如图1所示,
图1为本发明实施例在周期噪声下基于泰勒型离散周期节律神经网络的规划冗余度机械臂重复运动规划方法的流程图,由该图可知,该实施例的冗余度机械臂重复运动规划方法主要包括加速度层重复运动性能指标与约束1、标准二次规划问题2、周期节律神经网络离散化3,基于矩阵方程的泰勒型离散周期节律神经网络求解器4、下位机控制器5以及机械臂6。具体的,该方法包括了如下步骤:
1)采用二次型优化方案在角加速度层上对机械臂的逆运动学解析,设计的最小性能指标可为角速度范数及扭矩范数,受约束于带角速度和位置反馈的角加速度雅可比等式;
2)进行角速度指标与角加速度指标的等价变换,将所述二次型优化转化为标准二次规划;
3)将周期节律神经网络通过泰勒微分法离散化,得到泰勒型离散周期节律神经网络求解器;
4)将所述标准二次规划用泰勒型离散周期节律神经网络求解器进行求解;
5)将所述求解的结果驱动机械臂运动。
图2所示,机械臂在周期随机噪声干扰下,完成任务后,机械臂关节没有回到初始位置,即机械臂的各个末态关节角不等于初始关节角,且不能完成闭合运动;机械臂的实际轨迹不能与期望路径重合。机械臂不能实现重复运动规划。
图3为实现本发明实施例的机械臂在周期随机噪声干扰下重复运动规划示意图。本发明设计的二次型优化方案,即加速度层重复运动规划方案为
最小化
Figure BDA0001811283130000051
约束条件
Figure BDA0001811283130000052
其中σ∈[0,1]是权重参数,
Figure BDA0001811283130000053
是关节角速度矢量,a(t)是一个参数矢量,
Figure BDA0001811283130000054
代表关节扭矩矢量,M(θ)∈Rn×n是一个惯性矩阵,
Figure BDA0001811283130000055
是离心力和科里奥利力矢量,g(θ)∈Rn是重力矢量,J是机械臂的雅可比矩阵,θ和
Figure BDA0001811283130000056
分别是关节角矢量和关节角速度矢量,
Figure BDA0001811283130000057
表示关节加速度矢量,r(t)和
Figure BDA0001811283130000058
分别表示机械臂末端执行器位置矢量和速度矢量,
Figure BDA0001811283130000059
表示机械臂末端执行器加速度矢量,λa,λb∈R作为反馈控制系数。
考虑到上述优化方案最小化指标是关节角速度,而约束条件是关节角加速度,因此需将机械臂的角速度指标
Figure BDA00018112831300000510
与角加速度指标
Figure BDA00018112831300000511
进行等价变换,然后二次型优化方案(1)-(2)便可描述为如下的标准二次规划方案:
最小化xTQx/2+μTx (7)
Jx=y (8)
其中,T表示转置,
Figure BDA0001811283130000061
Q:=(1-σ)I+σM(θ),其中I∈Rn×n是单位矩阵;
Figure BDA0001811283130000062
θ(0)是关节初始角,α和β都是正权重系数;
Figure BDA0001811283130000063
上述标准二次规划方案可以转化为一个矩阵方程WX=Y的求解,其中
Figure BDA0001811283130000064
m为笛卡尔空间的维数,n为关节空间的维数,λ表示拉格朗日乘子矢量。
为了离散化周期节律神经网络
Figure BDA0001811283130000065
以及χ(t)=χ(t-T)+ρ(WX-Y),使用泰勒微分法:
Figure BDA0001811283130000066
τ是采样周期,k=0,1,2,3,...,从而得到了泰勒型离散周期节律神经网络:
Figure BDA0001811283130000067
χk=χk-T/τ+ρ(WkXk-Yk) (10)
这里也需要对式(5)和(6)里边的函数等参数解释一下
其中,γ>0设计来调节收敛速度,F(·)表示激活函数(例如线性激活函数,sinh激活函数,bipolar sigmoid激活函数,tunable激活函数),φ(t)代表各种周期噪声(例如,周期随机噪声,常数噪声,方波噪声,三角波噪声等等)。χ(t)∈Rn+m是一个辅助矢量,T是周期噪声
Figure BDA0001811283130000068
的周期,而ρ>0是一个反馈系数,Xk:=X(t=kτ),Vk:=W-1(t=kτ),
Figure BDA0001811283130000069
Wk:=W(t=kτ),Yk:=Y(t=kτ),χk:=χ(t=kτ),φk:=φ(t=kτ),
Figure BDA0001811283130000071
接着,矩阵方程用上述泰勒型离散周期节律神经网络求解器求解。给定初始值X0,X1,X2∈Rn+m,通过泰勒型离散周期节律神经网络求解器迭代得到Xk,便可得到矩阵方程WX=Y的解,从而得到加速度层重复运动规划二次规划的最优解。
现结合一个具体的实例操作对本方法的工作流程进行如下说明。
在加速度层重复运动规划实施过程中,HTVO(即混合扭矩与速度优化)方案的参数设置为σ=0.6,λa=20,λb=20,α=50,β=50,冗余机械臂的关节角初始状态θ(0)设置为[1.675,2.843,-3.216,4.187,-1.710,-2.650]T rad,默认n=6,m=3,重复运动跟踪任务的执行周期设置为T=8s,激活函数使用线性激活函数F(e)=e。将计算得到的加速度再传送给机械臂控制器从而控制机械臂的运动。
