CN109110867B - 一种亚铁氰化铋/异质碳复合电极的制备方法及其应用 - Google Patents

一种亚铁氰化铋/异质碳复合电极的制备方法及其应用 Download PDF

Info

Publication number
CN109110867B
CN109110867B CN201810992580.5A CN201810992580A CN109110867B CN 109110867 B CN109110867 B CN 109110867B CN 201810992580 A CN201810992580 A CN 201810992580A CN 109110867 B CN109110867 B CN 109110867B
Authority
CN
China
Prior art keywords
carbon
electrode
bismuth
graphene
heterogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810992580.5A
Other languages
English (en)
Other versions
CN109110867A (zh
Inventor
晋冠平
陈涛
彭思遥
朱守伟
王石军
高梦旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810992580.5A priority Critical patent/CN109110867B/zh
Publication of CN109110867A publication Critical patent/CN109110867A/zh
Application granted granted Critical
Publication of CN109110867B publication Critical patent/CN109110867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Abstract

本发明公开了一种亚铁氰化铋/异质碳复合电极的制备方法及其应用,是采用电泳法将预处理后的石墨烯和纳米碳管交替沉积在碳纤维上,形成导电大比表面积的异质碳载体电极,然后进行胺基化反应,以固定该电极的微观空间结构,最后采用电化学法制备亚铁氰化铋/异质碳复合电极。本发明复合电极置于染料废水中,通入空气,经紫外光协同电催化作用,能够快速降解染料废水。

Description

一种亚铁氰化铋/异质碳复合电极的制备方法及其应用
技术领域
本发明涉及一种亚铁氰化铋/异质碳复合电极的制备方法及其应用。在含盐染料有机废水中,通入空气,经紫外光协同电催化作用,该电极不仅可快速催化水中溶解氧生成过氧化氢,而且可同步催化过氧化氢生成羟基自由基,使染料废水快速降解。
背景技术
导电碳纤维因价廉易得,具有优良的物理化学稳定性及可操作性等特性,被用于均相Fenton法降解有机污染物的阴极材料(于萍等,申请号:201110185193.9;蔡巧兰等,申请号:201510185933.7;孙亚兵等,201510891770.4)。为提高反应效率,研究者还建立了紫外光协同电Fenton体系(刘拴等,201510779531.X);通过促进Fenton反应中Fe2+/Fe3+的转化和H2O2的生成,提高.OH的生成率;通过有色有机染料的敏化作用,促进其降解。此类均相Fenton法虽工艺简单,但存在下列问题:1)碳纤维表面化学惰性,还原电位较高,能耗相对较大;2)需在体系中加入Fe2+作为均相催化剂(或用铁棒作为阳极电解产生Fe2+);3)需在酸性较强的条件下进行Fenton反应(避免氢氧化铁沉淀生成)。
相对于上述均相Fenton法,非均相Fenton法直接将铁基复合材料用作阴极,无需加入大量的Fe2+,可在弱酸性溶液中进行,优势明显;但由于反应在电极界面进行,为异相反应,反应效率相对较低。因此,高效实施非均相Fenton法的关键在于发展大比表面积、高催化活性的阴极材料。现有的泡沫镍/FeOOH/活性炭粉/聚四氟乙烯复合物(陈野等,申请号:201110325181.1)、碳载纳米氧化铁复合物(孙敏等,申请号:20141016092.5)、分子印迹铁-碳气凝胶复合物(王卿宁,申请号:201710670687.3)等阴极材料虽各具优势,但仍然存在较大的发展空间。若对导电碳纤维进行功能化处理,使其同步兼具催化溶解氧生成H2O2和H2O2生成.OH的性能,将有望提高异相Fenton法的效率。
发明内容
本发明针对现有Fenton法的不足,旨在提供一种亚铁氰化铋/异质碳复合电极的制备方法及其应用。
本发明采用电泳法,将预处理后的石墨烯和纳米碳管交替沉积在碳纤维上,形成导电大比表面积的异质碳载体电极,将其胺基化处理后,采用电化学法制备亚铁氰化铋/异质碳复合电极。本发明复合电极置于染料废水中,通入空气,经紫外光协同电催化作用,能够快速降解染料废水。
本发明亚铁氰化铋/异质碳复合电极的制备方法,包括如下步骤:
步骤1:石墨烯和纳米碳管预处理
将石墨烯、纳米碳管分别与65wt%的浓硝酸按照质量比1:100的比例混合,常温下搅拌浸渍处理7小时,以消除表面杂质,洗涤并干燥后将预处理石墨烯和预处理纳米碳管分别置于分散溶剂中,获得石墨烯悬浮液以及纳米碳管悬浮液,待用。
步骤1中,所述分散溶剂为无水乙醇、丙酮、乙腈、聚羧酸、N,N-二甲基甲酰胺、聚丙烯酰胺、聚乙烯醇中的一种或两种;
步骤1中,石墨烯的质量和分散溶剂的体积比为1mg:200~2000mL;纳米碳管的质量和分散溶剂的体积比为1mg:200~2000mL。
步骤2:异质碳载体复合电极的制备
将碳纤维依次置于步骤1获得的石墨烯悬浮液、纳米碳管悬浮液中,采用电泳法,在碳纤维上交替沉积石墨烯和纳米碳管,形成导电大比表面积的异质碳载体电极,然后进行胺基化反应,以固定该电极的微观空间结构,得到的复合电极简记为TC;
步骤2中,电泳条件为:电位10~70V,电泳时间1~9分钟,交替重复沉积3~10次。
步骤2中,碳纤维质量和石墨烯悬浮液的质量体积比为1mg:10~100mL,碳纤维质量和纳米碳管悬浮液的质量体积比为1mg:10~100mL。
步骤2中,电泳沉积时,纳米碳管悬浮液和石墨烯悬浮液的浓度(mg/mL)比为1:1~1:20。
步骤2中,胺基化反应的条件为:将所述异质碳载体电极置于胺基化试剂中,在60-100℃下,回流反应8-20小时。
所述胺基化试剂为N,N-二环己基碳二亚胺、乙二胺、丁二胺、三乙醇胺中的一种或两种。
步骤3:亚铁氰化铋/异质碳复合电极的制备
将步骤2获得的TC置于铁氰化钾、硝酸铋和支持电解质的混合溶液中,电沉积生成亚铁氰化铋/异质碳复合电极,简记为BiHCF/TC。
步骤3中,电沉积条件为:双电位脉冲沉积,在电位-0.1~-0.7V下恒电位1~10秒;在电位0~0.7V下恒电位1~10秒,重复次数3~50次。
步骤3中,所述混合溶液中,铁氰化钾的浓度为0.001~0.01mol/L,硝酸铋的浓度为0.001~0.01mol/L,支持电解质的浓度为0.01~1mol/L。所述混合溶液的pH为2~6,采用HCl或氨水调节。
其中,铁氰化钾和硝酸铋的摩尔浓度比为1:1~10。
所述支持电解质为硫酸钾、硝酸钾、磷酸钾中的一种。
步骤3中,TC和混合溶液的质量体积比为1mg:20~200mL。
本发明亚铁氰化铋/异质碳复合电极的应用,是以BiHCF/TC复合电极光电催化降解染料废水,包括如下步骤:
以BiHCF/TC复合电极为工作电极,以银/氯化银为参比电极,以碳、铂或钛片为对电极,组成三电极体系;在染料废水中加入支持电解质,通入空气,接通电源,打开紫外灯,经紫外光协同电催化作用,快速催化溶解氧生成H2O2,同步催化H2O2生成·OH,光电催化降解染料废水。采用紫外光谱法检测染料废水的降解效果。
所述紫外光协同电催化降解染料废水的条件:电位为-0.1~-0.7V,紫外光强度为300~1000瓦,波长为200~400nm,降解时间为10~60分钟,空气泵为5~100瓦。
所述染料废水为甲基橙、罗丹明B或亚甲基蓝三种染料中的一种,浓度均为20μmol/L,pH为3~6。
所述BiHCF/TC的质量和染料废水的体积比为1:20-1:200(mg/mL);
所述支持电解质为硫酸钠、氯化钠或磷酸钠中的一种,浓度为0.01-1mol/L。
与已有技术相比,本发明的有益效果体现在:
1、本发明采用电泳技术,将石墨烯和纳米碳管交替沉积在碳纤维上,形成异质碳载体电极,胺基化处理后,形成具有优良光电化学特性和吸附性能的复合碳载体电极。纳米碳管可支撑电极表面石墨烯,避免石墨烯重聚;胺基化处理该电极后,可固定其微观空间结构;电极上的石墨烯可通过π-π键吸附含芳基官能团的染料分子。
2、亚铁氰化铋(BiHCF)为双金属有机框架结构分子,不溶于水,除具有优良的光电催化活性外,其中的亚铁氰根可作为Fenton催化剂。在含无机盐的染料废水中通入空气后,BiHCF/TC可快速催化溶解氧生成H2O2,同步催化H2O2生成.OH,光电催化降解染料废水。
3、本发明制备BiHCF/TC,价廉易得,性能稳定。本发明应用BiHCF/TC降解染料废水的方法,节能降耗,操作简便。
附图说明
图1为裸碳纤维(CFs,a),TC(b),BiHCF/TC(c)在0.1mol/L KNO3中的循环伏安曲线,扫速为50mV/s。曲线a和b相比,两者均无氧化还原峰,而曲线b的背景电流则明显增大。表明石墨烯、纳米碳管和碳纤维复合电极比表面显著增大。曲线c上可见BiHCF的氧化还原峰,对应为KBiFeII(CN)6/BiFeIII(CN)6(J.Zheng et al.Journal of ElectroanalyticalChemistry,2007,611:155-161)之间的转换。
图2为CFs(插图a),TC(插图b)和BiHCF/TC(B,c)的场发射扫描电镜图。CFs表面光滑(插图a);碳纤维上电泳沉积石墨烯和纳米碳管后,表面粗糙(TC,插图b),依稀可见片状的石墨烯和管状的纳米碳管;BiHCF/TC表面可见立方体状纳米粒子(B,c)。
图3为CFs(a)、异质碳载体电极(b)、TC(c)和BiHCF/TC(d)的X射线衍射图。CFs上位于23.2°的峰对应为碳002面的特征峰(a);曲线b上除该峰外,还出现了氧化石墨烯的特征峰(10°,001面);而经胺基化处理后的TC上,氧化石墨烯的特征峰消失,仅有CFs上的碳峰(23.2°,002面);曲线d上可见BiHCF位于15.2°(200面)、24.2°(220面,和CFs002面的特征峰重叠)、35.2°(400面)的特征峰。
图4为不同电极及条件下生成H2O2的循环伏安曲线。-0.4V下恒电位30分钟,同步紫外光照射条件下,和CFs(a)及TC(b)相比,BiHCF/TC上-0.35V处,生成的H2O2峰电流显著(e)。而仅在紫外光照射下30分钟(c),或仅在-0.4V下恒电位30分钟(d),BiHCF/TC上产生的H2O2峰电流均小于曲线e。表明:BiHCF/TC在光协同电催化条件下,产生H2O2效果显著。
具体实施方式
实施例1:
本实施例中BiHCF/TC复合电极的制备方法如下:
1、将0.5g石墨烯以及0.5g纳米碳管分别置于50mL、65wt%的浓硝酸中,常温下搅拌浸渍处理7小时,以消除表面杂质,洗涤并干燥;分别将5mg石墨烯置于150mL乙醇中,将5mg纳米碳管置于150mL聚羧酸中,充分混合成悬浮液,待用。
2、将30mg碳纤维置于400mL石墨烯悬浮液中,在电位70V下电泳2分钟;然后将该碳纤维再置于300mL纳米碳管悬浮液中,在电位50V下电泳2分钟;重复次数为3次,将石墨烯和纳米碳管交替沉积在碳纤维上,形成异质碳载体电极;将该电极置于含0.3gN,N-二环己基碳二亚胺的30mL乙二胺中,在100℃下,回流反应20小时,得到复合电极TC。
3、将30mg的TC置于300mL混合溶液(0.001mol/L铁氰化钾+0.003mol/L硝酸铋+0.1mol/L硫酸钾)中,用HCl或氨水调节pH为4,采用双电位脉冲电沉积法,在-0.2V下恒电位10秒,在电位0.1V下恒电位3秒,重复次数35次,生成亚铁氰化铋/异质碳复合电极BiHCF/TC。
采用本实施例制备的BiHCF/TC复合电极处理染料废水的方法如下:
以30mg的BiHCF/TC为工作电极,以银/氯化银为参比电极,以碳片(1cm×10cm)为对电极,组成三电极体系;在500mL的20μmol/L甲基橙(罗丹明B或亚甲基蓝)染料废水中加入0.2mol/L氯化钠,用0.1mol/LHCl调整pH为3.5,通入空气(20瓦),在电位-0.6V下恒电位60分钟,同步打开紫外光灯(500瓦,波长为360nm)照射该染料废水,通过紫外光协同电催化作用进行快速降解,采用紫外光谱法检测处理前后,甲基橙在最大吸收波长491.3nm处的吸光度值。同法处理罗丹明B(亚甲基蓝)废水,测定罗丹明B(亚甲基蓝)在最大吸收波长554.9nm(665.4nm)处的吸光度值。采用比色法分别测定降解前后染料废水的色度。
实施例2:
本实施例中BiHCF/TC复合电极的制备方法如下:
1、将0.5g石墨烯以及0.5g纳米碳管分别置于100mL、65wt%的浓硝酸中,常温下搅拌浸渍处理7小时,以消除表面杂质,洗涤并干燥;分别将5mg石墨烯置于250mL N,N-二甲基甲酰胺中,将5mg纳米碳管置于250mL乙腈中,充分混合成悬浮液,待用。
2、将20mg碳纤维置于500mL纳米碳管悬浮液中,在电位50V下电泳5分钟;然后将该碳纤维再置于800mL石墨烯悬浮液中,在电位60V下电泳3分钟;重复次数为5次,将石墨烯和纳米碳管交替沉积在碳纤维上,形成异质碳载体电极;将该电极置于30mL三乙醇胺中,在60℃下,回流反应10小时,得到复合电极TC。
3、将20mg的TC置于250mL混合溶液(0.001mol/L铁氰化钾+0.01mol/L硝酸铋+0.05mol/L硝酸钾)中,用HCl或氨水调节pH为5,采用双电位脉冲电沉积法,在-0.4V下恒电位5秒,在电位0V下恒电位5秒,重复次数18次,生成亚铁氰化铋/异质碳复合电极BiHCF/TC。
采用本实施例制备的BiHCF/TC复合电极处理染料废水的方法,包括如下步骤:
以20mg的BiHCF/TC为工作电极,以银/氯化银为参比电极,以铂片(1cm×8cm)为对电极,组成三电极体系。在300mL的20μmol/L甲基橙(罗丹明B或亚甲基蓝)染料废水中加入0.1mol/L磷酸钠,用0.1mol/LHCl调整pH为5.6,通入空气(10瓦),在电位-0.4V下恒电位40分钟,同步打开紫外光灯(300瓦,波长为265nm)照射该染料废水,通过紫外光协同电催化作用进行快速降解。采用紫外光谱法检测处理前后,甲基橙在最大吸收波长491.3nm处的吸光度值。同法处理罗丹明B(亚甲基蓝)废水,测定罗丹明B(亚甲基蓝)在最大吸收波长554.9nm(665.4nm)处的吸光度值。采用比色法分别测定降解前后染料废水的色度。
实施例3:
1、将0.3g石墨烯以及0.3g纳米碳管分别置于100mL、65wt%的浓硝酸中,常温下搅拌浸渍处理7小时,以消除表面杂质,洗涤并干燥;分别将5mg石墨烯置于400mL乙醇中,将5mg纳米碳管置于400mL聚羧酸中,充分混合成悬浮液,待用。
2、将10mg碳纤维置于500mL石墨烯悬浮液中,在电位40V下电泳8分钟;然后将该碳纤维再置于300mL纳米碳管悬浮液中,在电位60V下电泳3分钟;重复次数为6次,将石墨烯和纳米碳管交替沉积在碳纤维上,形成异质碳载体电极;将该电极置于50mL含0.3g丁二胺的水溶液中,在80℃下,回流反应20小时,得到复合电极TC。
3、将10mg的TC置于200mL混合溶液(0.001mol/L铁氰化钾+0.002mol/L硝酸铋+0.1mol/L磷酸钾)中,用HCl或氨水调节pH为5,采用双电位脉冲电沉积法,在-0.6V下恒电位5秒,在电位0.1V下恒电位3秒,重复次数5次,生成亚铁氰化铋/异质碳复合电极BiHCF/TC。
采用本实施例制备的BiHCF/TC复合电极处理染料废水的方法如下:
以5mg的BiHCF/TC为工作电极,以银/氯化银为参比电极,以钛片(1cm×10cm)为对电极,组成三电极体系。在1000mL的20μmol/L甲基橙(罗丹明B或亚甲基蓝)染料废水中加入0.1mol/L硫酸钠,用0.1mol/LHCl调整pH为3.5,通入空气(20瓦),在电位-0.6V下恒电位60分钟,同步打开紫外光灯(500瓦,波长为254nm)照射该染料废水,通过紫外光协同电催化作用进行快速降解,采用紫外光谱法检测处理前后,甲基橙在最大吸收波长491.3nm处的吸光度值。同法处理罗丹明B(亚甲基蓝)废水,测定罗丹明B(亚甲基蓝)在最大吸收波长554.9nm(665.4nm)处的吸光度值。采用比色法分别测定降解前后染料废水的色度。
【BiHCF/TC降解染料废水的性能测试】
1、采用UV2550紫外光谱仪测定染料废水在最大吸收波长处的吸光度值,通过标准曲线法计算降解后染料废水中染料的浓度。通过下列公式计算降解效率。其中,C0(Cx)处理前(后)浓度值,S0(Sx)处理前(后)色度值,D0(Dx)处理前(后)COD值。
降解效率%=(处理后-处理前/处理前)×100%。
2、采用稀释倍数法测定溶液的色度(Sx为处理后色度,S0为处理后前色度)。
3、采用标准重铬酸钾氧化法测定化学耗氧量COD。
测试结果见表1和表2。
【BiHCF/TC生成H2O2的性能测试】
采用流动注射化学发光法测定H2O2浓度(JC.Yuan et al.Anal.Chem.1999,71:1975-1980)。将鲁米诺溶解在0.1Mol/L Na2CO3溶液中(待24小时后,用HCl调整pH为10.15),加入硝酸钴Co2+。采用标准曲线法,将制备好的鲁米诺溶液(0.06m Mol/L Co2+,0.65m Mol/L鲁米诺)和样品(稀释后),通过流动注射装置同步注入化学发光系统,记录化学发光信号。
【BiHCF/TC降解染料废水的效果】
本发明比较了不同材料和不同方法对0.02mmol/L甲基橙(罗丹明B,亚甲基蓝)废水的降解效果。由表1可见,采用非均相光电Fenton法降解甲基橙废水时,本发明采用的BiHCF/TC降解效率显著高于复合碳电极TC及裸碳纤维电极。采用BiHCF/TC降解甲基橙废水时,相对于单一的非均相光Fenton或电Fenton法,采用本发明采用的非均相光电Fenton法去除效果显著。
表1不同材料不同方法降解染料废水效果比较
Figure BDA0001781149560000071
*Co初始浓度μmol/L;So初始色度;Do初始COD值mg/L。
由表2可见,采用本发明BiHCF/TC复合电极分别对甲基橙(罗丹明B或亚甲基蓝)染料废水进行光电催化降解处理后,三种染料分子在最大吸收波长处吸光度值显著下降,颜色趋于无色。相对于裸碳纤维CFs和复合碳电极TC,本发明制备的BiHCF/TC复合电极对目标废水降解效果显著,各项去除率均大于95%。
表2采用BiHCF/TC光电催化降解染料废水效果
Figure BDA0001781149560000072
*Co初始浓度μmol/L;So初始色度;Do初始COD值mg/L。

Claims (6)

1.一种亚铁氰化铋/异质碳复合电极的应用,其特征在于:是以亚铁氰化铋/异质碳复合电极光电催化降解染料废水,包括如下步骤:
以亚铁氰化铋/异质碳复合电极为工作电极,以饱和氯化钾甘汞电极为参比电极,以碳、铂或钛片为对电极,组成三电极体系;在染料废水中加入支持电解质,通入空气,接通电源,打开紫外灯,经紫外光协同电催化作用,快速催化溶解氧生成H2O2,同步催化H2O2生成.OH,光电催化降解染料废水;
所述亚铁氰化铋/异质碳复合电极是通过包括如下步骤的方法制备获得:
步骤1:石墨烯和纳米碳管预处理
将石墨烯、纳米碳管分别与65wt%的浓硝酸按照质量比1:100的比例混合,常温下搅拌浸渍处理7小时,以消除表面杂质,洗涤并干燥后将预处理石墨烯和预处理纳米碳管分别置于分散溶剂中,获得石墨烯悬浮液以及纳米碳管悬浮液,待用;
步骤2:异质碳载体复合电极的制备
将碳纤维依次置于步骤1获得的石墨烯悬浮液、纳米碳管悬浮液中,采用电泳法,在碳纤维上交替沉积石墨烯和纳米碳管,形成导电大比表面积的异质碳载体电极,电泳条件为:电位10~70 V,电泳时间1~9分钟,交替重复沉积3~10次;然后进行胺基化反应,以固定该电极的微观空间结构,胺基化反应的条件为:将所述异质碳载体电极置于胺基化试剂中,在60-100℃下,回流反应8-20 小时,得到的复合电极简记为TC;
步骤3:亚铁氰化铋/异质碳复合电极的制备
将步骤2获得的TC置于铁氰化钾、硝酸铋和支持电解质的混合溶液中,电沉积生成亚铁氰化铋/异质碳复合电极,简记为BiHCF/TC;电沉积条件为:双电位脉冲沉积,在电位-0.1~-0.7 V下恒电位1~10秒;在电位0~0.7 V下恒电位1~10 秒,重复次数3~50次。
2.根据权利要求1所述的应用,其特征在于:
步骤1中,石墨烯的质量和分散溶剂的体积比为1mg:200~2000mL;纳米碳管的质量和分散溶剂的体积比为1mg:200~2000mL。
3.根据权利要求1所述的应用,其特征在于:
步骤2中,碳纤维质量和石墨烯悬浮液的质量体积比为1mg:10~100mL,碳纤维质量和纳米碳管悬浮液的质量体积比为1 mg:10~100mL。
4.根据权利要求1所述的应用,其特征在于:
步骤3中,所述混合溶液中,铁氰化钾的浓度为0.001~0.01mol/L,硝酸铋的浓度为0.001~0.01mol/L,支持电解质的浓度为0.01~1mol/L;所述混合溶液的pH为2~6,采用HCl或氨水调节。
5.根据权利要求1所述的应用,其特征在于:
所述紫外光协同电催化降解染料废水的条件:电位为-0.1~-0.7 V,紫外光强度为300~1000瓦,波长为200~400 nm,降解时间为10~60分钟,空气泵为5~100瓦。
6.根据权利要求1所述的应用,其特征在于:
所述染料废水为甲基橙、罗丹明B或亚甲基蓝三种染料中的一种,浓度均为20µmol/L,pH为3~6。
CN201810992580.5A 2018-08-29 2018-08-29 一种亚铁氰化铋/异质碳复合电极的制备方法及其应用 Active CN109110867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810992580.5A CN109110867B (zh) 2018-08-29 2018-08-29 一种亚铁氰化铋/异质碳复合电极的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810992580.5A CN109110867B (zh) 2018-08-29 2018-08-29 一种亚铁氰化铋/异质碳复合电极的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109110867A CN109110867A (zh) 2019-01-01
CN109110867B true CN109110867B (zh) 2021-06-04

Family

ID=64861089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810992580.5A Active CN109110867B (zh) 2018-08-29 2018-08-29 一种亚铁氰化铋/异质碳复合电极的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109110867B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357221B (zh) * 2019-07-09 2021-03-12 中南大学 一种C@Bi/rGO电吸附复合活性材料及其制备和应用
CN112875678B (zh) * 2021-02-23 2022-08-26 石河子大学 一种以染料废水为原料制备碳材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528872A (zh) * 2015-01-07 2015-04-22 苏州科技学院 铁酸铋或其碳复合材料光催化脱氮方法
CN105233794A (zh) * 2015-10-26 2016-01-13 合肥工业大学 一种普鲁士蓝/石墨烯/碳纤维复合材料的制备方法
CN108203142A (zh) * 2017-12-28 2018-06-26 盛世生态环境股份有限公司 一种光催化复合电极及其制备方法、和在废水处理中的应用
CN108246334A (zh) * 2018-01-30 2018-07-06 中南林业科技大学 一种功能化三元复合光催化材料及其制备方法与用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589396B2 (en) * 1998-06-26 2003-07-08 Canon Kabushiki Kaisha Method for treating colored liquid and apparatus for treating colored liquid
CN103359806B (zh) * 2012-04-09 2016-06-22 Hlc废水技术公司 一种通过电化学设备处理废水的工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528872A (zh) * 2015-01-07 2015-04-22 苏州科技学院 铁酸铋或其碳复合材料光催化脱氮方法
CN105233794A (zh) * 2015-10-26 2016-01-13 合肥工业大学 一种普鲁士蓝/石墨烯/碳纤维复合材料的制备方法
CN108203142A (zh) * 2017-12-28 2018-06-26 盛世生态环境股份有限公司 一种光催化复合电极及其制备方法、和在废水处理中的应用
CN108246334A (zh) * 2018-01-30 2018-07-06 中南林业科技大学 一种功能化三元复合光催化材料及其制备方法与用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine";Jianbin Zheng,et al;《Journal of Electroanalytical Chemistry》;20071215;第611卷(第1-2期);第155-161页 *
"亚铁氰化镍铋/碳载体复合材料对铯离子吸附性能的研究";彭思遥等;《广东化工》;20180630;第45卷(第12期);第22及30-32页 *

Also Published As

Publication number Publication date
CN109110867A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Sacco Electrochemical impedance spectroscopy as a tool to investigate the electroreduction of carbon dioxide: A short review
Xu et al. Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes
Dubey et al. Hydrogen generation by water electrolysis using carbon nanotube anode
Kong et al. Dye-sensitized cobalt catalysts for high efficient visible light hydrogen evolution
Pang et al. Trace Ti3+-and N-codoped TiO2 nanotube array anode for significantly enhanced electrocatalytic degradation of tetracycline and metronidazole
Li et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite
Lin et al. Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition
Xia et al. An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode
Peralta et al. A comparative study on the electrochemical production of H2O2 between BDD and graphite cathodes
Zhang et al. Electricity generating & high efficiency advanced oxidation process including peroxymonosulfate activation in photocatalytic fuel cell
Gao et al. Anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H2O2 generation and efficient pollutant removal in electro-Fenton
Shi et al. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes
Rabé et al. Enhanced Rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0 (1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation
CN109110867B (zh) 一种亚铁氰化铋/异质碳复合电极的制备方法及其应用
CN103191727B (zh) 一种燃料电池用碳载Pt基催化剂的制备方法
Liu Kinetics of methanol oxidation on poly (NiII-tetramethyldibenzotetraaza [14] annulene)-modified electrodes
Guo et al. Photoelectrocatalytic interface of boron-doped diamond: Modification, functionalization and environmental applications
Wang et al. Earth-abundant metal-free carbon-based electrocatalysts for Zn-air batteries to power electrochemical generation of H2O2 for in-situ wastewater treatment
Hu et al. Ultrathin bismuth tungstate nanosheets as an effective photo-assisted support for electrocatalytic methanol oxidation
Zhang et al. Unified photoelectrocatalytic microbial fuel cell harnessing 3D binder-free photocathode for simultaneous power generation and dual pollutant removal
Liu et al. Poly (3, 4-ethylenedioxythiophene) modified polyvinylidene fluoride membrane for visible photoelectrocatalysis and filtration
Yap et al. Crucial roles of aeration and catalyst on caffeine removal and bioelectricity generation in a double chambered microbial fuel cell integrated electrocatalytic process
Tang et al. Efficient electrochemical degradation of X-GN dye wastewater using porous boron-doped diamond electrode
Liu et al. Coupling photocatalytic fuel cell based on S-scheme g-C3N4/TNAs photoanode with H2O2 activation for p-chloronitrobenzene degradation and simultaneous electricity generation under visible light
Hu et al. A photo-renewable ZIF-8 photo-electrochemical sensor for the sensitive detection of sulfamethoxazole antibiotic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant