CN109115252A - 一种基于光纤环形腔衰荡的光栅检测装置 - Google Patents

一种基于光纤环形腔衰荡的光栅检测装置 Download PDF

Info

Publication number
CN109115252A
CN109115252A CN201811104094.1A CN201811104094A CN109115252A CN 109115252 A CN109115252 A CN 109115252A CN 201811104094 A CN201811104094 A CN 201811104094A CN 109115252 A CN109115252 A CN 109115252A
Authority
CN
China
Prior art keywords
fiber
module
chamber
fpga controller
electrooptic modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811104094.1A
Other languages
English (en)
Inventor
张丽
崔丽琴
程鹏
邓霄
林洪太
潘丽鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201811104094.1A priority Critical patent/CN109115252A/zh
Publication of CN109115252A publication Critical patent/CN109115252A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明属于光纤传感技术领域,提出了一种基于光纤环形腔衰荡的光栅检测装置,包括FPGA控制器,DFB激光器、激光驱动源、整形滤波模块、偏振控制器、电光调制器、掺铒光纤放大器、光纤环形衰荡腔、光电探测器、信号放大器和AD转换电路;FPGA控制器内设置有激光控制模块和脉冲信号发生模块,激光控制模块的输出端与激光驱动源连接,脉冲信号发生模块通过整形滤波模块与电光调制器连接,DFB激光器发出的光信号经偏振控制器后、电光调制器、掺铒光纤放大器、光纤环形衰荡腔后被光电探测器探测,光电探测器输出的电信号经信号放大器、AD转换电路后,输入到FPGA控制器计算得到外界应变P。本发明集成度高,灵活性好,可广泛应用于光纤传感器领域。

Description

一种基于光纤环形腔衰荡的光栅检测装置
技术领域
本发明属于光纤传感技术领域,具体涉及一种基于光纤环形腔衰荡的光栅检测装置。
背景技术
过去30年中,光纤环形腔衰荡光谱(Fiber Loop Down Spectroscopy,FLRDS)技术在化学、环境、食品安全和医疗应用等领域已取得了巨大进步和成功的应用。21世纪初,Stewart等首次提出了FLRDS技术。FLRDS是一种新颖而优越的灵敏吸收光谱技术,其使用光纤环路而不是高反射镜作为谐振腔,不仅具有一般光纤传感器的优点,而且具有独特的优势,如快速检测、实时响应、免受光源功率波动影响、减少对超高反射镜的依赖等。由于其在光纤传感领域的巨大潜力,FLRDS技术已被广泛应用于痕量物质、浓度、磁场、压力、应变、温度和偏振等物理量的测量。
实际设计的FLRDS系统中,光纤作为传感元件,本身存在一定的损耗,并且对待测物理量的感应不够好,会增大衰荡时间,对实验结果造成影响。因此,装置中的光纤损耗是制约FLRDS应用的重要因素。目前的光纤衰荡腔系统中,尚未提出对总光纤损耗的减小提出有效的解决办法。而且,在FLRDS系统中,对数据的采集和对系统的控制方面,现有技术中,光源通过采用恒流源来进行控制,并通过示波器采集数据,数据采集效率低,控制不方便。因此需要提出一种基于光纤环形腔衰荡的光栅检测装置,以解决FLRDS系统数据采集和系统控制方面的不足。
发明内容
本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种基于光纤环形腔衰荡的光栅检测装置,降低大量成本的同时又使整套设备变得轻便,数据采集也变得高效快捷。
为了解决上述技术问题,本发明采用的技术方案为:一种基于光纤环形腔衰荡的光栅检测装置,包括FPGA控制器,DFB激光器、激光驱动源、整形滤波模块、偏振控制器、电光调制器、掺铒光纤放大器、光纤环形衰荡腔、光电探测器、信号放大器和AD转换电路;所述FPGA控制器内设置有激光控制模块和脉冲信号发生模块,其中,所述激光控制模块的输出端与所述激光驱动源的控制端连接,用于控制所述激光驱动源,使其输出恒流信号,对DFB激光器进行激励,使其发出连续光信号,该连续光信号经偏振控制器后,进入所述电光调制器;所述脉冲信号发生模块的输出端通过所述整形滤波模块与所述电光调制器的控制端连接,用于输出PWM脉冲信号,所述PWM脉冲信号经所述整形滤波模块后输出给电光调制器,进而对进入所述电光调制器的连续光进行调制,经电光调制器调制形成的脉冲光经所述掺铒光纤放大器进行功率放大后,入射到所述光纤环形衰荡腔中进行往返衰荡,从所述光纤环形衰荡腔出射的脉冲光信号被所述光电探测器探测,所述光电探测器输出的电信号经所述信号放大器、AD转换电路后,输入到所述FPGA控制器,所述FPGA控制器用于根据所述光电探测器的探测信号,计算出所述光纤环形衰荡腔上的外界应变P。
所述光纤环形衰荡腔包括第一光纤耦合器,第二光纤耦合器、单模光纤SMF、光纤布拉格光栅和光隔离器,所述第一光纤耦合器和第二光纤耦合器均为分光比为10:90的1×2光纤耦合器,所述第一光纤耦合器的10%端口为所述光纤环形衰荡腔的输入端,所述第二光纤耦合器的10%端口为所述光纤环形衰荡腔的输出端,所述第一光纤耦合器和第二光纤耦合器的单端端口连接在一起,所述第一光纤耦合器的90%端口通过所述第一光纤与所述第二光纤耦合器的90%端口连接形成光纤环形腔,所述光纤布拉格光栅和光隔离器熔接在所述单模光纤SMF中。
所述DFB激光器内设置有热敏电阻和半导体制冷器,所述FPGA控制器内还设置有恒温模块,所述热敏电阻的输出端通过AD转换电路与所述FPGA控制器内的恒温模块连接,所述FPGA控制器内的恒温模块的输出端与所述半导体制冷器的控制端连接,所述恒温模块用于根据所述热敏电阻的测量值,控制半导体制冷器的电流,进而控制DFB激光器的温度,使其保持在恒温状态。
所述的一种基于光纤环形腔衰荡的光栅检测装置,还包括可调电压源,所述FPGA控制器内还设置有电压控制模块,所述电压控制模块的输出端与所述可调电压源的控制端连接,所述可调电压源用于给所述电光调制EOM提供偏置电压,所述电压控制模块用于控制所述可调电压源的输出电压,从而调节所述电光调制器的偏置电压。
所述FPGA控制器包括读FIFO、写FIFO、SDRAM缓存模块、和NOISⅡ软核,所述SDRAM缓存模块用于存储所述AD转换电路输入的探测信号。
所述外界应变P的计算公式为:
其中,τ0表示所述光纤环形衰荡腔在初始状态的衰荡时间,τ表示所述光纤环形衰荡腔在应变P下的衰荡时间,K表示与应变的系数。
本发明与现有技术相比具有以下有益效果:
1、本发明通过FPGA控制器控制激光驱动源来对DFB激光器来进行驱动,FPGA控制器可以对DFB激光器进行波长调谐,从而得到波长可调谐的激光器;并且通过FPGA控制器内置的脉冲信号发生模块来生成脉冲控制信号,从而控制电光调制器EOM的输入脉冲信号,对DFB激光器发出的激光调制进行控制,使得本发明的检测装置集成度高,系统的灵活性和可靠性大大提高;
2、本发明通过热敏电阻探测激光器的温度,经A/D转换电路输入给FPGA控制器,由FPGA控制器控制半导体制冷器对激光器进行恒温控制,降低了温度引起的误差,抑制了温度对波长的漂移,简单且易于调试,容易进行数字控制,大大提高了系统的灵活性和可靠性;
3、在光纤环形衰荡腔内熔接入一段FBG光栅代替光纤作为传感原件,用光栅替换光纤作为传感元件可以减小损耗,缩短衰荡时间,可以获得更精确的测量结果,提高了灵敏度;
4、将恒流源源驱动和信号采集的部分由电路模块代替,更加的方便快捷,有利于产品化发展。
附图说明
图1为本发明实施例提出的一种基于光纤环形腔衰荡的光栅检测装置的结构示意图;图中实线表示电路连接,虚线表示光束路径。
图2为本发明中光纤环形衰荡腔的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1~2所示,本发明提出了一种基于光纤环形腔衰荡的光栅检测装置,包括FPGA控制器,DFB激光器、激光驱动源、整形滤波模块、偏振控制器、电光调制器、掺铒光纤放大器、光纤环形衰荡腔、光电探测器、信号放大器、AD转换电路。
如图1所示,所述FPGA控制器内设置有激光控制模块和脉冲信号发生模块,其中,所述激光控制模块的输出端与所述激光驱动源的控制端连接,用于控制所述激光驱动源,使其输出恒流信号,对DFB激光器进行激励,发出波长为 1550nm的连续光信号,该连续光信号经偏振控制器后,进入所述电光调制器。所述脉冲信号发生模块的输出端通过所述整形滤波模块与所述电光调制器的控制端连接,用于输出PWM脉冲信号,所述PWM脉冲信号经所述整形滤波模块后输出给电光调制器,进而对进入所述电光调制器的连续光进行调制,经电光调制器调制后的光束,变成脉宽为20ns,,功率为3mW的脉冲光,该脉冲光入射到所述掺铒光纤放大器,经所述掺铒光纤放大器将脉冲光的功率放大变为50mW后,入射到所述光纤环形衰荡腔中进行往返衰荡,从所述光纤环形衰荡腔出射的脉冲光信号被所述光电探测器探测,所述光电探测器输出的电信号经所述信号放大器、AD转换电路后,输入到所述FPGA控制器,所述FPGA控制器用于根据所述光电探测器的探测信号,计算出所述光纤环形衰荡腔上的外界应变P。
其中,所述激光驱动源包括具体可以包括第一D/A转换电路和第二D/A转换电路、加法器和压控恒流源模块,所述激光控制模块具体可以为FPGA控制器内置的DDS波形发生器,其产生的三角波信号和正弦波信号,分别通过第一D/A转换电路和第二D/A转换电路转化为模拟信号后输入加法器叠加,然后送入压控恒流源模块,压控恒流源模块输出信号至DFB激光器,实现对DFB激光器的驱动。通过FPGA控制器内置的DDS波形发生器实现对激光器驱动源的控制,使得本发明中的激光驱动源比现有技术中的激光恒流源体积更小,可以实现稳定的输出。
具体地,如图1所示,本发明实施例中提出的一种基于光纤环形腔衰荡的光栅检测装置还包括可调电压源,所述FPGA控制器内还设置有电压控制模块,所述电压控制模块的输出端与所述可调电压源的控制端连接,所述可调电压源用于给所述电光调制EOM提供偏置电压,所述电压控制模块用于控制所述可调电压源的输出电压,从而调节所述电光调制器的偏置电压;则本发明不仅可以通过FPGA控制器内的脉冲信号发生模块生成脉冲信号输入到电光调制器,还可以通过FPGA控制器内的电压控制模块来控制可调电压源输送给电光调制器的偏置电压,增加了检测装置的灵活性和可靠性。
其中,所述可调电压源用于给电光调制器提供一个偏置电压,可调电压源的输出电压由FPGA控制器进行控制,因此,可以通过FPGA控制器自动调节电光调制器的偏置电压,此外,所述可调电压源还可以包括一个输出为固定5V的电压模块,该电压模块输出的5V电压用于给所述整形滤波模块供电,本发明通过可调电压源模块取代了大型的电压源器件,使功能专一而进行了最大简化。
具体地,如图1所示,本发明实施例中,所述DFB激光器内设置有热敏电阻和半导体制冷器,所述FPGA控制器内还设置有恒温模块,所述热敏电阻的输出端通过AD转换电路(图中未示出)与所述FPGA控制器内的恒温模块连接,所述FPGA控制器内的恒温模块的输出端与所述半导体制冷器的控制端连接,所述恒温模块用于根据所述热敏电阻的测量值,控制半导体制冷器的电流,进而控制DFB激光器的温度,使其保持在恒温状态。
其中,所述DFB激光器选用型号为934013C1412-42的中心波长为1550nm的DFB激光器,偏振控制器选用的是美国General Photonics生产的型号为PLC-003-S-90偏振控制器,电光调制器EOM选用的是美国JDSU公司生产的型号为X5的电光调制器,使连续光变为脉冲光。掺铒光纤放大器EDFA是上海瀚宇光纤通信技术有限公司生产的型号为HA4123的EDFA,其将可调激光器输出的光功率放大至+23dBm左右。光电探测器选用的是美国THORLABS公司生产的型号为DET08CFC/M的InGaAs光电探测器。
具体地,如图2所示,所述光纤环形衰荡腔包括第一光纤耦合器,第二光纤耦合器、单模光纤SMF、光纤布拉格光栅FBG和光隔离器ISO,所述第一光纤耦合器和第二光纤耦合器均为分光比为10:90的1×2光纤耦合器,所述第一光纤耦合器的10%端口为所述光纤环形衰荡腔的输入端,其与所述掺铒光纤放大器的输出端连接,所述第二光纤耦合器的10%端口为所述光纤环形衰荡腔的输出端,其输出光信号被所述光电探测器探测;所述第一光纤耦合器和第二光纤耦合器的单端端口连接在一起,所述第一光纤耦合器的90%端口通过所述单模光纤SMF与所述第二光纤耦合器的90%端口连接形成光纤环形腔,所述光纤布拉格光栅和光隔离器熔接在所述单模光纤SMF中。本实施例中,所述单模光纤长度被设为6m,选用的是康宁公司生产的单模光纤,在1550nm处的损耗大约为0.2 dB/km。两个耦合器的单端输出口连接在一起,两个90%端口和单模光纤的两端熔接在一起构成一个长度大于6m的光纤环形腔。
进一步地,如图2所示,所述FPGA控制器包括读FIFO、写FIFO、SDRAM缓存模块、和NOISⅡ软核,所述SDRAM缓存模块用于存储所述AD转换电路输入的探测信号。
本发明提出的一种基于光纤环形腔衰荡的光栅检测装置的测量原理如下:从掺铒光纤放大器出射的光脉冲,进入光纤环形衰荡腔后,在环形衰荡腔中不断的往返衰荡,每次均有一小部分的光强被光电探测器接收,光电探测器将接收到的光信号转化为电信号,经过信号处理后发送给FPGA控制器进行分析以及存储,另外一部分则继续在环形腔中往返衰减,直到脉冲的光强被衰减完。光的衰荡周期与单模光纤SMF上的应变相关,假设不施加外界应变时,当I衰减为I 0的1/e时,光纤环形衰荡腔的衰荡时间τ 0。为当外界应变P施加在光纤光栅上时,由应变P带来的附加损耗为B,衰荡时间为τ。则有:
其中K表示与应变的系数,因此,通过光电探测器测量光纤环形衰荡腔的出射信号,发送到FPGA控制器,FPGA控制器可以通过寻峰算法进行处理,得到实时衰荡时间以及无应变时的衰荡时间τ0,然后通过上述公式进行计算可以得到外界应变P。其中,寻峰算法是FPGA内的一种算法,在光学领域也是有很多应用,因此在此不做赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (6)

1.一种基于光纤环形腔衰荡的光栅检测装置,其特征在于,包括FPGA控制器,DFB激光器、激光驱动源、整形滤波模块、偏振控制器、电光调制器、掺铒光纤放大器、光纤环形衰荡腔、光电探测器、信号放大器和AD转换电路;
所述FPGA控制器内设置有激光控制模块和脉冲信号发生模块,其中,所述激光控制模块的输出端与所述激光驱动源的控制端连接,用于控制所述激光驱动源,使其输出恒流信号,对DFB激光器进行激励,使其发出连续光信号,该连续光信号经偏振控制器后,进入所述电光调制器;
所述脉冲信号发生模块的输出端通过所述整形滤波模块与所述电光调制器的控制端连接,用于输出PWM脉冲信号,所述PWM脉冲信号经所述整形滤波模块后输出给电光调制器,进而对进入所述电光调制器的连续光进行调制,经电光调制器调制形成的脉冲光经所述掺铒光纤放大器进行功率放大后,入射到所述光纤环形衰荡腔中进行往返衰荡,从所述光纤环形衰荡腔出射的脉冲光信号被所述光电探测器探测,所述光电探测器输出的电信号经所述信号放大器、AD转换电路后,输入到所述FPGA控制器,所述FPGA控制器用于根据所述光电探测器的探测信号,计算出所述光纤环形衰荡腔上的外界应变P。
2.根据权利要求1所述的一种基于光纤环形腔衰荡的光栅检测装置,其特征在于,所述光纤环形衰荡腔包括第一光纤耦合器,第二光纤耦合器、单模光纤SMF、光纤布拉格光栅和光隔离器,所述第一光纤耦合器和第二光纤耦合器均为分光比为10:90的1×2光纤耦合器,所述第一光纤耦合器的10%端口为所述光纤环形衰荡腔的输入端,所述第二光纤耦合器的10%端口为所述光纤环形衰荡腔的输出端,所述第一光纤耦合器和第二光纤耦合器的单端端口连接在一起,所述第一光纤耦合器的90%端口通过所述第一光纤与所述第二光纤耦合器的90%端口连接形成光纤环形腔,所述光纤布拉格光栅和光隔离器熔接在所述单模光纤SMF中。
3.根据权利要求1所述的一种基于光纤环形腔衰荡的光栅检测装置,其特征在于,所述DFB激光器内设置有热敏电阻和半导体制冷器,所述FPGA控制器内还设置有恒温模块,所述热敏电阻的输出端通过AD转换电路与所述FPGA控制器内的恒温模块连接,所述FPGA控制器内的恒温模块的输出端与所述半导体制冷器的控制端连接,所述恒温模块用于根据所述热敏电阻的测量值,控制半导体制冷器的电流,进而控制DFB激光器的温度,使其保持在恒温状态。
4.根据权利要求1所述的一种基于光纤环形腔衰荡的光栅检测装置,其特征在于,还包括可调电压源,所述FPGA控制器内还设置有电压控制模块,所述电压控制模块的输出端与所述可调电压源的控制端连接,所述可调电压源用于给所述电光调制EOM提供偏置电压,所述电压控制模块用于控制所述可调电压源的输出电压,从而调节所述电光调制器的偏置电压。
5.根据权利要求1所述的一种基于光纤环形腔衰荡的光栅检测装置,其特征在于,所述FPGA控制器包括读FIFO、写FIFO、SDRAM缓存模块、和NOISⅡ软核,所述SDRAM缓存模块用于存储所述AD转换电路输入的探测信号。
6.根据权利要求1所述的一种基于光纤环形腔衰荡的光栅检测装置,其特征在于,所述外界应变P的计算公式为:
其中,τ0表示所述光纤环形衰荡腔在初始状态的衰荡时间,τ表示所述光纤环形衰荡腔在应变P下的衰荡时间,K表示与应变的系数。
CN201811104094.1A 2018-09-21 2018-09-21 一种基于光纤环形腔衰荡的光栅检测装置 Pending CN109115252A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811104094.1A CN109115252A (zh) 2018-09-21 2018-09-21 一种基于光纤环形腔衰荡的光栅检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811104094.1A CN109115252A (zh) 2018-09-21 2018-09-21 一种基于光纤环形腔衰荡的光栅检测装置

Publications (1)

Publication Number Publication Date
CN109115252A true CN109115252A (zh) 2019-01-01

Family

ID=64860014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811104094.1A Pending CN109115252A (zh) 2018-09-21 2018-09-21 一种基于光纤环形腔衰荡的光栅检测装置

Country Status (1)

Country Link
CN (1) CN109115252A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077820A (zh) * 2019-12-12 2020-04-28 太原理工大学 基于SoC FPGA的电光调制器偏置电压控制系统及校准方法
CN111562005A (zh) * 2020-05-15 2020-08-21 山西大学 一种抑制电流开启波长重复扫描影响的流控crds技术
CN113050462A (zh) * 2019-12-26 2021-06-29 福州高意通讯有限公司 实现edfa光输出不中断的结构及控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871791A (zh) * 2010-06-30 2010-10-27 中国人民解放军国防科学技术大学 基于光子晶体光纤的多参量传感器及测量系统
CN102052930A (zh) * 2010-11-24 2011-05-11 中国科学院上海光学精密机械研究所 光纤光栅分布式应变传感器及其应变监测方法
CN103175558A (zh) * 2013-01-17 2013-06-26 广东电网公司电力调度控制中心 分布式光纤传感系统的参数测量装置
CN103364370A (zh) * 2013-07-03 2013-10-23 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN103913430A (zh) * 2014-04-18 2014-07-09 山西大学 基于对数运算放大器的腔衰荡光谱装置及方法
CN104950162A (zh) * 2015-07-18 2015-09-30 中国人民解放军国防科学技术大学 基于环形腔衰荡光谱技术和磁流体的光纤电流传感器
CN105067143A (zh) * 2015-07-02 2015-11-18 南京航空航天大学 一种基于拉曼放大的零差布里渊光时域反射仪
CN106872400A (zh) * 2017-02-14 2017-06-20 中国科学院化学研究所 一种宽波段可调谐光腔衰荡光谱仪
CN107302180A (zh) * 2017-06-13 2017-10-27 北京大学 自动判断并设定激光频率和功率的控制系统及其控制方法
CN108023271A (zh) * 2017-12-21 2018-05-11 太原理工大学 一种基于fpga的波长可调谐激光器
CN207557107U (zh) * 2017-12-19 2018-06-29 河南师范大学 一种基于腔内放大的腔衰荡光谱湿度测量系统
CN108332877A (zh) * 2018-01-31 2018-07-27 北京航天控制仪器研究所 一种光脉冲和光时域反射结合的光纤光栅测量装置及方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871791A (zh) * 2010-06-30 2010-10-27 中国人民解放军国防科学技术大学 基于光子晶体光纤的多参量传感器及测量系统
CN102052930A (zh) * 2010-11-24 2011-05-11 中国科学院上海光学精密机械研究所 光纤光栅分布式应变传感器及其应变监测方法
CN103175558A (zh) * 2013-01-17 2013-06-26 广东电网公司电力调度控制中心 分布式光纤传感系统的参数测量装置
CN103364370A (zh) * 2013-07-03 2013-10-23 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN103913430A (zh) * 2014-04-18 2014-07-09 山西大学 基于对数运算放大器的腔衰荡光谱装置及方法
CN105067143A (zh) * 2015-07-02 2015-11-18 南京航空航天大学 一种基于拉曼放大的零差布里渊光时域反射仪
CN104950162A (zh) * 2015-07-18 2015-09-30 中国人民解放军国防科学技术大学 基于环形腔衰荡光谱技术和磁流体的光纤电流传感器
CN106872400A (zh) * 2017-02-14 2017-06-20 中国科学院化学研究所 一种宽波段可调谐光腔衰荡光谱仪
CN107302180A (zh) * 2017-06-13 2017-10-27 北京大学 自动判断并设定激光频率和功率的控制系统及其控制方法
CN207557107U (zh) * 2017-12-19 2018-06-29 河南师范大学 一种基于腔内放大的腔衰荡光谱湿度测量系统
CN108023271A (zh) * 2017-12-21 2018-05-11 太原理工大学 一种基于fpga的波长可调谐激光器
CN108332877A (zh) * 2018-01-31 2018-07-27 北京航天控制仪器研究所 一种光脉冲和光时域反射结合的光纤光栅测量装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汤大卿 等: ""基于光纤环腔衰荡技术的光纤光栅应变传感器"", 《2009年西部光子学学术会议论文摘要集》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077820A (zh) * 2019-12-12 2020-04-28 太原理工大学 基于SoC FPGA的电光调制器偏置电压控制系统及校准方法
CN111077820B (zh) * 2019-12-12 2022-10-14 太原理工大学 基于SoC FPGA的电光调制器偏置电压控制及校准方法
CN113050462A (zh) * 2019-12-26 2021-06-29 福州高意通讯有限公司 实现edfa光输出不中断的结构及控制方法
CN111562005A (zh) * 2020-05-15 2020-08-21 山西大学 一种抑制电流开启波长重复扫描影响的流控crds技术
CN111562005B (zh) * 2020-05-15 2022-11-11 山西大学 一种抑制电流开启波长重复扫描影响的流控crds方法

Similar Documents

Publication Publication Date Title
CN109115252A (zh) 一种基于光纤环形腔衰荡的光栅检测装置
CN105758433B (zh) 一种基于布里渊光纤激光器的分布式光纤传感装置
CN103872569B (zh) 稳定掺铒光纤光源波长和功率的方法、装置及相应的光源
CN102607551B (zh) 一种消除波长变化对标度因数影响的光纤陀螺
CN106123933B (zh) 一种混沌光纤环衰荡传感装置及方法
CN207557107U (zh) 一种基于腔内放大的腔衰荡光谱湿度测量系统
CN107681423A (zh) 光纤激光器
CN203164796U (zh) 一种用于半导体激光器的温控装置
CN102494874A (zh) 一种可调激光型光纤光栅波长解调装置
CN103033489A (zh) 一种基于倾斜光纤光栅束腰放大熔接技术的pH值传感器
CN108267241B (zh) 一种基于混合型双花生结的高灵敏度光纤温度传感器
CN110196118A (zh) 一种动态温度定标自校准装置及方法
CN207300268U (zh) 光纤布拉格光栅解调装置
CN103344265B (zh) 一种光纤光栅解调仪
CN206514976U (zh) 基于光子晶体光纤的1200℃分布式布里渊光纤传感器
Silva et al. Fiber cavity ring down and gain amplification effect
CN206930377U (zh) 基于窄带激光器解调光纤光栅测温系统
CN207007372U (zh) 一种全分布式光纤温度及应力传感系统
CN206161190U (zh) 一种基于荧光强度比的光纤温度传感器
CN204924490U (zh) 光电转换模块
CN203787759U (zh) 一种掺铒光纤光源波长和功率稳定装置
CN208537052U (zh) 具有小芯径多模光纤的拉曼分布式温度传感器
CN207963952U (zh) 一种基于非对称双芯光纤的分布式双参量传感装置
CN1862352A (zh) 基于受激布里渊散射和光纤环形结构可控光脉冲延时装置
CN202857050U (zh) 基于温度及功率反馈控制的sled光源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190101

RJ01 Rejection of invention patent application after publication