机械臂在周期随机噪声干扰下,完成任务后,机械臂回到了初始位置,完成了闭合运动,同时,机械臂的各个末态关节角等于初始关节角;机械臂的实际轨迹也与期望轨迹重合。机械臂实现了重复运动规划。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法,其特征在于包括如下步骤:
1)采用二次型优化方案在角加速度层上对机械臂的逆运动学解析,设计的最小性能指标为角速度范数及扭矩范数,受约束于带角速度和位置反馈的角加速度雅可比等式;
2)进行角速度指标与角加速度指标的等价变换,将所述二次型优化转化为标准二次规划;
3)将周期节律神经网络通过泰勒微分法离散化,得到泰勒型离散周期节律神经网络求解器;
4)将所述标准二次规划用泰勒型离散周期节律神经网络求解器进行求解;
5)将所述求解的结果驱动机械臂运动。
2.根据权利要求1的所述冗余度机械臂重复运动规划方法,其特征在于,所述步骤1)的二次型优化方案设计为:最小化
Figure FDA0002930736680000011
受约束于带角速度和位置反馈的角加速度雅可比等式
Figure FDA0002930736680000012
其中σ∈[0,1]是权重参数,
Figure FDA0002930736680000013
是关节角速度矢量,a(t)是一个参数矢量,
Figure FDA0002930736680000014
代表关节扭矩矢量,M(θ)∈Rn×n是一个惯性矩阵,
Figure FDA0002930736680000015
是离心力和科里奥利力矢量,g(θ)∈Rn是重力矢量,J是机械臂的雅可比矩阵,θ和
Figure FDA0002930736680000016
分别是关节角矢量和关节角速度矢量,
Figure FDA0002930736680000017
表示关节加速度矢量,r(t)和
Figure FDA0002930736680000018
分别表示机械臂末端执行器位置矢量和速度矢量,
Figure FDA0002930736680000019
表示机械臂末端执行器加速度矢量,λa,λb∈R作为反馈控制系数。
3.根据权利要求2的所述冗余度机械臂重复运动规划方法,其特征在于所述步骤2)具体为,进行角速度指标
Figure FDA00029307366800000110
与角加速度指标
Figure FDA00029307366800000111
的等价变换,二次型优化转化为一个标准二次规划,设计所述标准二次规划的性能指标为最小化xTQx/2+μTx,受约束于Jx=y,其中,T表示转置,
Figure FDA0002930736680000021
Q:=(1-σ)I+σM(θ),其中I∈Rn×n是单位矩阵;
Figure FDA0002930736680000022
θ(0)是关节初始角,α和β都是正权重系数;
Figure FDA0002930736680000023
4.根据权利要求1或3的所述冗余度机械臂重复运动规划方法,其特征在于所述标准二次规划转化为一个矩阵方程WX=Y的求解,其中
Figure FDA0002930736680000024
m为笛卡尔空间的维数,n为关节空间的维数,λ表示拉格朗日乘子矢量。
5.根据权利要求4的所述冗余度机械臂重复运动规划方法,所述步骤3)具体为,通过泰勒微分法
Figure FDA0002930736680000025
τ是采样周期,k=0,1,2,3,...,将周期节律神经网络
Figure FDA0002930736680000026
以及χ(t)=χ(t-T)+ρ(WX-Y)离散化得到泰勒型离散周期节律神经网络:
Figure FDA0002930736680000027
χk=χk-T/τ+ρ(WkXk-Yk) (2)
其中,γ>0设计来调节收敛速度,F(·)表示激活函数,φ(t)代表各种周期噪声,χ(t)∈Rn+m是一个辅助矢量,T是周期噪声φ(t)的周期,而ρ>0是一个反馈系数,Xk:=x(t=kτ),Vk:=W-1(t=kτ),
Figure FDA0002930736680000028
Wk:=W(t=kτ),Yk:=Y(t=kτ),χk:=χ(t=kτ),φk:=φ(t=kτ),
Figure FDA0002930736680000029
6.根据权利要求4的所述冗余度机械臂重复运动规划方法,其特征在于,所述矩阵方程用泰勒型离散周期节律神经网络求解器求解的结果驱动机械臂进行重复运动规划。
7.根据权利要求5的所述冗余度机械臂重复运动规划方法,其特征在于,所述激活函数为线性激活函数、sinh激活函数、bipolar sigmoid激活函数或tunable激活函数;所述周期噪声为周期随机噪声、常数噪声、方波噪声或三角波噪声。
CN201811121035.5A 2018-09-26 2018-09-26 在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法 Active CN109129487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811121035.5A CN109129487B (zh) 2018-09-26 2018-09-26 在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811121035.5A CN109129487B (zh) 2018-09-26 2018-09-26 在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法

