CN109115339B - 一种基于aotf和强度调制高速高光谱全偏振成像装置及方法 - Google Patents

一种基于aotf和强度调制高速高光谱全偏振成像装置及方法 Download PDF

Info

Publication number
CN109115339B
CN109115339B CN201810469091.1A CN201810469091A CN109115339B CN 109115339 B CN109115339 B CN 109115339B CN 201810469091 A CN201810469091 A CN 201810469091A CN 109115339 B CN109115339 B CN 109115339B
Authority
CN
China
Prior art keywords
phase retarder
polarizer
acousto
aotf
tunable filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810469091.1A
Other languages
English (en)
Other versions
CN109115339A (zh
Inventor
张瑞
陈媛媛
李克武
景宁
王志斌
解琨阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201810469091.1A priority Critical patent/CN109115339B/zh
Publication of CN109115339A publication Critical patent/CN109115339A/zh
Application granted granted Critical
Publication of CN109115339B publication Critical patent/CN109115339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明涉及光谱偏振成像技术领域,更具体而言,涉及一种基于AOTF和强度调制的高速高光谱全偏振成像方法及装置,该装置通过在AOTF前加两个相位延迟器对被测光谱进行偏振强度调制,对AOTF获得偏振强度调制后的光谱进行傅里叶反变换,得到自相关函数,使Stokes参量各元素调制在不同频段上,截取对应频段信号进行解调获得Stokes参量各元素光谱,结合AOTF光谱成像实现高速高光谱全偏振成像测量。该方法偏振解调过程为纯数学计算过程,在测量中偏振调制无需额外花费时间,整个光谱全偏振成像时间与普通AOTF光谱成像时间相当,提高了系统的时间分辨率。

Description

一种基于AOTF和强度调制高速高光谱全偏振成像装置及方法
技术领域
本发明涉及光谱偏振成像技术领域,更具体而言,涉及一种基于AOTF和强度调制的高速高光谱全偏振成像方法及装置。
背景技术
光谱偏振成像技术是目前国际上先进的光学多维探测技术之一,该技术是一种集二维空间图像、一维光谱和一维偏振于一体的四维信号获取技术,光谱偏振成像技术可提供被测目标在空间图像、光强、光谱和偏振四个特征,大大提高被测目标的信息量。因此,在对物质进行分类、分析和识别方面有显著的优势,在大气遥感、太空探测、化学分析、生物医学诊断、国防等领域都得到了广泛的应用。光的偏振特性主要用Stokes参量(I,Q,U,V)T表示,因此,对Stokes参量测量具有非常重要的意义。
由于声光可调谐滤光器(Acousto-optic Tunable Filter,AOTF)为纯电控调制器件,具有体积小、无运动部件、调谐速度快、扫描范围宽、衍射效率高、易于系统集成、环境适应性好等优点,被成像光谱偏振技术广泛应用,其中目前主要是结合液晶可变延迟器(Liquid Crystal Variable Retarde,LCVR)偏振调制方法,实现成像光谱偏振探测。但由于LCVR的光谱范围窄、温漂严重,导致该方法稳定性下降、环境适应性差,进而偏振测量精度下降,且由于各波长下需对LCVR相位延迟进行调节,导致光谱偏振成像测量时间较长,系统时间分辨率低。
发明内容
为了克服现有技术中所存在的不足,本发明提供一种基于AOTF和强度调制高速高光谱全偏振成像装置及方法,解决现有技术中时间分辨率低、稳定性差、温漂严重等问题。
为了解决上述技术问题,本发明所采用的技术方案为:
一种基于AOTF和强度调制高速高光谱全偏振成像装置,该装置包括前置无焦光学系统,第一相位延迟器、第二相位延迟器、第一偏振器、声光可调谐滤光器、第二偏振器、成像透镜和高速CCD相机,入射光依次通过前置无焦光学系统,第一相位延迟器、第二相位延迟器、第一偏振器、声光可调谐滤光器、第二偏振器和成像透镜,最终被高速CCD相机探测。
所述前置无焦光学系统包括第一透镜、第二透镜和第三透镜。
所述前置无焦光学系统采用无焦系统,实现不同目标以不同角度入射第一相位延迟器、第二相位延迟器和声光可调谐滤光器,并成像在CCD相机不同的象元上,这有利于根据象元位置确定入射第一相位延迟器和第二相位延迟器的角度,进而精确获得该角度下的第一相位延迟器和第二相位延迟器相位延迟,提高偏振测量精度。
所述前置无焦光学系统将视场角压缩到声光可调谐滤光器允许的视场角±3°内。
所述第一相位延迟器、第二相位延迟器第一偏振器和第二偏振器与参考方向夹角分别为0°、45°、0°和-45°,第一偏振器与第二偏振器的偏振方向完全正交,消除声光可调谐滤光器的0级和-1级光对光谱成像的影响,第一偏振器是强度调制所必须的元件。
所述声光可调谐滤光器包括声光晶体和压电换能器。
根据CCD相机成像象元位置确定入射声光可调谐滤光器的角度,进而修正不同入射角声光可调谐滤光器衍射中心波长不同所导致的光谱测量精度低的问题。
一种基于AOTF和强度调制高速高光谱全偏振成像方法,所述测量方法为:入射光经前置无焦光学系统以一定入射角射出,经第一相位延迟器和第二相位延迟器进行强度调制,进入第一偏振器变成线偏振光,通过声光可调谐滤光器获得一定波长的输出光,经第二偏振器出射光强,通过成像透镜在高速CCD相机成像。
所述声光可调谐滤光器光谱的波数扫描步长为:
Figure BDA0001662629320000031
其中L1为第一相位延迟器的光程差。
与现有技术相比,本发明所具有的有益效果为:
本发明提供一种基于AOTF和强度调制高速高光谱全偏振成像装置及方法,通过在AOTF前加两个相位延迟器对被测光谱进行偏振强度调制,对AOTF获得偏振强度调制后的光谱进行傅里叶反变换,得到自相关函数,使Stokes参量各元素调制在不同频段上,截取对应频段信号进行解调获得Stokes参量各元素光谱,结合AOTF光谱成像实现高速高光谱全偏振成像测量。该方法偏振解调过程为纯数学计算过程,在测量中偏振调制无需额外花费时间,整个光谱全偏振成像时间与普通AOTF光谱成像时间相当,提高了系统的时间分辨率。
附图说明
图1为本发明提供的一种基于AOTF和强度调制高速高光谱全偏振成像装置示意图;
图2为入射Stokes参量光谱;
图3为经AOTF获得的强度调制光谱;
图4为解调复原I与Q光谱;
图5为解调复原U与V光谱。
图1中:1为前置无焦光学系统、11为第一透镜、12为第二透镜、13为第三透镜、2为第一相位延迟器、3为第二相位延迟器、4为第一偏振器、5为声光可调谐滤光器、51为声光晶体、52为压电换能器、6为第二偏振器、7为成像透镜、8为高速CCD相机;
图4中:a为入射光谱I、b为入射光谱Q、c为反演光谱I、d为反演光谱Q;
图5中:e为入射光谱U、f为入射光谱V、g为反演光谱U、h为反演光谱V。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种基于AOTF和强度调制高速高光谱全偏振成像装置,该装置包括前置无焦光学系统1,第一相位延迟器2、第二相位延迟器3、第一偏振器4、声光可调谐滤光器5、第二偏振器6、成像透镜7和高速CCD相机8。所述前置无焦光学系统1采用无焦系统,包括第一透镜11、第二透镜12和第三透镜13,前置无焦光学系统1将视场角压缩到声光可调谐滤光器5允许的视场角±3°内。所述第一相位延迟器2、第二相位延迟器3第一偏振器4和第二偏振器6与参考方向夹角分别为0°、45°、0°和-45°,第一偏振器4与第二偏振器6的偏振方向完全正交。所述声光可调谐滤光器5包括声光晶体51和压电换能器52。根据CCD相机成像象元位置确定入射声光可调谐滤光器5的角度,进而修正不同入射角声光可调谐滤光器5衍射中心波长不同所导致的光谱测量精度低的问题。
一种基于AOTF和强度调制高速高光谱全偏振成像方法,所述测量方法为:入射光经前置无焦光学系统1以一定入射角射出,经第一相位延迟器2和第二相位延迟器3进行强度调制,进入第一偏振器4变成线偏振光,通过声光可调谐滤光器5获得一定波长的输出光,经第二偏振器6出射光强,通过成像透镜7被高速CCD相机8接收。所述声光可调谐滤光器5光谱的波数扫描步长为:
Figure BDA0001662629320000051
其中L1为第一相位延迟器2的光程差。
相位延迟器2对应的Mueller矩阵为:
Figure BDA0001662629320000052
相位延迟器3对应的Mueller矩阵为:
Figure BDA0001662629320000053
第一偏振器4对应的Mueller矩阵为:
Figure BDA0001662629320000054
其中,σ为波数;
Figure BDA0001662629320000055
Figure BDA0001662629320000056
分别为波数σ下CCD象元(x,y)位置对应的相位延迟器2的相位延迟和相位延迟器3的相位延迟,具体如下:
Figure BDA0001662629320000057
其中,L1(x,y)和L2(x,y)分别为CCD象元(x,y)位置对应的相位延迟器1光程差和相位延迟器2光程差。
入射光Stokes参量元素光谱S=[I(σ,x,y),Q(σ,x,y),U(σ,x,y),V(σ,x,y)]T经过整个系统,到达CCD象元(x,y)处的Stokes参量为S'=[I'(σ,x,y),Q'(σ,x,y),U'(σ,x,y),V'(σ,x,y)]T满足:
S'=η(σ,x,y)MPMR2MR1S (2)
其中,η(σ,x,y)为CCD象元(x,y)位置对应AOTF在光波数为σ时+1级的衍射效率。由于CCD只能探到Stokes参量总光强I'(σ,x,y),将Mueller矩阵带入式(2)后得到CCD探测器象元(x,y)处得到的光强为:
Figure BDA0001662629320000061
令IUV(σ,x,y)=U(σ,x,y)+iV(σ,x,y),因此:
Figure BDA0001662629320000062
将(4)和(1)式带入(3)式可得:
Figure BDA0001662629320000063
由(5)式可知,经过第一相位延迟器2和第二相位延迟器3输出的光强谱是7个不同频率的已调制信号线性叠加,其中载波中心频率分别为:[L2(x,y)+L1(x,y)]、-L2(x,y)、-[L2(x,y)-L1(x,y)]、0、[L2(x,y)-L1(x,y)]、L2(x,y)和[L2(x,y)+L1(x,y)]。
对(5)式进行傅里叶反变换可得其自相关函数为:
Figure BDA0001662629320000064
其中,
Figure BDA0001662629320000065
由(5)、(6)和(7)式可得,截取(6)式中的A0[h(x,y)]、A1[h(x,y)-(L2(x,y)-L1(x,y))]和A2[h(x,y)-L2(x,y)]三项可计算得入射光的Stokes参量各元素光谱为:
Figure BDA0001662629320000071
在本实施例中,基于AOTF和强度调制的高速高光谱全偏振成像方法的具体参数如下:
延迟器2的垂直入射光程差L1=25μm;
延迟器3的垂直入射光程差L2=50μm;
系统光谱的波数范围:5000cm-1-2000cm-1
AOTF光谱的波数扫描步长:57cm-1
垂直入射光Stokes参量I、Q、U、V的光谱如图2所示,将上述参数带入,经整个强度调制和AOTF测得的光谱带入(3)式如图3所示,经过(6)式和(8)式解调出的Stokes参量I、Q、U、V的光谱如图4和图5所示(图4中入射光谱I与反演光谱I基本重合,入射光谱Q与反演光谱Q基本重合,图5中入射光谱U与反演光谱U基本重合,入射光谱V与反演光谱V基本重合),可看出解调复原的Stokes参量中各元素的光谱与原始光谱基本一致。其他不同目标以不同入射角入射,以同样的方式可调制解调出被测全偏振光谱;该方法偏振测量需要旋转任何部件、无需加电、光谱全偏振成像与AOTF光谱成像测量时间相同,可实现高速高光谱全偏振成像测量。
基于AOTF和强度调制的光谱偏振成像方法中,偏振强度调制是一种静态调制方法,无需选择加电,并且偏振解调过程为纯数学计算过程,在测量中偏振调制无需额外花费时间,整个光谱全偏振成像时间与普通AOTF光谱成像时间相当,提高了系统的时间分辨率,并且可测得Stokes参量I、Q、U和V四元素光谱,实现全偏振探测。最终实现高速高光谱全偏振成像测量。
上面仅对本发明的较佳实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化,各种变化均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于AOTF和强度调制高速高光谱全偏振成像装置,其特征在于:该装置包括前置无焦光学系统(1),第一相位延迟器(2)、第二相位延迟器(3)、第一偏振器(4)、声光可调谐滤光器(5)、第二偏振器(6)、成像透镜(7)和高速CCD相机(8),入射光依次通过前置无焦光学系统(1),第一相位延迟器(2)、第二相位延迟器(3)、第一偏振器(4)、声光可调谐滤光器(5)、第二偏振器(6)和成像透镜(7),最终被高速CCD相机(8)探测;所述前置无焦光学系统(1)包括第一透镜(11)、第二透镜(12)和第三透镜(13);所述前置无焦光学系统(1)采用无焦系统;所述前置无焦光学系统(1)将视场角压缩到声光可调谐滤光器(5)允许的视场角±3º内;
入射光经前置无焦光学系统(1)以一定入射角射出,经第一相位延迟器(2)和第二相位延迟器(3)进行强度调制,进入第一偏振器(4)变成线偏振光,通过声光可调谐滤光器(5)获得一定波长的输出光,经第二偏振器(6)出射光强,通过成像透镜(7)在高速CCD相机(8)成像;
入射光的Stokes参量各元素光谱为:
Figure DEST_PATH_IMAGE001
所述声光可调谐滤光器(5)光谱的波数扫描步长为:
Figure 223248DEST_PATH_IMAGE002
,其中L 1为第一相位延迟器(2)的光程差;
相位延迟具体计算如下:
Figure DEST_PATH_IMAGE003
,其中,σ为波数;
Figure 327339DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
分别为波数σ下CCD象元(x,y)位置对应的相位延迟器2的相位延迟和相位延迟器3的相位延迟,L 1(x,y)和L 2(x,y)分别为CCD象元(x,y)位置对应的相位延迟器1光程差和相位延迟器2光程差。
2.根据权利要求1所述的一种基于AOTF和强度调制高速高光谱全偏振成像装置,其特征在于:所述第一相位延迟器(2)、第二相位延迟器(3)第一偏振器(4)和第二偏振器(6)与参考方向夹角分别为0°、45°、0°和-45°,第一偏振器(4)与第二偏振器(6)的偏振方向完全正交。
3.根据权利要求1所述的一种基于AOTF和强度调制高速高光谱全偏振成像装置,其特征在于:所述声光可调谐滤光器(5)包括声光晶体(51)和压电换能器(52)。
4.根据权利要求1所述的一种基于AOTF和强度调制高速高光谱全偏振成像装置,其特征在于:根据CCD相机(8)成像象元位置确定入射声光可调谐滤光器(5)的角度。
CN201810469091.1A 2018-05-16 2018-05-16 一种基于aotf和强度调制高速高光谱全偏振成像装置及方法 Active CN109115339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810469091.1A CN109115339B (zh) 2018-05-16 2018-05-16 一种基于aotf和强度调制高速高光谱全偏振成像装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810469091.1A CN109115339B (zh) 2018-05-16 2018-05-16 一种基于aotf和强度调制高速高光谱全偏振成像装置及方法

Publications (2)

Publication Number Publication Date
CN109115339A CN109115339A (zh) 2019-01-01
CN109115339B true CN109115339B (zh) 2021-04-20

Family

ID=64822566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810469091.1A Active CN109115339B (zh) 2018-05-16 2018-05-16 一种基于aotf和强度调制高速高光谱全偏振成像装置及方法

Country Status (1)

Country Link
CN (1) CN109115339B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715731B (zh) * 2019-10-15 2021-10-22 西安应用光学研究所 基于aotf与旋光晶体组合的全线偏振光谱成像装置
CN111175239B (zh) * 2020-01-19 2021-01-15 北京科技大学 深度学习下的彩绘类文物成像高光谱无损检测与识别系统
CN111982471B (zh) * 2020-08-17 2022-08-26 桂林电子科技大学 一种基于空间调制偏振成像系统检测滤光片带宽的方法
CN111982287B (zh) * 2020-08-17 2022-09-09 桂林电子科技大学 一种可谐调带宽入射光校正空间调制偏振成像参数的方法
CN112134618B (zh) * 2020-09-23 2022-04-15 京东方科技集团股份有限公司 一种基于内窥镜的偏振光解码通信方法
CN113138467B (zh) * 2021-04-15 2023-06-13 西北农林科技大学 一种基于lcvr的压缩感知高光谱偏振成像方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828451A (en) * 1997-09-30 1998-10-27 Northrop Grumman Corporation Spectral imaging system and method employing an acousto-optic tunable filter for wavelength selection with increased field of view brightness
CN102135450A (zh) * 2010-01-21 2011-07-27 中国科学院西安光学精密机械研究所 基于液晶可调谐滤光片的静态全斯托克斯成像光谱偏振仪
CN105136295A (zh) * 2015-09-17 2015-12-09 中北大学 一种aotf同一幅图中光谱不均匀的解决方法及装置
CN105157837A (zh) * 2015-05-28 2015-12-16 中北大学 一种基于声光滤光和电光相位调谐的高光谱全偏振成像仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606217B (zh) * 2016-01-08 2017-10-20 西安交通大学 一种图像、光谱、偏振态一体化获取装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828451A (en) * 1997-09-30 1998-10-27 Northrop Grumman Corporation Spectral imaging system and method employing an acousto-optic tunable filter for wavelength selection with increased field of view brightness
CN102135450A (zh) * 2010-01-21 2011-07-27 中国科学院西安光学精密机械研究所 基于液晶可调谐滤光片的静态全斯托克斯成像光谱偏振仪
CN105157837A (zh) * 2015-05-28 2015-12-16 中北大学 一种基于声光滤光和电光相位调谐的高光谱全偏振成像仪
CN105136295A (zh) * 2015-09-17 2015-12-09 中北大学 一种aotf同一幅图中光谱不均匀的解决方法及装置

Also Published As

Publication number Publication date
CN109115339A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN109115339B (zh) 一种基于aotf和强度调制高速高光谱全偏振成像装置及方法
Skumanich et al. The calibration of the advanced Stokes polarimeter
CN108955887B (zh) 基于lctf的全偏振高光谱压缩感知成像方法
CN211696676U (zh) 一种旋转式光谱成像-偏振测量系统
Cao et al. A prism-mask system for multispectral video acquisition
CN100588920C (zh) 变焦距全偏振光谱成像探测系统
CN107741274B (zh) 一种微型偏振光谱成像探测系统及方法
KR20150004858A (ko) 스펙트럼 편광 이미징 센서
CN108007574B (zh) 分辨率可调型快照式图像光谱线偏振探测装置及方法
CN103954360A (zh) 一种基于偏振阵列的光谱偏振装置及探测方法
CN109856058B (zh) 一种高分辨率实时偏振光谱分析装置及方法
CN204963859U (zh) 遥感参数相机
CN109764964A (zh) 一种推扫式偏振光谱成像微系统、成像方法及制备方法
CN103743485A (zh) 用于同步探测地物光与天空光的全偏振光谱成像系统
US11125621B2 (en) Method and system for polarimetry using static geometric polarization manipulation
CN106525242A (zh) 一种可用于太阳偏振斯托克斯矢量实时测量的装置
CN203275287U (zh) 便携式滤光片色轮型多光谱成像系统
CN108332853A (zh) 一种基于光谱的车载360度全景目标识别系统
CN105444888A (zh) 一种高光谱成像系统的色差补偿方法
Zhang et al. Modular division of focal plane polarimeter system
CN209639829U (zh) 一种推扫式偏振光谱成像微系统
Matchko et al. High-speed imaging chopper polarimetry
Yongqiang et al. Design and performance analysis of infrared micro-polarizer array
CN112781728B (zh) 精确求解结合压缩感知的全偏振高光谱成像方法
CN211504402U (zh) 一种基于渐变薄膜滤光片的宽波段高光谱相机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant