CN109124632A - 一种基于磁共振的非造影增强扫描的动脉硬化测量方法 - Google Patents

一种基于磁共振的非造影增强扫描的动脉硬化测量方法 Download PDF

Info

Publication number
CN109124632A
CN109124632A CN201710456354.0A CN201710456354A CN109124632A CN 109124632 A CN109124632 A CN 109124632A CN 201710456354 A CN201710456354 A CN 201710456354A CN 109124632 A CN109124632 A CN 109124632A
Authority
CN
China
Prior art keywords
magnetic resonance
blood
arterial
diastole
artery sclerosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710456354.0A
Other languages
English (en)
Inventor
王炯炯
闫丽荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anying Technology (beijing) Co Ltd
Original Assignee
Anying Technology (beijing) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anying Technology (beijing) Co Ltd filed Critical Anying Technology (beijing) Co Ltd
Priority to CN201710456354.0A priority Critical patent/CN109124632A/zh
Publication of CN109124632A publication Critical patent/CN109124632A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent

Abstract

本发明基于当前的临床需求,结合现阶段磁共振血管造影技术的无创化应用,公开了一种无需注射造影剂的非增强扫描4D时间分辨动态磁共振成像的动脉硬化测量的方法。通过采用与心动周期同步的动态磁共振血管造影(dMRA)技术,获得收缩期峰值和舒张期早期的动脉血流量变化,并测量得到动脉血压变化,以其比值定义颅内血管顺应性(Vascular Compliance),即可得到动脉硬化的相关定量信息,并可用于颅内动脉硬化的评估。

Description

一种基于磁共振的非造影增强扫描的动脉硬化测量方法
技术领域
本发明是一种基于磁共振的非造影增强扫描的动脉硬化测量方法,通过动脉自旋标记将血液中水分子作为内源性标记,依据脑血容量,脑血流量和血流量平均通过时间估算建立定量跟踪动力学模型,通过利用与心动周期收缩期(Systolic)和舒张期(Distolic)同步的dMRA(dynamic Magnetic Resonance Angiography)采集,来评估动脉血管硬化程度。
背景技术
动脉硬化是一种常见的高发性疾病,患者人数众多,有很大的社会及经济压力。然而,多年来,动脉硬化的测量技术并没有显著的进步,目前主要以生化检测、有创检测和无创检测为主。
生化检测主要以高敏C-反应蛋白、脂蛋白a、内皮素和一氧化氮等标的进行动脉硬化诊断、程度评估和疗效监测的间接测量技术。
有创检测主要包括冠脉造影(CAG)、血管内超声(IVUS)、数字减影血管造影及CT血管造和磁共振血管造影技术。其中冠脉造影(CAG)是目前冠心病诊断的“金标准”,被广泛用于临床,但作为有创检查,存在一定的风险,包括穿刺处皮下血肿、血栓形成等。血管内超声(IVUS)需要将超声探头送入冠脉内测量斑块大小,因为其直径的限制,无法应用于较小的动脉导管,限制了其使用范围。数字减影血管造影(DSA)是诊断颈动脉狭窄的“金标准”,但这种方法无法提供血液动力学变化的信息,且有创、昂贵,并有潜在的并发症可能性。CT和磁共振血管造影技术是微创成像技术,需要注射造影剂,有潜在的肾功能损伤因素,同时受限于现阶段的技术发展,由高估血管狭窄程度的可能。
目前阶段,无创检查包括脉搏波传导速度(PWV)、心踝指数(CAVI)、踝臂指数(ABI)测量等方法,其原理均为通过评估血管的顺应性来预估动脉硬化的程度。这类技术因为无创,且可进行血管硬化引发的其它疾病的风险评估,具有较强的发展潜力。但是,这类检测方法一般用于颈动脉、股动脉或肱动脉、踝动脉等,没有办法应用于评估颅内血管的动脉硬化程度。
发明内容
本发明基于当前的临床需求,结合现阶段磁共振血管造影技术的无创化应用,提出一种无创的4D时间分辨动态磁共振成像的动脉硬化测量的方法。通过无创的成像技术获得血管的动脉血流量变化,并测量得到动脉血压变化,以其比值定义颅内血管顺应性(Vascular Compliance),即可得到动脉硬化的相关定量信息,并可用于颅内动脉硬化的评估。
本发明中基于磁共振的非造影增强扫描的动脉硬化测量方法主要包括:
(1)将被测目标放置在磁共振成像器的成像空间中的均匀的磁场中,将血液中磁化标记的水做为检测主体;
(2)施加动脉自旋标记脉冲序列,使用多相均衡稳态优先读取脉冲和k-space低取样的方法从磁共振扫描器快速采集标记主体的多个磁共振成像数据集;
(3)通过动态磁共振血管造影(dMRA)采集与心动周期的收缩和舒张期同步;通过重建图像形成量化示踪剂动力学模型;
(4)通过示踪剂动力学模型来估算收缩和舒张阶段的脑血容量(CBV);计算动脉血液量(EBV)和肱动脉血压(ΔBP)在收缩和舒张相位之间的差异; 和通过计算ΔBV/ΔBP评估血管顺应性。
步骤(2)中,自旋标记脉冲可以是脉冲式自旋标记脉冲,连续式自旋标记脉冲,伪连续自旋标记脉冲,或速度选择自旋标记脉冲;采样所使用的多相均衡稳态优先读取脉冲SSFP序列,该序列由可变翻转角和笛卡尔或非笛卡尔取样策略实现。
附图说明
图1.在心动周期的收缩期(Systolic)及舒张期(Distolic)早期分别进行磁共振血管造影(dMRA)采集的示意图。
图2.收缩期及舒张期早期时CBV的变化图示,以及两个时期的差谱。其中年轻受试者为21岁男性,年长受试者为59岁男性。
图3.收缩期及舒张期的CBV变化柱状图。其中年轻受试者为21岁男性,年长受试者为59岁男性。
具体实施方案
利用4D dMRA技术与心动周期的收缩期及舒张期同步采样可以评估血管的顺应性。这点已被使用心电触发时间分辨磁共振成像(ECG-triggered time-resolved phasecontrast MRI)测量颈内动脉血液流速来证实。
如图1所示,收缩期峰值和舒张期早期被确定为一个时间延迟,作为一个独立的研究阶段。将脉冲ASL分别施加在收缩期峰值和舒张期早期的阶段,并在相应阶段分别进行心电触发dMRA扫描。收缩期和舒张期动脉 CBV是根据示踪动力学模型计算获得的。示踪动力学模型为:
CBV =∫C(t)dt/∫Ca(t)dt
C(t) = CBF • Ca(t)⊗R(t)
其中Ca(t)是动脉中自旋标记的浓度,C(t)是动脉中自旋标记在单个像素(Pixel)里的浓度,R(t)是驻留函数。C(t)=M(t)W(t)et/T1 blood,Ca(t)=Ma(t)W(t)et/T1blood,其中Ma(t)是动脉中测量的信号,M(t)是在每一个像素里测量的信号,W(t)是翻转角带来的影响的加权系数。Ma(t)值可以通过动脉测量,也可根据标记的持续时间及效率推算。脑部血液流量(CBF)可以用奇异值分解(SVD)进行去卷积或在频率域进行除法的方法获得。
VC=ΔBV/ΔBP,其中ΔBV 是收缩期和舒张期动脉 CBV之间的差值,ΔBP是收缩期和舒张期间肱动脉血压的差值。
对多相 SSFP 的平均时间进程,以及在收缩期峰值和舒张期早期对大动脉 (>5%),小动脉(1-5%)和毛细血管/组织进行自旋标记后所接收测量的LL-EPI ASL 信号(括号内的百分数说明流过标记平面水分子被标记的百分比)分别进行了评估。
Look-locker-EPI ASL 被用来估算在心动周期的收缩期和舒张期阶段之间毛细血管/组织灌注的变化。在大动脉、小动脉以及微动脉的收缩期峰值时间过程中,可观察到标记血液信号较舒张期有显著提升。但毛细血管/组织灌注的血液信号在收缩期和舒张期阶段无显著性差异。
通过一个代表性检测可获得在在收缩期和舒张期之间的CBV变化图(图2)及柱状图(图3)。在动脉中可观察到CBV的增加,在小血管和微血管中CBV的增加程度相对减小。按照普通的全脑体积为1300毫升(可以在结构MRI准确测量),即大血管和小血管以及微血管的CBV绝对值。然后通过ΔCBV除以ΔBP(大动脉对应的ΔBP=0.15 mL/mmHg,小动脉和微动脉对应的ΔBP=0.07 mL/mmHg)计算VC。
以上所述仅为本发明的较佳实施例,并不以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.本专利是一种基于磁共振的非造影增强扫描的动脉硬化测量方法,其特征在于,使用动脉自旋标记将血液中水分子作为内源性标记;将动态磁共振血管造影(dMRA)的采集与心脏周期的收缩期和舒张期同步;通过重建的图像形成定量示踪动力学模型,并据此估算脑血容量,脑血流量和血流量平均通过时间;计算在收缩期及舒张期时动脉血容量(CBV)的差异和肱动脉血压评估动脉血管硬化程度。
2.根据权利要求1所述的一种基于磁共振的非造影增强扫描的动脉硬化测量方法,其特征是,这种方法包括:
(1)将被测目标放置在磁共振成像器的成像空间中的均匀的磁场中,将血液中磁化标记的水作为检测主体;
(2)施加动脉自旋标记脉冲序列,使用多相均衡稳态优先读取脉冲和k-space低取样的方法从磁共振扫描器快速采集标记主体的多个磁共振成像数据集;
(3)将动态磁共振血管造影(dMRA)的采集与心脏周期的收缩期和舒张期同步;通过重建图像形成量化示踪剂动力学模型;
(4)通过示踪剂动力学模型来估算收缩和舒张阶段的脑血容量(CBV);计算动脉血液量(BV)和肱动脉血压(ΔBP)在收缩和舒张相位之间的差异; 和通过计算ΔBV/ΔBP评估血管顺应性。
CN201710456354.0A 2017-06-16 2017-06-16 一种基于磁共振的非造影增强扫描的动脉硬化测量方法 Withdrawn CN109124632A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710456354.0A CN109124632A (zh) 2017-06-16 2017-06-16 一种基于磁共振的非造影增强扫描的动脉硬化测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710456354.0A CN109124632A (zh) 2017-06-16 2017-06-16 一种基于磁共振的非造影增强扫描的动脉硬化测量方法

Publications (1)

Publication Number Publication Date
CN109124632A true CN109124632A (zh) 2019-01-04

Family

ID=64830327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710456354.0A Withdrawn CN109124632A (zh) 2017-06-16 2017-06-16 一种基于磁共振的非造影增强扫描的动脉硬化测量方法

Country Status (1)

Country Link
CN (1) CN109124632A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109934888A (zh) * 2019-04-24 2019-06-25 清华大学 非对比剂增强的磁共振动态血管成像方法及系统
CN110537904A (zh) * 2019-09-26 2019-12-06 安影科技(北京)有限公司 一种基于磁共振的非造影增强扫描的动脉硬化测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109934888A (zh) * 2019-04-24 2019-06-25 清华大学 非对比剂增强的磁共振动态血管成像方法及系统
CN110537904A (zh) * 2019-09-26 2019-12-06 安影科技(北京)有限公司 一种基于磁共振的非造影增强扫描的动脉硬化测量方法

Similar Documents

Publication Publication Date Title
Ibrahim et al. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques
Laurent et al. The noninvasive assessment of vascular aging
Dyverfeldt et al. Pulse wave velocity with 4D flow MRI: systematic differences and age-related regional vascular stiffness
Luo et al. Pulse wave imaging of the human carotid artery: an in vivo feasibility study
Boutouyrie et al. Assessment of pulse wave velocity
Messas et al. Arterial wall elasticity: state of the art and future prospects
Kenyhercz et al. Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age
van der Spoel et al. Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output
Ponzini et al. Womersley number-based estimates of blood flow rate in Doppler analysis: in vivo validation by means of phase-contrast MRI
Di Lascio et al. Non-invasive assessment of pulse wave velocity in mice by means of ultrasound images
Khan et al. Cardiovascular magnetic resonance elastography: A review
Nagaoka et al. Measurement of regional pulse-wave velocity using spatial compound imaging of the common carotid artery in vivo
Huang et al. Comparison of different pulse waveforms for local pulse wave velocity measurement in healthy and hypertensive common carotid arteries in vivo
Franquet et al. Identification of the in vivo elastic properties of common carotid arteries from MRI: A study on subjects with and without atherosclerosis
CN109124632A (zh) 一种基于磁共振的非造影增强扫描的动脉硬化测量方法
Parati et al. How to assess arterial compliance in humans
Joseph et al. Arterial compliance probe for calibration free pulse pressure measurement
Kim et al. Brachial-ankle pulse wave velocity as a screen for arterial stiffness: a comparison with cardiac magnetic resonance
Itskovich et al. Rapid aortic wave velocity measurement with MR imaging
Redheuil Cardiovascular aging: Insights from local and regional measures of aortic stiffness using magnetic resonance imaging
Van Bortel et al. Direct measurement of local arterial stiffness and pulse pressure
Okur et al. Non-contrast-enhanced imaging of haemodialysis fistulas using quiescent-interval single-shot (QISS) MRA: a feasibility study
CN110537904A (zh) 一种基于磁共振的非造影增强扫描的动脉硬化测量方法
Hanya Validity of the water hammer formula for determining regional aortic pulse wave velocity: comparison of one-point and two-point (Foot-to-Foot) measurements using a multisensor catheter in human
Kolipaka et al. Magnetic resonance elastography for arterial wall characterization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190104