Publications (2)

Publication Number Publication Date
CN109129487A CN109129487A (zh) 2019-01-04
CN109129487B true CN109129487B (zh) 2021-05-11

Family

ID=64812309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811121035.5A Active CN109129487B (zh) 2018-09-26 2018-09-26 在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法

Country Status (1)

Country Link
CN (1) CN109129487B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109648567B (zh) * 2019-01-25 2021-08-03 华侨大学 一种具有容噪特性的冗余度机械臂规划方法
CN110000780B (zh) * 2019-03-31 2021-11-05 华南理工大学 一种能抵抗周期噪声的龙格库塔型周期节律神经网络方法
CN112748741B (zh) * 2020-12-25 2022-03-29 华南理工大学 一种不同姿态四足爬壁机器人的关节扭矩确定方法
CN115781669B (zh) * 2022-11-14 2024-10-11 海南大学 一种轮式移动机械臂加速度层重复运动规划方法
CN116512254B (zh) * 2023-04-11 2024-01-23 中国人民解放军军事科学院国防科技创新研究院 基于方向的机械臂智能控制方法及系统、设备、存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804627B (zh) * 2010-04-02 2011-12-07 中山大学 一种冗余度机械臂运动规划方法
CN101927495B (zh) * 2010-08-25 2013-04-17 中山大学 一种冗余度机械臂重复运动规划方法
DE102016212958A1 (de) * 2016-07-15 2018-01-18 Kuka Roboter Gmbh Redundanzauflösung für einen redundanten Manipulator
CN106737670B (zh) * 2016-12-15 2019-01-25 华侨大学 一种具有抗噪特性的冗余度机械臂重复运动规划方法
CN107160401B (zh) * 2017-06-27 2020-07-28 华南理工大学 一种解决冗余度机械臂关节角偏移问题的方法
CN108015763B (zh) * 2017-11-17 2020-09-22 华南理工大学 一种抗噪声干扰的冗余度机械臂路径规划方法

Also Published As

Publication number Publication date
CN109129487A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109129487B (zh) 在周期噪声下基于泰勒型离散周期节律神经网络的冗余度机械臂重复运动规划方法
CN109086557B (zh) 一种基于欧拉型离散周期节律神经网络的冗余度机械臂重复运动规划方法
CN109129486B (zh) 一种抑制周期噪声的冗余度机械臂重复运动规划方法
US9381643B2 (en) Dynamical system-based robot velocity control
CN104760041B (zh) 一种基于突加度的障碍物躲避运动规划方法
US8977394B2 (en) Control method for mobile parallel manipulators
CN107942670B (zh) 一种双柔性空间机械臂模糊鲁棒滑模削抖运动控制方法
CN105538327A (zh) 一种基于突加度的冗余度机械臂重复运动规划方法
CN110103225B (zh) 一种数据驱动的机械臂重复运动控制方法与装置
CN101927495A (zh) 一种冗余度机械臂重复运动规划方法
Chen et al. Neural learning enhanced variable admittance control for human–robot collaboration
CN109623827B (zh) 一种高性能冗余度机械臂重复运动规划方法与装置
Yang et al. Robot kinematics and dynamics modeling
Yamawaki et al. Iterative learning of variable impedance control for human-robot cooperation
Izadbakhsh et al. Superiority of q-Chlodowsky operators versus fuzzy systems and neural networks: Application to adaptive impedance control of electrical manipulators
Yu et al. Lagrangian dynamics and nonlinear control of a continuum manipulator
Bulut et al. Computed torque control of an aerial manipulation system with a quadrotor and a 2-dof robotic arm
Savin et al. Control of actuators with linearized variable stiffness
Tavora et al. Equilibrium-based force and torque control for an aerial manipulator to interact with a vertical surface
CN110000780B (zh) 一种能抵抗周期噪声的龙格库塔型周期节律神经网络方法
Wu et al. An adaptive neural network compensator for decoupling of dynamic effects of a macro-mini manipulator
Yovchev Finding the optimal parameters for robotic manipulator applications of the bounded error algorithm for iterative learning control
Fumagalli et al. A simple approach to kinematic inversion of redundant mechanisms
Tufail et al. Real-time impedance control based on learned inverse dynamics
Guo et al. A manipulability improving scheme for opening unknown doors with mobile manipulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant