CN109120012A - 单相混合储能逆变器的多机并行系统及控制方法 - Google Patents

单相混合储能逆变器的多机并行系统及控制方法 Download PDF

Info

Publication number
CN109120012A
CN109120012A CN201811214108.5A CN201811214108A CN109120012A CN 109120012 A CN109120012 A CN 109120012A CN 201811214108 A CN201811214108 A CN 201811214108A CN 109120012 A CN109120012 A CN 109120012A
Authority
CN
China
Prior art keywords
main
hybrid energy
inverter
port
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811214108.5A
Other languages
English (en)
Other versions
CN109120012B (zh
Inventor
郑洪涛
张耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Giantion Nathon Energy Technology Co Ltd
Original Assignee
Jiangsu Giantion Nathon Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Giantion Nathon Energy Technology Co Ltd filed Critical Jiangsu Giantion Nathon Energy Technology Co Ltd
Priority to CN201811214108.5A priority Critical patent/CN109120012B/zh
Publication of CN109120012A publication Critical patent/CN109120012A/zh
Application granted granted Critical
Publication of CN109120012B publication Critical patent/CN109120012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/383
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种单相混合储能逆变器的多机并行系统及控制方法;所述系统包括一个主系统和多个从系统;主系统包括主电池板、主电池和主混合储能逆变器;主混合储能逆变器中安装有主EMS;主EMS与控制电表通讯连接;从系统包括从电池板、从电池和从混合储能逆变器;从混合储能逆变器中安装有从EMS;从混合储能逆变器的电网端口连接控制电表的电输出端口;多个从EMS均与主EMS通讯连接。本发明通过电路连接结构的改变和算法的配合,解决了现有技术中多台储能逆变器并机运行时,由于各自调节能量的不一致,导致系统无法稳定的问题。

Description

单相混合储能逆变器的多机并行系统及控制方法
技术领域
本发明涉及单相混合储能逆变器的应用,具体涉及一种单相混合储能逆变器的多机并行系统及控制方法。
背景技术
单相混合储能逆变器在应用时,经常遇到需要并机的情况,但是目前市场上的储能逆变器都是自成单个系统(EMS在机器内部,单个机器形成一个系统)。这样就导致并机后功率无法控制的问题。
图1为现有技术中单个储能逆变器所自成的系统结构示意图。如图1所示,在现有技术中,单个储能逆变器系统中包括电池板1和电池2,电池板1的电源输出端口与混合储能逆变器3的光伏端口相连接,电池2的电源输入端口与混合储能逆变器3的电池端口连接,混合储能逆变器3之上安装有EMS(energy Management system,能量管理系统)8,混合储能逆变器3的电网端口连接控制电表4的电接入端口,控制电表4的电输出端口连接计费电表5的电接入端口,计费电表5的电输出端口连接于电网6。混合储能逆变器3的电网端口还连接有本地负载7的用电端。
电池板1用于将太阳能转换成电能,以直流电模式输出至混合储能逆变器3。电池2用于对本地负载7使用完之后多余的太阳能充电进行存储,本地负载7不够用电池板1所转换的电能时,放电满足本地负载7的用电。混合储能逆变器3对系统中各个装置所包含的能量进行转换及传递。控制电表4用来实时检测用户本地负载7所消耗的功率。对于控制电表4来说,当用户消耗电网6的电量时,控制电表4的读数为负值,当用户像电网补充电量时,控制电4的读数为正值。计费电表5为安装在用户家中的电表,计算用户电费。电网6为市电电网。本地负载7是用户家中的所有负载的总和。EMS 8利用控制电表4的数据对电池板1和电池2的能量进行调控,目的是实时维持控制电表4的功率接近于0,即计费电表为计费为0,这也正是这个系统的使用价值,即尽量节约用户电费。
如图1所示的现有技术中,问题的核心点就是在现有技术中,每个系统都安装有一个控制电表4,如果多个系统并联,就会由于各个系统所调节能量的不一致,导致系统无法稳定。图2为现有技术中多个储能逆变器并联的系统结构示意图,如图2所示,这样的连接方式会出现问题。在一个具体的实施例中,当图2中的系统运行时有:
1、设定本地负载7的实际消耗功率为1000W;
2、开启本系统;
3、如果第一混合逆变器31上所安装的第一EMS 81读取到第一控制电表41上的功率数值是‐1000W,即消耗电网6的电量为负1000W,此时第二混合逆变器2上所安装的第二EMS 82读取到的第二控制电表42的实时功率也是‐1000W;
4、如果两台设备的控制目标都是用户的计费电表5,为了保证计费电表5的读数为0,则每个系统都会向电网补充1000W电量,此时第一控制电表41和第二控制电表42的数值将都会是1000W;
5、此时第一EMS 81和第二EMS 82同时又采集到了两个控制电表有1000W电量,立即控制每个系统向电网都补充‐1000W电量;
6、系统来回震荡,无法达到平衡。
发明内容
针对现有技术的不足,本发明公开了一种单相混合储能逆变器的多机并行系统及控制方法。
本发明所采用的技术方案如下:
一种单相混合储能逆变器的多机并行系统,包括一个主系统和多个从系统;
主系统包括主电池板、主电池和主混合储能逆变器;主电池板的电源输出端口连接主混合储能逆变器的光伏端口;主电池的电源输入端口连接主混合储能逆变器的电池端口;主混合储能逆变器中安装有主EMS;主混合储能逆变器的电网端口连接控制电表的电接入端口;控制电表的电输出端口连接计费电表的电接入端口,计费电表的电输出端口连接电网;本地负载的用电端连接主混合储能逆变器的电网端口;主EMS与控制电表通讯连接;
从系统包括从电池板、从电池和从混合储能逆变器;从电池板的电源输出端口连接从混合储能逆变器的光伏端口;从电池的电源输入端口连接从混合储能逆变器的电池端口;从混合储能逆变器中安装有从EMS;从混合储能逆变器的电网端口连接控制电表的电输出端口;
多个从EMS均与主EMS通讯连接。
一种单相混合储能逆变器的多机并行的控制方法,包括以下步骤:
步骤1、主EMS与控制电表通讯连接,获取本地负载实际消耗的功率P;
步骤2、开启多机并行系统。
步骤3、主EMS与控制电表通讯连接,获取电网消耗的总功率P’;P’=‐P;
步骤4、根据功率算法,主EMS将电网消耗的总功率P’分配给多个从EMS进行调控;P’=Pref;所述功率算法为:
如果在第n组从系统中,从电池是充电状态,则有:
如果在第n组从系统中,从电池是放电状态,则有:
在式(1)和式(2)中有:
n:自然数,1≤n≤N‐1,n为多组从系统的序号;
N:自然数,主系统和多组从系统的总数;
Pn:第n组从系统中,从混合储能逆变器的调度功率;
Pref:主系统中,主混合储能逆变器需要调度分配的总功率;
SOCn:第n组从系统中,从混合储能逆变器的当前储能系统的电荷剩余;
SOCMAXn:第n组从系统中,从混合储能逆变器的最大充电上限;
SOCMINn:第n组从系统中,从混合储能逆变器的最小放电下限;
步骤5、系统达到平衡。
本发明的有益效果如下:
本发明重新改变了多个储能逆变器并机运行的连接结构,并且主储能逆变器通过功率算法给每个从储能逆变器分配需要调控的功率,这样通过电路连接结构的改变和算法的配合,解决了现有技术中多台储能逆变器并机运行时,由于各自调节能量的不一致,导致系统无法稳定的问题。
附图说明
图1为现有技术中单个储能逆变器所自成的系统结构示意图。
图2为现有技术中多个储能逆变器并联的系统结构示意图。
图3为本发明的系统结构示意图。
图4为本发明的控制流程图。
具体实施方式
下面结合附图,说明本实施例的具体实施方式。
单相混合储能逆变器的多机并行系统包括N个系统,其中具体包括一个主系统和N‐1个从系统。
图3为本发明的系统结构示意图。在图3所示的实施例中,包括一个主系统和一个从系统。
主系统包括主电池板11、主电池21和主混合储能逆变器31。主电池板11的电源输出端口连接主混合储能逆变器31的光伏端口。主电池21的电源输入端口连接主混合储能逆变器31的电池端口。主混合储能逆变器31中安装有主EMS 81。主混合储能逆变器31的电网端口连接控制电表41的电接入端口。控制电表41的电输出端口连接计费电表5的电接入端口,计费电表5的电输出端口连接电网6。本地负载7的用电端连接主混合储能逆变器31的电网端口。主EMS 81与控制电表41通讯连接
从系统包括从电池板12、从电池22和从混合储能逆变器32。从电池板12的电源输出端口连接从混合储能逆变器32的光伏端口。从电池22的电源输入端口连接从混合储能逆变器32的电池端口。从混合储能逆变器32中安装有从EMS 82。从混合储能逆变器32的电网端口连接控制电表41的电输出端口。
从EMS 82与主EMS 81通讯连接。
在主系统和从系统中,主电池和从电池的作用、结构均是相同的,区别只在于安装的位置不同,主电池安装于主系统中,从电池安装于从系统中,二者在其他方面没有不同之处。
多个从系统的连接方式可以参考图3,与只有一个从系统的连接方式是一致的。每个从系统的电网端口均连接控制电表41的电输出端口。多个从EMS均分别与主EMS通讯连接。
主EMS 81通过如下的控制方法来控制整个系统的运行。
图4为本发明的控制流程图。如图4所示,一种单相混合储能逆变器的多机并行的控制方法,包括以下步骤:
步骤1、主EMS 81与控制电表41通讯连接,获取本地负载7实际消耗的功率P。
步骤2、开启多机并行系统。
步骤3、主EMS 81与控制电表41通讯连接,读取电网6消耗的总功率P’,有P’=‐P;电网消耗的总功率P’也即主EMS需要调度分配的总功率Pref
步骤4、根据功率算法,主EMS 81将电网消耗的总功率分配给多个从EMS82进行调控;
功率算法为:
如果第n组从系统中,从电池是充电状态,则有:
如果第n组从系统中,从电池是放电状态,则有:
式(1)和式(2)中有:
n:自然数,1≤n≤N‐1,n为多组从系统的序号;
N:自然数,主系统和多组从系统的总数;
Pn:第n组从系统中,从混合储能逆变器的调度功率;
Pref:主系统中,主混合储能逆变器需要调度分配的总功率;
SOCn:第n组从系统中,从混合储能逆变器的当前储能系统的电荷剩余;
SOCMAXn:第n组从系统中,从混合储能逆变器的最大充电上限;如果允许充满,则该值为1;
SOCMINn:第n组从系统中,从混合储能逆变器的最小放电下限;一般锂电池的该值为0.1‐0.2;
步骤5、系统达到平衡。
以上描述是对本发明的解释,不是对发明的限定,本发明所限定的范围参见权利要求,在不违背本发明的基本结构的情况下,本发明可以作任何形式的修改。

Claims (2)

1.一种单相混合储能逆变器的多机并行系统,其特征在于,包括一个主系统和多个从系统;
主系统包括主电池板、主电池和主混合储能逆变器;主电池板的电源输出端口连接主混合储能逆变器的光伏端口;主电池的电源输入端口连接主混合储能逆变器的电池端口;主混合储能逆变器中安装有主EMS;主混合储能逆变器的电网端口连接控制电表的电接入端口;控制电表的电输出端口连接计费电表的电接入端口,计费电表的电输出端口连接电网;本地负载的用电端连接主混合储能逆变器的电网端口;主EMS与控制电表通讯连接;
从系统包括从电池板、从电池和从混合储能逆变器;从电池板的电源输出端口连接从混合储能逆变器的光伏端口;从电池的电源输入端口连接从混合储能逆变器的电池端口;从混合储能逆变器中安装有从EMS;从混合储能逆变器的电网端口连接控制电表的电输出端口;
多个从EMS均与主EMS通讯连接。
2.一种单相混合储能逆变器的多机并行的控制方法,其特征在于,包括以下步骤:
步骤1、主EMS与控制电表通讯连接,获取本地负载实际消耗的功率P;
步骤2、开启多机并行系统;
步骤3、主EMS与控制电表通讯连接,获取电网消耗的总功率P’;P’=-P;
步骤4、根据功率算法,主EMS将电网消耗的总功率P’分配给多个从EMS进行调控;P’=Pref;所述功率算法为:
如果在第n组从系统中,从电池是充电状态,则有:
如果在第n组从系统中,从电池是放电状态,则有:
在式(1)和式(2)中有:
n:自然数,1≤n≤N-1,n为多组从系统的序号;
N:自然数,主系统和多组从系统的总数;
Pn:第n组从系统中,从混合储能逆变器的调度功率;
Pref:主系统中,主混合储能逆变器需要调度分配的总功率;
SOCn:第n组从系统中,从混合储能逆变器的当前储能系统的电荷剩余;
SOCMAXn:第n组从系统中,从混合储能逆变器的最大充电上限;
SOCMINn:第n组从系统中,从混合储能逆变器的最小放电下限;
步骤5、系统达到平衡。
CN201811214108.5A 2018-10-18 2018-10-18 单相混合储能逆变器的多机并行系统及控制方法 Active CN109120012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811214108.5A CN109120012B (zh) 2018-10-18 2018-10-18 单相混合储能逆变器的多机并行系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811214108.5A CN109120012B (zh) 2018-10-18 2018-10-18 单相混合储能逆变器的多机并行系统及控制方法

Publications (2)

Publication Number Publication Date
CN109120012A true CN109120012A (zh) 2019-01-01
CN109120012B CN109120012B (zh) 2021-01-22

Family

ID=64854797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811214108.5A Active CN109120012B (zh) 2018-10-18 2018-10-18 单相混合储能逆变器的多机并行系统及控制方法

Country Status (1)

Country Link
CN (1) CN109120012B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212563A (zh) * 2019-06-29 2019-09-06 沃太能源南通有限公司 一种储能并机系统
CN111293720A (zh) * 2020-03-12 2020-06-16 江苏固德威电源科技股份有限公司 一种并联光伏储能系统及其采用的并机控制方法
CN115622831A (zh) * 2022-09-06 2023-01-17 广州三晶电气股份有限公司 光伏逆变器多台并机通信方法、系统、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331776A (ja) * 1995-05-30 1996-12-13 Sanyo Electric Co Ltd 直流電源システム
CN103904681A (zh) * 2014-03-11 2014-07-02 西安理工大学 大功率集中式光伏并网发电协调控制系统及方法
CN106992590A (zh) * 2017-05-25 2017-07-28 沃太能源南通有限公司 一种多逻辑组合型光伏储能管理系统
CN107706931A (zh) * 2017-10-18 2018-02-16 上海正泰电源系统有限公司 企业用电需量智能管理系统及方法
CN107925246A (zh) * 2015-08-14 2018-04-17 光城公司 能量生成系统中的多个逆变器电力控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331776A (ja) * 1995-05-30 1996-12-13 Sanyo Electric Co Ltd 直流電源システム
CN103904681A (zh) * 2014-03-11 2014-07-02 西安理工大学 大功率集中式光伏并网发电协调控制系统及方法
CN107925246A (zh) * 2015-08-14 2018-04-17 光城公司 能量生成系统中的多个逆变器电力控制系统
CN106992590A (zh) * 2017-05-25 2017-07-28 沃太能源南通有限公司 一种多逻辑组合型光伏储能管理系统
CN107706931A (zh) * 2017-10-18 2018-02-16 上海正泰电源系统有限公司 企业用电需量智能管理系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212563A (zh) * 2019-06-29 2019-09-06 沃太能源南通有限公司 一种储能并机系统
CN111293720A (zh) * 2020-03-12 2020-06-16 江苏固德威电源科技股份有限公司 一种并联光伏储能系统及其采用的并机控制方法
CN111293720B (zh) * 2020-03-12 2022-06-28 固德威技术股份有限公司 一种并联光伏储能系统及其采用的并机控制方法
CN115622831A (zh) * 2022-09-06 2023-01-17 广州三晶电气股份有限公司 光伏逆变器多台并机通信方法、系统、装置及存储介质

Also Published As

Publication number Publication date
CN109120012B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CA3027939C (en) Method and apparatus for controlling power flow in a hybrid power system
Sechilariu et al. Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication
US10439429B2 (en) Modular microgrid unit and method of use
CN109066750B (zh) 基于需求侧响应的光伏-电池微电网混合能量调度管理方法
Li et al. Energy management and control of electric vehicle charging stations
CN110689189A (zh) 考虑供能侧和需求侧的冷热电联合供需平衡优化调度方法
CN110289622B (zh) 一种光储充能量路由器的日前经济优化调度方法
KR101262265B1 (ko) 전기에너지 저장장치 충전 시스템
CN109120012A (zh) 单相混合储能逆变器的多机并行系统及控制方法
CN108695868A (zh) 基于电力电子变压器的配电网储能选址定容方法
Tasdighi et al. Energy management in a smart residential building
Lam et al. Economics of residential energy arbitrage in california using a PV system with directly connected energy storage
CN110168829A (zh) 一种用于微电网的装置及其操作方法
CN110350553B (zh) 基于多功率调节技术的进线功率尖峰抑制方法及系统
CN204156804U (zh) 一种新型家用分布式太阳能发电储能系统
US8841877B2 (en) Power supply system and method for controlling electrochemical cell charging
CN113746160A (zh) 一种光伏能充换电柜系统和方法
CN203632239U (zh) 一种营房车光伏电源设备
CN106410914B (zh) 分布集中式电源管理系统
CN110212563B (zh) 一种储能并机系统
CN102097820A (zh) 太阳能峰谷电力调节系统
CN107769189B (zh) 直流微电网结构
CN106160196A (zh) 配电变压器间断供电集中器的不间断电源系统
Aneesh et al. Load Management and Smart Monitoring For Rooftop PV in Academic Building
CN114123171A (zh) 一种基于势博弈的增量配电网分布式优化规划方法及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 215151 No. 2, Xijinzhi Road, Suzhou High-tech Zone, Jiangsu Province

Applicant after: Jiangsu natong Energy Technology Co., Ltd

Address before: 215151 No. 2, Xijinzhi Road, Suzhou High-tech Zone, Jiangsu Province

Applicant before: JIANGSU JIAXUN NATONG ENERGY TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant