CN109116635A - 一种液晶偏振光栅制备方法 - Google Patents
一种液晶偏振光栅制备方法 Download PDFInfo
- Publication number
- CN109116635A CN109116635A CN201811184443.5A CN201811184443A CN109116635A CN 109116635 A CN109116635 A CN 109116635A CN 201811184443 A CN201811184443 A CN 201811184443A CN 109116635 A CN109116635 A CN 109116635A
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- polarization
- light
- preparation
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133636—Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133638—Waveplates, i.e. plates with a retardation value of lambda/n
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
一种液晶偏振光栅制备方法,提供了一种基于双折射棱镜进行偏振操控的制备方法,该方法简便可行,为制备液晶偏振光栅提供了一种新思路。液晶偏振光栅可应用于增强现实、液晶显示和高光谱遥感等领域。所述方法的核心技术在于由偏振片、双折射棱镜以及1/4波片组成的曝光光路。在入射光为蓝紫激光时,出射光为偏振方向随位置连续变化的线偏振光。通过照射光敏取向层,可实现偏振光栅所需求的液晶分子取向排布。该方法的优点在于其使用的器件数量少,光路简单;光栅周期易于调节,简便灵活;且元件易获得,成本较低。是一种具有实用价值的偏振光栅制备方案。
Description
技术领域
本发明涉及的基于双折射棱镜和光控取向的液晶偏振光栅制备方法,是一种新型的液晶偏振光栅制备方法。此方法与激光干涉法相比,具有光路简单、稳定、成本较低等优势。
背景技术
液晶偏振光栅是一种偏振分离器件。如图1所示,它能够将入射的线偏振光或者自然光衍射成为两束在空间上相互分离,旋向相反的圆偏振光。在入射光为圆偏振光时,它能够在+1或-1级次出射一束与入射圆偏光旋向相反的的圆偏振光。并且,在偏振光栅的厚度满足半波条件时,这样的偏振转换具有90%以上的极高效率。
液晶偏振光栅具有高衍射效率的原因就是其呈周期变化的液晶分子指向矢排布。如图2所示,液晶偏振光栅的液晶分子指向矢在X方向上呈现周期变化,指向矢每旋转180°称为一个周期。在同一周期内,随着X的增大,指向矢朝同一方向(顺时针或者逆时针)旋转的,称为这些周期手性相同,旋转方向不同的称为手性相反。
为了能够使液晶分子按照所期望的方式排列,在本发明中,采用了光控取向技术。其基本原理是利用光敏偶氮染料的光致顺反异构特性,对液晶分子进行取向。这种光取向方法首先要在衬底,如玻璃上旋涂一层光敏偶氮染料膜,然后用相应波段的偏振光照射,只有与偏振光偏振方向垂直的方向产生液晶分子指向矢的取向,从而实现光栅分布。本实验中采用的取向材料是浓度为0.4%的SD1溶液。SD1是一种光敏偶氮染料,其分子式如图3所示。在使用蓝紫线偏振光照射时,SD1会呈现与照射光偏振方向相垂直的取向方向。
为了实现偏振光栅连续变化的取向,需要给取向层照射偏振方向连续变化的线偏光。在目前,偏振光栅制备曝光过程中多采用蓝紫圆偏振光干涉的曝光方法。这种方法光路复杂,且成本较高。而本发明采用基于双折射棱镜的曝光光路,对入射光进行偏振调制,如图4所示。实现了出射线偏光偏振方向随位置均匀变化的目标。与干涉法相比,具有以下优点
(1)使用的器件数量少,光路简单;
(2)光路稳定性高、抗干扰能力强;
(3)元件易获得,成本较低。
发明内容
本发明所要解决的技术问题是:提供一种新型的偏振光栅制备方法,以更为简便、灵活、低成本的方法制备偏振光栅。
本发明的技术解决方案是:一种基于双折射棱镜和光控取向技术的液晶偏振光栅制备方法。由激光器发出蓝紫光,通过由偏振片、双折射棱镜以及1/4 波片组成的偏振调制光路,出射偏振方向在特定方向上连续变化的线偏振光,照射在光敏取向层上,再旋涂、固化液晶,即可完成偏振光栅的制备。
本发明的具体实现方法为:1)按照摘要附图所示光路图搭建照光系统。以双折射棱镜的快轴方向为Y轴,慢轴方向为X轴。则偏振片的起偏方向与X 轴夹角为45°,1/4波片与X轴夹角为-45°。2)在玻璃基板上旋涂一层SD1 溶液并蒸干。3)将基板放入照光系统中,照光约10min。4)在光敏层上旋涂液晶溶液,加热蒸干,照光固化。
在照光时,一束激光首先经过起偏器,起偏方向与X轴呈45°。之后入射到快轴沿Y轴(与起偏方向呈45°)的双折射棱镜,则O光与E光经棱镜后产生相位差,且相位差呈沿Y轴连续变化。之后入射到光轴方向沿-45°(与Y 轴呈45°)的1/4波片,出射光即为偏振方向在Y方向上连续变化的线偏振光。具有此种偏振态特性的光照射在光敏层上,可以使得SD1分子的取向方向连续变化。
以上过程可利用琼斯矩阵进行理论计算:激光在经过起偏器后,为一线偏振光,与x轴夹角为45°,对应的琼斯矢量为
由于棱镜是使用双折射晶体制成的,会对O光和E光产生不同的相位延迟。随着厚度的变化,相位延迟量也有所不同。所以,棱镜可以看做是相位延迟量随位置变化的一般波片,且其光轴方向与X方向呈90°角。设其相位延迟差为δ,则其琼斯矩阵为
相乘可得经过棱镜后的出射光的琼斯矢量为
化简可得出射光的琼斯矢量为
由于棱镜厚度沿Y方向变化,即在Y方向上,δ随Y线性增大:
δ=KY
所以,在Y轴上,出射光的琼斯矢量随着Y变化,为
在此基础上,经过快轴方向与X轴呈-45°的四分之一波片,其琼斯矩阵为
最终的出射光琼斯矢量为
将δ=KY代入,可进一步写为
从琼斯矢量可以看出,随着Y的变化,出射光为一偏振方向连续变化的线偏振光,符合偏振光栅的取向需求。
对所制作偏振光栅的周期进行定量计算。在不考虑折射的理想情况下,一束垂直于基板入射的光也将垂直出射。棱镜是引起相位延迟量变化的主要器件,所以,要计算光栅周期,需要对棱镜的光路进行分析。如图5所示,以楔角为双折射率为Δn的石英石棱镜为例。对于偏振光栅而言,出射光偏振方向旋转π为一个周期。根据前文中的琼斯矩阵分析,出射光偏振方向变化量Δθ与棱镜引入的相位延迟变化量Δδ之间满足Δδ=2Δθ。所以偏振光栅一个周期对应的棱镜相位延迟量为δ=2π。
设光栅周期为Λ,则一个周期对应的棱镜厚度差
根据双折射公式,有
将δ=2π带入,则光栅周期
根据本发明所述方法,制作了液晶偏振光栅。制作过程中,双折射棱镜的材料为石英石,其双折射率Δn=0.009,棱镜的楔角照射的蓝紫激光波长λ=450nm。将各参数带入计算公式,可得理想情况下的光栅周期为86.6μm。将偏振光栅放在偏振显微镜下观察,所得光栅图样如图6所示。测量其周期长度,所得平均值为85.68μm,与理论计算结果相同。
衍射效率是偏振光栅的一个重要指标。在满足半波匹配条件时,偏振光栅可以以90%以上的效率将入射光转化为两束圆偏振光在±1级次出射。为了验证这一特性,对偏振光栅的衍射效率进行了测量。
定性观察偏振光栅的衍射图样,如图7所示。±1级次亮度几乎相同且亮度较高,0级次几乎不可见,符合偏振光栅的衍射规律。之后,对偏振光栅的衍射效率进行定量计算。使用功率不同的,波长为532nm的激光对偏振光栅进行测试,偏振光栅的效率达到了92.3%,实现了良好的衍射效果。
附图说明
图1为液晶偏振光栅衍射示意图;
图2为液晶偏振光栅指向矢分布示意图;
图3为光敏偶氮染料SD1分子式
图4为基于双折射棱镜的曝光光路
图5为基于双折射棱镜的周期计算示意图
图6为液晶偏振光栅在偏光显微镜下织构(放大倍率为200倍)
图7为液晶偏振光栅衍射图样。
Claims (4)
1.一种液晶偏振光栅制备方法,其特征在于,该方法使用双折射棱镜等元件组成偏振调制光路,将入射蓝紫激光转化为起偏方向随位置连续变化的线偏光,满足偏振光栅在光控取向中所对应的偏振态分布,照射光敏涂层进行取向。
2.如权利要求1所述的调制光路,从左到右依次为(1)蓝紫波段激光器,(2)起偏器,(3)双折射棱镜,(4)1/4波片,(5)涂有光敏取向层的玻璃基板。
3.如权利要求1所述的调制光路,各元件需要满足一定的角度要求。以双折射棱镜快轴为Y轴,慢轴为X轴,光传播方向为Z轴,建立坐标系,则起偏器方向与X轴夹角为45°,1/4波片快轴方向与X轴夹角为-45°。
4.如权利要求1所述的制备方法,具体步骤为:
(1)首先将SD-1以0.4%的浓度溶于二甲基甲酰胺(DMF)溶剂中,然后将溶液旋涂在清洁的玻璃基板上,旋涂层先以800RPM进行5秒预旋转,然后以3000RPM旋转35秒。然后在120℃下进行10分钟的软烘烤,可以除去SD-1层中的残留溶剂,该过程产生厚度约为10nm的SD-1膜。
(2)将旋涂过SD-1的玻璃基板放入调制光路中,打开激光器(出射功率P=50mW),使得从波片的出射光可以充分照射在玻璃基板上。保持光路稳定及无杂散光影响的环境,曝光10分钟。
(3)将曝光后的玻璃基板取出,置于匀胶机上,旋涂以20%浓度溶的UCL-P100溶液。匀胶机先以500RPM进行5秒预旋转,然后以1500RPM旋转40秒。然后在100℃下进行10分钟的软烘烤。该过程产生厚度约为1.6μm的UCL-P100液晶膜层。
(4)将旋涂液晶后的玻璃基板放入紫外固化箱中照紫外光固化约10分钟,使单个液晶分子之间相互联结,形成高分子膜层,固定液晶分子取向,偏振光栅制作完成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811184443.5A CN109116635A (zh) | 2018-10-11 | 2018-10-11 | 一种液晶偏振光栅制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811184443.5A CN109116635A (zh) | 2018-10-11 | 2018-10-11 | 一种液晶偏振光栅制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109116635A true CN109116635A (zh) | 2019-01-01 |
Family
ID=64857933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811184443.5A Pending CN109116635A (zh) | 2018-10-11 | 2018-10-11 | 一种液晶偏振光栅制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109116635A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110031967A (zh) * | 2019-05-18 | 2019-07-19 | 深圳市麓邦技术有限公司 | 光学镜片组、光束扫描器及其光束扫描方法 |
CN110058340A (zh) * | 2019-05-10 | 2019-07-26 | 中国科学院长春光学精密机械与物理研究所 | 一种液晶偏振光栅制备方法 |
CN110221444A (zh) * | 2019-06-06 | 2019-09-10 | 深圳市麓邦技术有限公司 | 成像系统 |
CN111999933A (zh) * | 2020-09-14 | 2020-11-27 | 北京航空航天大学 | 一种液晶红外偏振光栅及其制备方法 |
CN112114458A (zh) * | 2020-09-14 | 2020-12-22 | 北京航空航天大学 | 一种液晶偏振光栅周期调控方法 |
CN113406824A (zh) * | 2020-03-17 | 2021-09-17 | 苏州大学 | 偏振周期角度连续可调的图案化液晶光取向装置及方法 |
CN113504598A (zh) * | 2021-07-16 | 2021-10-15 | 西北工业大学 | 一种基于一次性曝光的液晶薄膜消偏器及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1080729A (zh) * | 1992-06-23 | 1994-01-12 | 菲利浦电子有限公司 | 对偏振敏感的分束器及制造该分束器和含该分束器的磁光扫描器的方法 |
JP2005292241A (ja) * | 2004-03-31 | 2005-10-20 | Dainippon Ink & Chem Inc | 光学異方体及びその製造方法 |
CN101034180A (zh) * | 2007-04-26 | 2007-09-12 | 中国科学院物理研究所 | 一种双折射硼酸盐系晶体的用途 |
CN106959547A (zh) * | 2017-03-09 | 2017-07-18 | 苏州晶萃光学科技有限公司 | 一种液晶光束偏折与扫描器及方法 |
CN107966885A (zh) * | 2017-12-19 | 2018-04-27 | 中国兵器装备研究院 | 一种可制造大口径液晶偏振光栅器件的曝光装置及方法 |
-
2018
- 2018-10-11 CN CN201811184443.5A patent/CN109116635A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1080729A (zh) * | 1992-06-23 | 1994-01-12 | 菲利浦电子有限公司 | 对偏振敏感的分束器及制造该分束器和含该分束器的磁光扫描器的方法 |
JP2005292241A (ja) * | 2004-03-31 | 2005-10-20 | Dainippon Ink & Chem Inc | 光学異方体及びその製造方法 |
CN101034180A (zh) * | 2007-04-26 | 2007-09-12 | 中国科学院物理研究所 | 一种双折射硼酸盐系晶体的用途 |
CN106959547A (zh) * | 2017-03-09 | 2017-07-18 | 苏州晶萃光学科技有限公司 | 一种液晶光束偏折与扫描器及方法 |
CN107966885A (zh) * | 2017-12-19 | 2018-04-27 | 中国兵器装备研究院 | 一种可制造大口径液晶偏振光栅器件的曝光装置及方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110058340A (zh) * | 2019-05-10 | 2019-07-26 | 中国科学院长春光学精密机械与物理研究所 | 一种液晶偏振光栅制备方法 |
CN110058340B (zh) * | 2019-05-10 | 2021-08-17 | 中国科学院长春光学精密机械与物理研究所 | 一种液晶偏振光栅制备方法 |
CN110031967A (zh) * | 2019-05-18 | 2019-07-19 | 深圳市麓邦技术有限公司 | 光学镜片组、光束扫描器及其光束扫描方法 |
CN110221444A (zh) * | 2019-06-06 | 2019-09-10 | 深圳市麓邦技术有限公司 | 成像系统 |
CN110221444B (zh) * | 2019-06-06 | 2021-03-26 | 深圳市麓邦技术有限公司 | 成像系统 |
CN113406824A (zh) * | 2020-03-17 | 2021-09-17 | 苏州大学 | 偏振周期角度连续可调的图案化液晶光取向装置及方法 |
CN113406824B (zh) * | 2020-03-17 | 2023-02-21 | 苏州大学 | 偏振周期角度连续可调的图案化液晶光取向装置及方法 |
CN111999933A (zh) * | 2020-09-14 | 2020-11-27 | 北京航空航天大学 | 一种液晶红外偏振光栅及其制备方法 |
CN112114458A (zh) * | 2020-09-14 | 2020-12-22 | 北京航空航天大学 | 一种液晶偏振光栅周期调控方法 |
CN111999933B (zh) * | 2020-09-14 | 2021-07-06 | 北京航空航天大学 | 一种液晶红外偏振光栅及其制备方法 |
CN113504598A (zh) * | 2021-07-16 | 2021-10-15 | 西北工业大学 | 一种基于一次性曝光的液晶薄膜消偏器及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109116635A (zh) | 一种液晶偏振光栅制备方法 | |
Zang et al. | Polarization encoded color image embedded in a dielectric metasurface | |
US10031424B2 (en) | Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays | |
Li et al. | Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal | |
US9983479B2 (en) | Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays | |
Wang et al. | Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces | |
US8264623B2 (en) | Liquid crystal geometrical phase optical elements and a system for generating and rapidly switching helical modes of an electromagnetic wave, based on these optical elements | |
Jiang et al. | Liquid crystal Pancharatnam–Berry micro‐optical elements for laser beam shaping | |
CN110646992B (zh) | 一种双周期复合液晶偏振光栅 | |
JP2015532468A (ja) | 幾何学的位相ホログラムの製造のための直接書き込みリソグラフィ | |
Li et al. | Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces | |
CN111999933B (zh) | 一种液晶红外偏振光栅及其制备方法 | |
US20160161648A1 (en) | Method of fabricating large area birefringent grating films | |
Wen et al. | Shortening focal length of 100‐mm aperture flat lens based on improved sagnac interferometer and bifacial liquid crystal | |
JP2021043295A (ja) | 偏光回折素子と、これを用いたベクトルビームのモード検出システム | |
Liu et al. | Two‐Step Photoalignment with High Resolution for the Alignment of Blue Phase Liquid Crystal | |
Zhang et al. | Helicity multiplexed spin‐orbit interaction in metasurface for colorized and encrypted holographic display | |
Feng et al. | Direct Emission of Focused Terahertz Vortex Beams Using Indium‐Tin‐Oxide‐Based Fresnel Zone Plates | |
Chen et al. | Interference-free and single exposure to generate continuous cycloidal alignment for large-area liquid crystal devices | |
Liu et al. | Computing Liquid‐Crystal Photonics Platform Enabled Wavefront Sensing | |
CN112114458B (zh) | 一种液晶偏振光栅周期调控方法 | |
CN110850685B (zh) | 一种液晶计算全息图的曝光方法和装置 | |
Meng et al. | Large aperture and defect-free liquid crystal planar optics enabled by high-throughput pulsed polarization patterning | |
Modin et al. | Spatial Photo‐Patterning of Nematic Liquid Crystal Pretilt and its Application in Fabricating Flat Gradient‐Index Lenses | |
Li et al. | Broadband orbital angular momentum manipulation using liquid crystal thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190101 |
|
WD01 | Invention patent application deemed withdrawn after publication |