CN109102523A - 一种运动目标检测和跟踪方法 - Google Patents

一种运动目标检测和跟踪方法 Download PDF

Info

Publication number
CN109102523A
CN109102523A CN201810771892.3A CN201810771892A CN109102523A CN 109102523 A CN109102523 A CN 109102523A CN 201810771892 A CN201810771892 A CN 201810771892A CN 109102523 A CN109102523 A CN 109102523A
Authority
CN
China
Prior art keywords
image
value
center
target
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810771892.3A
Other languages
English (en)
Inventor
黄成�
蒋璐
方杰
彭二宝
王力立
张永
徐志良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810771892.3A priority Critical patent/CN109102523A/zh
Publication of CN109102523A publication Critical patent/CN109102523A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种运动目标检测和跟踪方法。该方法为:首先从视频序列中获取一帧图像,将图像转换为灰度图,进行滤波去噪;然后利用三帧差分法得到运动目标区域,采用形态学滤波闭运算,填补差值图像中存在的空洞,将形态学滤波闭运算后图像中灰度值不为零的像素点进行光流计算,提取出运动目标;接着使用Kalman滤波算法对当前帧图像中运动目标的质心位置进行预测,将得到的目标预测值与Camshift算法跟踪得到的质心位置进行对比,通过对比结果判定运动目标的质心坐标,并确定在搜索下一帧图像时搜索窗口的大小和位置;更新模型,获取下一帧图像,重复整个跟踪过程,最终实现目标跟踪。本发明减小了运动目标检测和跟踪的误差,提高了准确性。

Description

一种运动目标检测和跟踪方法
技术领域
本发明属于运动目标跟踪技术领域,特别是一种运动目标检测和跟踪方法。
背景技术
运动目标检测和跟踪是机器视觉研究的主要问题之一,它交叉融合了图像处理、模式识别、人工智能、自动控制以及计算机技术等众多领域的先进技术,在军事制导、医学图像诊断、视频监控、智能交通等方面都有广泛应用。但是由于受到光照变化、噪声、遮挡等诸多因素的影响,现有算法在实际应用中面临着许多问题。因此,研究和设计出准确性高、鲁棒性好的运动目标检测和跟踪方法仍然具有极大的挑战性。
进行运动目标跟踪,首先需要进行目标检测,目前常用的目标检测算法有光流法、帧间差分法和背景减法。光流法是通过计算图像中像素点的光流来进行运动目标检测的方法,该算法检测准确度高但是其计算量相当大,且抗噪性能差;帧间差分法是利用视频图像序列的连续帧,通过差分来检测像素变化的区域,判断出运动区域,该算法简单易实现,计算速度快,但是容易产生空洞的检测结果,无法检测出相似度高及运动速度较快的运动目标;背景减法是将当前图像与事先设定或随时间更新的背景图像相减,若差值大于设定的阈值,则认为该像素属于运动目标,该算法的背景模型的更新是一个难点,且对背景中的干扰特别敏感。从实际应用角度来看,将多种检测算法结合到一起能更为准确、快速的检测出运动目标。
国内外也有很多优秀的跟踪算法,例如Mean Shift、Camshift、粒子滤波、Kalman滤波、TLD、KCF等。目前主流的跟踪算法,大致可以分为以下三类:基于模板匹配的跟踪方法、基于状态估计的跟踪方法和基于分类器的跟踪方法。
基于模板匹配的跟踪方法,就是通过比较候选区域与目标区域的匹配程度,选择匹配最大的区域作为跟踪目标,其中具有代表性的就是Mean Shift、Camshift算法。MeanShif算法一种基于非参数的核密度估计理论,在概率空间中求解概率密度极值的优化算法,该算法不能保证全局最优,并容易陷入局部极值,且其核窗口由初始跟踪窗口的大小决定,并且在整个跟踪过程中不再发生变化,当目标存在明显尺度变化的时候,尤其是当目标尺寸逐渐增大以至超出核窗宽范围的时候,固定不变的核窗宽常常会导致目标的丢失。Camshift算法作为连续自适应的Mean Shift,通过自动调节核窗口大小以及被跟踪目标在图像中的大小,从而可以有效地解决目标变形问题,但其算法也收敛于局部最大值,并没有对目标的相似度做判定,当Camshift的搜索窗口里面包含多个特征相似候选模型时,Camshift算法无法辨别是否出现同色干扰,经常出现跟踪精度不够的问题,而且当目标运动物体缓慢地通过障碍物或进行快速无规则运动时,Camshift算法将很容易失效,导致目标跟踪丢失。同时,当目标瞬间有个较大的加速度或被遮挡时,Camshift跟踪算法容易失效。
基于状态估计的跟踪方法,是一种通过预测和更新来获得当前状态量的方法,其代表为Kalman滤波、粒子滤波。Kalman滤波一种利用线性系统状态方程,通过系统输入输出观测数据,利用实际的运动参数不断修正运动状态的估计值。粒子滤波利用一定数量的随机样本(粒子)来表示系统随机变量的后验概率分布,它是一种适用于非线性、非高斯系统的基于模拟的统计滤波器。为了提高精度,可以增加粒子数,但又会导致计算量增大。
基于分类器的跟踪方法:通过在线学习的方式采集正负样本特征集并更新分类器参数,代表有TLD和KCF。此类跟踪方法能应付复杂的场景,算法的鲁棒性较强,但是此类算法为了提高精度需要训练大量的样本,算法复杂度较高,很难保证实时性。
发明内容
本发明的目的在于提供一种具有较高准确性和鲁棒性的运动目标检测和跟踪方法。
实现本发明目的的技术解决方案为:一种运动目标检测和跟踪方法,包括以下步骤:
步骤1、通过图像传感器从外界实时获取每帧图像,将获取的每一帧图像转化为灰度图,并对灰度图进行滤波去噪,得到去噪后的图像;
步骤2、将去噪后的图像,先利用三帧差分法初步得出运动目标的区域;再采用形态学滤波闭运算,填补使用帧间差分法处理后得到的二值图像中存在的空洞;再将形态学滤波闭运算后图像中灰度值不为零的像素点,即运动区域的像素点进行光流计算,提取出运动目标;
步骤3、在初始帧图像中对搜索窗口的位置和大小进行初始化,并从搜索窗中的目标区域内提取目标的HSV格式的颜色直方图,进而求得该帧图像的反向投影图;
步骤4、使用Camshift算法对图像序列进行跟踪,调整搜索窗口大小,并得出第i+1帧图像中运动目标的质心坐标
步骤5、使用Kalman滤波预测运动目标在第i+1帧图像中的质心坐标
步骤6、将Camshift算法在跟踪过程中得到的运动目标质心坐标与Kalman滤波算法对目标质心坐标的预测值进行比较,两者坐标值作差,若差值大于设定的阈值,则使用Kalman滤波算法得到的预测值来计算当前图像中运动目标的质心坐标,反之则使用Camshift算法求得的运动目标质心坐标来计算当前图像中运动目标的质心坐标;
步骤7、更新模型,获取下一帧图像,重复整个跟踪过程,直至跟踪结束。
进一步地,步骤2所述将去噪后的图像,先利用三帧差分法初步得出运动目标的区域;再采用形态学滤波闭运算,填补使用帧间差分法处理后得到的二值图像中存在的空洞;再将形态学滤波闭运算后图像中灰度值不为零的像素点,即运动区域的像素点进行光流计算,提取出运动目标,具体如下:
将当前帧和前一帧图像之间的前向帧差图像记为FDb(x,y),下一帧和当前帧之间的后向帧差图像记为FDf(x,y),设定阈值T,对三帧差分法差分后的图像进行阈值化处理,得到二值图像,再计算FDb(x,y)和FDf(x,y)的交集,得到运动区域E(x,y),计算公式如下:
E(x,y)=FDb(x,y)∩FDf(x,y)
其中,fi(x,y)为第i帧图像的像素值,fi-1(x,y)为第i-1帧图像的像素值,fi+1(x,y)为第i+1帧图像的像素值;
得到二值图后,采用形态学滤波的闭运算,即先膨胀后腐蚀,消除二值图中存在的空洞;
二值图中不为零的像素点对应于灰度梯度大于设定值的点,这些点处的光流场基本方程Ixu+Iyv+It=0成立,其中,Ix、Iy、It表示图像中像素点灰度沿x、y、t方向上的梯度,u、v是像素点在x、y方向上的速度,再联合迭代方程即求得u、v,得到运动目标;
迭代方程为:
其中,上标k表示迭代次数,u0、v0是光流初始值,取值为0;是局部平均,λ为控制平滑约束的权重系数,根据导数求取的精确度确定。
进一步地,步骤3所述在初始帧图像中对搜索窗口的位置和大小进行初始化,并从搜索窗中的目标区域内提取目标的HSV格式的颜色直方图,进而求得该帧图像的反向投影图,具体如下:
(1)针对计算量及视频亮度变化不定的问题,采用HSV模型中的色度H分量作为Camshift跟踪算法的特征,其中H为色度分量、S为色彩饱和度分量、V为亮度分量;
设定使用m级量化的直方图,{xi}1=1....n为目标区域图像的像素位置,定义c:R2→{1...m}来表示像素xi对应的像素值,那么目标颜色直方图分布为:
其中,qu为直方图分量u的值,c(xi)为像素xi的量化值,δ为Kronecker函数;
为使得到的概率分布在[0,255]范围内,需将直方图进行缩放:
对当前帧视频图像作反向投影,即将HSV格式图像中xi对应的像素值u替换为pu
(2)初始化搜索窗口的位置和大小,设跟踪窗口区域的零阶矩为M00,沿水平方向和垂直方向的一阶矩为M10和M01
则搜索窗口的质心(xc,yc):
p(x,y)为反向投影图中像素(x,y)处的颜色概率分布值。
进一步地,步骤4所述使用Camshift算法对图像序列进行跟踪,调整搜索窗口大小,并得出第i+1帧图像中运动目标的质心坐标具体如下:
搜索窗的宽度s和长度l分别由以下公式确定:
根据步骤3得出的搜索窗口,将搜索窗口的中心移动到运动目标的质心,如果移动距离大于预设的阈值,则重新计算调整后的窗口中心,进行新一轮的窗口位置和尺寸更新,直到搜索窗的中心与运动目标的质心间的移动距离小于预设的阈值,或者循环运算的次数达到设定的最大值,则停止计算;
最后将窗口的位置和大小作为下一帧搜索窗的初始值,如此循环迭代。
进一步地,步骤6所述的将Camshift算法在跟踪过程中得到的运动目标质心坐标与Kalman滤波算法对目标质心坐标的预测值进行比较,两者坐标值作差,若差值大于设定的阈值,则使用Kalman滤波算法得到的预测值来计算当前图像中运动目标的质心坐标,反之则使用Camshift算法求得的运动目标质心坐标来计算当前图像中运动目标的质心坐标,具体为:
两者坐标值作差,若差值大于设定好的阈值,则判定Camshift算法的跟踪过程存在遮挡干扰或同色干扰,那么当前图像中运动目标的质心坐标将依据Kalman滤波算法得到的预测值来计算,反之则使用Camshift算法求得的运动目标质心坐标。
本发明与现有技术相比,其显著优点在于:(1)综合考虑了帧间差分法和光流法各自的优缺点,融合了两种算法,既降低了整幅图像使用光流法的计算量,又提高了帧间差分法的检测精度;(2)三帧差分法在对运动目标检测的时候,更能提取完整的目标轮廓,不连续以及出现漏洞的区域也相对要少,减小了目标的缺失;在使用三帧差分法后,对得到的差值图像进行形态学滤波闭运算,填补了差值图像中可能存在的空洞,减小了检测误差,提高了准确性;(3)将Kalman滤波和Camshift算法相结合,有效地解决了Camshift算法对运动目标受到遮挡干扰或者同色干扰,提高了跟踪精度;(4)将RGB颜色空间模型转换为HSV颜色空间模型,提取H分量作为Camshift算法的跟踪特征,降低了图像亮度的影响。
附图说明
图1是三帧差分法的流程示意图。
图2是三帧差分法和光流法融合过程示意图。
图3是Camshift跟踪算法的流程示意图。
图4是本发明的运动目标检测和跟踪方法的流程示意图。
图5是本发明实施例中的仿真效果图,其中(a)~(f)分别为视频第35帧、第105帧、第154帧、第201帧,第254帧、第307帧的跟踪结果图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图1~3所示,图1是三帧差分法的流程示意图,图2是三帧差分法和光流法融合过程示意图,图3是Camshift跟踪算法的流程示意图。
本发明运动目标检测和跟踪方法,包括以下步骤:
步骤1、通过图像传感器从外界实时获取每帧图像,将获取的每一帧图像转化为灰度图,并对灰度图进行滤波去噪,得到去噪后的图像;
步骤2、将去噪后的图像,先利用三帧差分法初步得出运动目标的区域;再采用形态学滤波闭运算,填补使用帧间差分法处理后得到的二值图像中存在的空洞;再将形态学滤波闭运算后图像中灰度值不为零的像素点,即运动区域的像素点进行光流计算,提取出运动目标,具体如下:
将当前帧和前一帧图像之间的前向帧差图像记为FDb(x,y),下一帧和当前帧之间的后向帧差图像记为FDf(x,y),设定阈值T,对三帧差分法差分后的图像进行阈值化处理,得到二值图像,再计算FDb(x,y)和FDf(x,y)的交集,得到运动区域E(x,y),计算公式如下:
E(x,y)=FDb(x,y)∩FDf(x,y)
其中,fi(x,y)为第i帧图像的像素值,fi-1(x,y)为第i-1帧图像的像素值,fi+1(x,y)为第i+1帧图像的像素值;
得到二值图后,采用形态学滤波的闭运算,即先膨胀后腐蚀,消除二值图中存在的空洞;
二值图中不为零的像素点对应于灰度梯度大于设定值的点,这些点处的光流场基本方程Ixu+Iyv+It=0成立,其中,Ix、Iy、It表示图像中像素点灰度沿x、y、t方向上的梯度,u、v是像素点在x、y方向上的速度,再联合迭代方程即求得u、v,得到运动目标;
迭代方程为:
其中,上标k表示迭代次数,u0、v0是光流初始值,取值为0;是局部平均,λ为控制平滑约束的权重系数,根据导数求取的精确度确定。
步骤3、在初始帧图像中对搜索窗口的位置和大小进行初始化,并从搜索窗中的目标区域内提取目标的HSV格式的颜色直方图,进而求得该帧图像的反向投影图,具体如下:
(1)针对计算量及视频亮度变化不定的问题,采用HSV模型中的色度H分量作为Camshift跟踪算法的特征,其中H为色度分量、S为色彩饱和度分量、V为亮度分量;
设定使用m级量化的直方图,{xi}1=1....n为目标区域图像的像素位置,定义c:R2→{1...m}来表示像素xi对应的像素值,那么目标颜色直方图分布为:
其中,qu为直方图分量u的值,c(xi)为像素xi的量化值,δ为Kronecker函数;
为使得到的概率分布在[0,255]范围内,需将直方图进行缩放:
对当前帧视频图像作反向投影,即将HSV格式图像中xi对应的像素值u替换为pu
(2)初始化搜索窗口的位置和大小,设跟踪窗口区域的零阶矩为M00,沿水平方向和垂直方向的一阶矩为M10和M01
则搜索窗口的质心(xc,yc):
p(x,y)为反向投影图中像素(x,y)处的颜色概率分布值。
步骤4、使用Camshift算法对图像序列进行跟踪,调整搜索窗口大小,并得出第i+1帧图像中运动目标的质心坐标具体如下:
搜索窗的宽度s和长度l分别由以下公式确定:
根据步骤3得出的搜索窗口,将搜索窗口的中心移动到运动目标的质心,如果移动距离大于预设的阈值,则重新计算调整后的窗口中心,进行新一轮的窗口位置和尺寸更新,直到搜索窗的中心与运动目标的质心间的移动距离小于预设的阈值,或者循环运算的次数达到设定的最大值,则停止计算;
最后将窗口的位置和大小作为下一帧搜索窗的初始值,如此循环迭代。
步骤5、使用Kalman滤波预测运动目标在第i+1帧图像中的质心坐标
步骤6、将Camshift算法在跟踪过程中得到的运动目标质心坐标与Kalman滤波算法对目标质心坐标的预测值进行比较,两者坐标值作差,若差值大于设定的阈值,则使用Kalman滤波算法得到的预测值来计算当前图像中运动目标的质心坐标,反之则使用Camshift算法求得的运动目标质心坐标来计算当前图像中运动目标的质心坐标,具体为:
两者坐标值作差,若差值大于设定好的阈值,则判定Camshift算法的跟踪过程存在遮挡干扰或同色干扰,那么当前图像中运动目标的质心坐标将依据Kalman滤波算法得到的预测值来计算,反之则使用Camshift算法求得的运动目标质心坐标。
步骤7、更新模型,获取下一帧图像,重复整个跟踪过程,直至跟踪结束。
实施例1
首先将USB接口相机连接到计算机,打开相机,拍摄一段有遮挡物的运动目标视频。拍摄的视频自动保存到预先设定的路径中,计算机再对视频进行处理。处理平台为Visual Studio 2010+Opencv 2.4.9。
本发明的一种运动目标检测和跟踪方法,从运动目标跟踪的三个指标实时性、准确性和鲁棒性出发,针对Camshift算法容易被相似背景特征干扰、无法跟踪快速无规则运动物体以及抗遮挡能力差等情况,提出了一种基于Camshift,并引入Kalman滤波的预测型自适应局部搜索跟踪方法。此算法具有高实时性,抗遮挡,有较高鲁棒性等特点。
结合图4,本发明运动目标检测和跟踪方法,具体步骤如下:
步骤1,通过图像传感器从外界实时获取每帧图像,将获取的每一帧RGB图像利用公式Y=0.3R+0.59G+0.11B转化为灰度图,并对灰度图进行滤波去噪,得到去噪后的图像。
步骤2,将去噪后的图像,先利用三帧差分法初步得出运动目标的区域;再采用形态学滤波闭运算,填补使用帧间差分法处理后得到的二值图像中存在的空洞;再将形态学滤波闭运算后图像中灰度值不为零的像素点,即运动区域的像素点进行光流计算,提取出运动目标。具体如下:
将当前帧和前一帧图像之间的前向帧差图像记为FDb(x,y),下一帧和当前帧之间的后向帧差图像记为FDf(x,y),设定阈值T,对三帧差分法差分后的图像进行阈值化处理,得到二值图像,再计算FDb(x,y)和FDf(x,y)的交集,得到运动区域E(x,y)。计算公式如下:
E(x,y)=FDb(x,y)∩FDf(x,y)
其中,fi(x,y)为第i帧图像的像素值,fi-1(x,y)为第i-1帧图像的像素值,fi+1(x,y)为第i+1帧图像的像素值。
得到二值图后,采用形态学滤波的闭运算,即先膨胀后腐蚀,消除二值图中存在的空洞,提高目标提取的准确性。
在二值图中不为零的像素点对应于灰度梯度较大的点,这些点处的光流场基本方程Ixu+Iyv+It=0近似成立。其中,Ix、Iy、It表示图像中像素点灰度沿x、y、t方向上的梯度,u、v是像素点在x、y方向上的速度。再联合迭代方程即可求得u、v,得到更为准确的运动目标。
迭代方程为:
其中,K是迭代次数,u0、v0是光流初始值,取值为0;是局部平均,λ为控制平滑约束的权重系数,根据导数求取的精确度确定。
步骤3,在初始帧图像中对搜索窗口的位置和大小进行初始化,使搜索窗比运动目标稍大并完全包围运动目标,并从搜索窗中的目标区域内提取目标的HSV格式的颜色直方图,进而求得该帧图像的反向投影图。具体如下:
(1)针对计算量及视频亮度变化不定的问题,采用HSV(H为色度分量;S为色彩饱和度;V为亮度分量)模型中的色度H分量作为Camshift跟踪算法的特征。设定使用m级量化的直方图,{xi}1=1....n为目标区域图像的像素位置,定义c:R2→{1...m}来表示像素xi对应的像素值,那么目标颜色直方图分布为:
其中qu为直方图分量u的值,c(xi)为像素xi的量化值,δ为Kronecker函数。为使得到的概率分布在[0,255]范围内,需将直方图进行缩放:
对当前帧视频图像作反向投影,即将HSV格式图像中xi对应的像素值u替换为pu
(2)初始化搜索窗口的位置和大小,设跟踪窗口区域的零阶矩为M00,沿水平方向和垂直方向的一阶矩为M10和M01
则搜索窗口的质心(xc,yc):
p(x,y)为反向投影图中像素(x,y)处的颜色概率分布值。
步骤4,使用Camshift算法对图像序列进行跟踪,调整窗口大小,并得出第i+1帧图像中运动目标的质心坐标
搜索窗的宽度s和长度l分别由以下公式确定:
根据步骤3得出的搜索窗口,将搜索窗口的中心移动到运动目标的质心,如果移动距离大于预设的阈值,则重新计算调整后的窗口中心,进行新一轮的窗口位置和尺寸更新,直到搜索窗的中心与运动目标的质心间的移动距离小于预设的固定阈值,或者循环运算的次数达到某一最大值,则停止计算。最后将窗口的位置和大小作为下一帧搜索窗的初始值,如此循环迭代。
步骤5,使用Kalman滤波预测运动目标在第i+1帧图像中的质心坐标
Kalman滤波进行状态估计分为预测和修正两个阶段,描述系统的状态方程和观测方程为:
状态方程:Xk=AkXk-1+BkWk
观测方程:Zk=HkXk+Vk
式中:Ak是系统的状态转移矩阵,Hk是系统的观测矩阵,Wk(协方差Q)和Vk(协方差R)是满足正态分布的过程噪声和观测噪声向量,他们是互不相关的零均值白噪声序列。然后利用观测值和协方差修正状态预测值。
步骤6,将Camshift算法在跟踪过程中得到的运动目标质心坐标与Kalman滤波算法对目标质心坐标的预测值进行比较,通过以下公式判断:
T是预先设定的阈值,如果跟踪结果满足上式关系,则判定Camshift算法的跟踪过程存在遮挡干扰,那么当前图像中运动目标的质心坐标将依据Kalman滤波算法得到的预测值来计算。即:反之,
步骤7,更新模型,获取下一帧图像,跳转到步骤4,重新执行搜索过程,直到跟踪结束。
图5是本发明实施例中的仿真效果图,其中(a)~(f)分别为视频第35帧、第105帧、第154帧、第201帧,第254帧、第307帧的跟踪结果图,本发明方法能够更准确、快速地检测出运动目标,并解决遮挡干扰和背景同色干扰,提高目标跟踪的精度。

Claims (5)

1.一种运动目标检测和跟踪方法,其特征在于,包括以下步骤:
步骤1、通过图像传感器从外界实时获取每帧图像,将获取的每一帧图像转化为灰度图,并对灰度图进行滤波去噪,得到去噪后的图像;
步骤2、将去噪后的图像,先利用三帧差分法初步得出运动目标的区域;再采用形态学滤波闭运算,填补使用帧间差分法处理后得到的二值图像中存在的空洞;再将形态学滤波闭运算后图像中灰度值不为零的像素点,即运动区域的像素点进行光流计算,提取出运动目标;
步骤3、在初始帧图像中对搜索窗口的位置和大小进行初始化,并从搜索窗中的目标区域内提取目标的HSV格式的颜色直方图,进而求得该帧图像的反向投影图;
步骤4、使用Camshift算法对图像序列进行跟踪,调整搜索窗口大小,并得出第i+1帧图像中运动目标的质心坐标
步骤5、使用Kalman滤波预测运动目标在第i+1帧图像中的质心坐标
步骤6、将Camshift算法在跟踪过程中得到的运动目标质心坐标与Kalman滤波算法对目标质心坐标的预测值进行比较,两者坐标值作差,若差值大于设定的阈值,则使用Kalman滤波算法得到的预测值来计算当前图像中运动目标的质心坐标,反之则使用Camshift算法求得的运动目标质心坐标来计算当前图像中运动目标的质心坐标;
步骤7、更新模型,获取下一帧图像,重复整个跟踪过程,直至跟踪结束。
2.根据权利要求1所述的运动目标检测和跟踪方法,其特征在于,步骤2所述将去噪后的图像,先利用三帧差分法初步得出运动目标的区域;再采用形态学滤波闭运算,填补使用帧间差分法处理后得到的二值图像中存在的空洞;再将形态学滤波闭运算后图像中灰度值不为零的像素点,即运动区域的像素点进行光流计算,提取出运动目标,具体如下:
将当前帧和前一帧图像之间的前向帧差图像记为FDb(x,y),下一帧和当前帧之间的后向帧差图像记为FDf(x,y),设定阈值T,对三帧差分法差分后的图像进行阈值化处理,得到二值图像,再计算FDb(x,y)和FDf(x,y)的交集,得到运动区域E(x,y),计算公式如下:
E(x,y)=FDb(x,y)∩FDf(x,y)
其中,fi(x,y)为第i帧图像的像素值,fi-1(x,y)为第i-1帧图像的像素值,fi+1(x,y)为第i+1帧图像的像素值;
得到二值图后,采用形态学滤波的闭运算,即先膨胀后腐蚀,消除二值图中存在的空洞;
二值图中不为零的像素点对应于灰度梯度大于设定值的点,这些点处的光流场基本方程Ixu+Iyv+It=0成立,其中,Ix、Iy、It表示图像中像素点灰度沿x、y、t方向上的梯度,u、v是像素点在x、y方向上的速度,再联合迭代方程即求得u、v,得到运动目标;
迭代方程为:
其中,上标k表示迭代次数,u0、v0是光流初始值,取值为0;是局部平均,λ为控制平滑约束的权重系数,根据导数求取的精确度确定。
3.根据权利要求1所述的运动目标检测和跟踪方法,其特征在于,步骤3所述在初始帧图像中对搜索窗口的位置和大小进行初始化,并从搜索窗中的目标区域内提取目标的HSV格式的颜色直方图,进而求得该帧图像的反向投影图,具体如下:
(1)针对计算量及视频亮度变化不定的问题,采用HSV模型中的色度H分量作为Camshift跟踪算法的特征,其中H为色度分量、S为色彩饱和度分量、V为亮度分量;
设定使用m级量化的直方图,{xi}1=1....n为目标区域图像的像素位置,定义c:R2→{1...m}来表示像素xi对应的像素值,那么目标颜色直方图分布为:
其中,qu为直方图分量u的值,c(xi)为像素xi的量化值,δ为Kronecker函数;
为使得到的概率分布在[0,255]范围内,需将直方图进行缩放:
对当前帧视频图像作反向投影,即将HSV格式图像中xi对应的像素值u替换为pu
(2)初始化搜索窗口的位置和大小,设跟踪窗口区域的零阶矩为M00,沿水平方向和垂直方向的一阶矩为M10和M01
则搜索窗口的质心(xc,yc):
p(x,y)为反向投影图中像素(x,y)处的颜色概率分布值。
4.根据权利要求1所述的运动目标检测和跟踪方法,其特征在于,步骤4所述使用Camshift算法对图像序列进行跟踪,调整搜索窗口大小,并得出第i+1帧图像中运动目标的质心坐标具体如下:
搜索窗的宽度s和长度l分别由以下公式确定:
根据步骤3得出的搜索窗口,将搜索窗口的中心移动到运动目标的质心,如果移动距离大于预设的阈值,则重新计算调整后的窗口中心,进行新一轮的窗口位置和尺寸更新,直到搜索窗的中心与运动目标的质心间的移动距离小于预设的阈值,或者循环运算的次数达到设定的最大值,则停止计算;
最后将窗口的位置和大小作为下一帧搜索窗的初始值,如此循环迭代。
5.根据权利要求1所述的运动目标检测和跟踪方法,其特征在于,步骤6所述的将Camshift算法在跟踪过程中得到的运动目标质心坐标与Kalman滤波算法对目标质心坐标的预测值进行比较,两者坐标值作差,若差值大于设定的阈值,则使用Kalman滤波算法得到的预测值来计算当前图像中运动目标的质心坐标,反之则使用Camshift算法求得的运动目标质心坐标来计算当前图像中运动目标的质心坐标,具体为:
两者坐标值作差,若差值大于设定好的阈值,则判定Camshift算法的跟踪过程存在遮挡干扰或同色干扰,那么当前图像中运动目标的质心坐标将依据Kalman滤波算法得到的预测值来计算,反之则使用Camshift算法求得的运动目标质心坐标。
CN201810771892.3A 2018-07-13 2018-07-13 一种运动目标检测和跟踪方法 Pending CN109102523A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810771892.3A CN109102523A (zh) 2018-07-13 2018-07-13 一种运动目标检测和跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810771892.3A CN109102523A (zh) 2018-07-13 2018-07-13 一种运动目标检测和跟踪方法

Publications (1)

Publication Number Publication Date
CN109102523A true CN109102523A (zh) 2018-12-28

Family

ID=64846381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810771892.3A Pending CN109102523A (zh) 2018-07-13 2018-07-13 一种运动目标检测和跟踪方法

Country Status (1)

Country Link
CN (1) CN109102523A (zh)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785367A (zh) * 2019-01-21 2019-05-21 视辰信息科技(上海)有限公司 三维模型追踪中外点滤除方法和装置
CN109872345A (zh) * 2019-02-27 2019-06-11 中国科学院光电技术研究所 一种暗背景下的单目标跟踪方法
CN109984750A (zh) * 2019-04-24 2019-07-09 上海健康医学院 一种基于运动检测的睡眠婴幼儿防跌落预警方法及系统
CN110211160A (zh) * 2019-05-30 2019-09-06 华南理工大学 一种基于改进Camshift算法的人脸跟踪方法
CN110533693A (zh) * 2019-08-29 2019-12-03 北京精英路通科技有限公司 一种目标跟踪方法及目标跟踪装置
CN110532943A (zh) * 2019-08-28 2019-12-03 郑州轻工业学院 基于Camshift算法与影像逐帧结合的航道状态分析方法
CN110533699A (zh) * 2019-07-30 2019-12-03 平安科技(深圳)有限公司 基于光流法的像素变化的动态多帧测速方法
CN110532989A (zh) * 2019-09-04 2019-12-03 哈尔滨工业大学 一种海上目标自动探测方法
CN110570459A (zh) * 2019-08-23 2019-12-13 天津大学 一种基于鼠态的运动跟踪方法
CN110599486A (zh) * 2019-09-20 2019-12-20 福州大学 一种视频抄袭的检测方法及系统
CN110619654A (zh) * 2019-08-02 2019-12-27 北京佳讯飞鸿电气股份有限公司 一种运动目标检测与跟踪方法
CN110751635A (zh) * 2019-10-12 2020-02-04 湖南师范大学 一种基于帧间差分和hsv颜色空间的口腔检测方法
CN110825123A (zh) * 2019-10-21 2020-02-21 哈尔滨理工大学 一种基于运动算法的自动跟随载物车的控制系统及方法
CN110827324A (zh) * 2019-11-08 2020-02-21 江苏科技大学 一种视频目标跟踪方法
CN110910429A (zh) * 2019-11-19 2020-03-24 普联技术有限公司 一种运动目标检测方法、装置、存储介质及终端设备
CN110942642A (zh) * 2019-11-20 2020-03-31 中科视元科技(杭州)有限公司 一种基于视频的交通缓驶检测方法及系统
CN111311640A (zh) * 2020-02-21 2020-06-19 中国电子科技集团公司第五十四研究所 一种基于运动估计的无人机识别跟踪方法
CN111402292A (zh) * 2020-03-10 2020-07-10 南昌航空大学 基于特征变形误差遮挡检测的图像序列光流计算方法
CN111415372A (zh) * 2020-03-20 2020-07-14 桂林电子科技大学 一种基于hsi颜色空间和上下文信息的运动目标归并方法
CN111460949A (zh) * 2020-03-25 2020-07-28 上海电机学院 一种输电线路防外力破坏实时监测方法和系统
CN111507977A (zh) * 2020-04-28 2020-08-07 同济大学 一种图像中钡剂信息提取方法
CN111667503A (zh) * 2020-06-12 2020-09-15 中国科学院长春光学精密机械与物理研究所 基于前景检测的多目标跟踪方法、装置、设备及存储介质
CN111695536A (zh) * 2020-06-17 2020-09-22 无锡雪浪数制科技有限公司 一种基于深度视觉的智能取货识别方法
CN111709968A (zh) * 2020-05-08 2020-09-25 中国人民解放军空军工程大学 一种基于图像处理的低空目标探测跟踪方法
CN111724319A (zh) * 2020-06-19 2020-09-29 马鞍山职业技术学院 视频监控系统中的图像处理方法
CN111739059A (zh) * 2020-06-20 2020-10-02 马鞍山职业技术学院 基于帧差法的运动物体检测方法与轨迹跟踪方法
CN111814602A (zh) * 2020-06-23 2020-10-23 成都信息工程大学 一种基于视觉的智能车环境动态目标检测的方法
CN111896540A (zh) * 2020-07-14 2020-11-06 江苏云聚汇科技有限公司 一种基于区块链的水质在线监测系统
CN111914627A (zh) * 2020-06-18 2020-11-10 广州杰赛科技股份有限公司 一种车辆识别与追踪方法及装置
CN111951296A (zh) * 2020-08-28 2020-11-17 福州大学 一种目标跟踪方法及装置
CN112150545A (zh) * 2020-09-28 2020-12-29 中国科学院空间应用工程与技术中心 一种基于Tobit Kalman滤波器的光斑质心获取方法和装置
CN112146834A (zh) * 2020-09-30 2020-12-29 石家庄铁道大学 结构振动位移测量方法及装置
CN112288767A (zh) * 2020-11-04 2021-01-29 成都寰蓉光电科技有限公司 一种基于目标自适应投影的自动检测与跟踪方法
CN112329584A (zh) * 2020-10-29 2021-02-05 深圳技术大学 基于机器视觉自动识别电网异物的方法及系统、设备
CN112562358A (zh) * 2020-11-27 2021-03-26 石家庄铁道大学 基于视频数据的交通量检测方法、装置及终端设备
CN112750136A (zh) * 2020-12-30 2021-05-04 深圳英集芯科技股份有限公司 一种图像处理方法和系统
CN112862854A (zh) * 2021-02-08 2021-05-28 桂林电子科技大学 一种改进kcf算法的多无人机跟踪方法
CN112907626A (zh) * 2021-02-08 2021-06-04 中国空间技术研究院 基于卫星超时相数据多源信息的运动目标提取方法
CN112989963A (zh) * 2021-02-24 2021-06-18 唐山不锈钢有限责任公司 一种基于图形识别的洛氏硬度试验过程监督判定方法
CN113297926A (zh) * 2021-05-06 2021-08-24 山东大学 行为检测识别方法及系统
CN113344964A (zh) * 2021-06-23 2021-09-03 江苏三恒科技股份有限公司 一种基于图像处理的矿井机器人落石监测预警方法
CN113362280A (zh) * 2021-05-14 2021-09-07 同济大学 一种基于医学造影的动态目标跟踪方法
CN113362371A (zh) * 2021-05-18 2021-09-07 北京迈格威科技有限公司 目标跟踪方法及装置、电子设备、存储介质
CN113379789A (zh) * 2021-06-11 2021-09-10 天津大学 一种复杂环境下运动目标跟踪方法
CN113743368A (zh) * 2021-09-18 2021-12-03 内蒙古工业大学 一种行为监测方法、装置、存储介质及电子设备
CN113870203A (zh) * 2021-09-18 2021-12-31 西安交通大学 一种针对重影边界圆心定位的高精度运动测量方法
CN113947608A (zh) * 2021-09-30 2022-01-18 西安交通大学 一种基于几何匹配法控制的结构不规则运动高精度测量方法
CN114419106A (zh) * 2022-03-30 2022-04-29 深圳市海清视讯科技有限公司 车辆违章行为检测方法、设备及存储介质
CN114943955A (zh) * 2022-07-25 2022-08-26 山东广通汽车科技股份有限公司 一种用于半挂车自动卸货控制方法
CN115359240A (zh) * 2022-07-15 2022-11-18 北京中科思创云智能科技有限公司 基于多帧图像运动特征的小目标检测方法、装置和设备
CN115937263A (zh) * 2023-02-27 2023-04-07 南昌理工学院 基于视觉的目标跟踪方法、系统、电子设备及存储介质
CN116205914A (zh) * 2023-04-28 2023-06-02 山东中胜涂料有限公司 一种防水涂料生产智能监测系统
CN117078722A (zh) * 2023-10-17 2023-11-17 四川迪晟新达类脑智能技术有限公司 基于灰度直方图提取小目标的目标跟踪方法及装置
CN117218161A (zh) * 2023-11-09 2023-12-12 聊城市敏锐信息科技有限公司 一种鱼缸内鱼类轨迹跟踪方法及系统
CN110533699B (zh) * 2019-07-30 2024-05-24 平安科技(深圳)有限公司 基于光流法的像素变化的动态多帧测速方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737385A (zh) * 2012-04-24 2012-10-17 中山大学 一种基于camshift和卡尔曼滤波的视频目标跟踪方法
CN104159114A (zh) * 2013-05-13 2014-11-19 哈尔滨点石仿真科技有限公司 一种计算图像帧间大运动速度的光流方法
CN106846359A (zh) * 2017-01-17 2017-06-13 湖南优象科技有限公司 基于视频序列的运动目标快速检测方法
CN108062762A (zh) * 2017-12-22 2018-05-22 湖南源信光电科技股份有限公司 一种基于核密度估计的目标跟踪方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737385A (zh) * 2012-04-24 2012-10-17 中山大学 一种基于camshift和卡尔曼滤波的视频目标跟踪方法
CN104159114A (zh) * 2013-05-13 2014-11-19 哈尔滨点石仿真科技有限公司 一种计算图像帧间大运动速度的光流方法
CN106846359A (zh) * 2017-01-17 2017-06-13 湖南优象科技有限公司 基于视频序列的运动目标快速检测方法
CN108062762A (zh) * 2017-12-22 2018-05-22 湖南源信光电科技股份有限公司 一种基于核密度估计的目标跟踪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯杰虎: "《基于kalman滤波器的视频运动目标跟踪算法研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑,2013年第03期,I138-1395》 *

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785367A (zh) * 2019-01-21 2019-05-21 视辰信息科技(上海)有限公司 三维模型追踪中外点滤除方法和装置
CN109785367B (zh) * 2019-01-21 2019-12-20 视辰信息科技(上海)有限公司 三维模型追踪中外点滤除方法和装置
CN109872345A (zh) * 2019-02-27 2019-06-11 中国科学院光电技术研究所 一种暗背景下的单目标跟踪方法
CN109872345B (zh) * 2019-02-27 2022-08-26 中国科学院光电技术研究所 一种暗背景下的单目标跟踪方法
CN109984750A (zh) * 2019-04-24 2019-07-09 上海健康医学院 一种基于运动检测的睡眠婴幼儿防跌落预警方法及系统
CN110211160A (zh) * 2019-05-30 2019-09-06 华南理工大学 一种基于改进Camshift算法的人脸跟踪方法
CN110211160B (zh) * 2019-05-30 2022-03-25 华南理工大学 一种基于改进Camshift算法的人脸跟踪方法
CN110533699B (zh) * 2019-07-30 2024-05-24 平安科技(深圳)有限公司 基于光流法的像素变化的动态多帧测速方法
CN110533699A (zh) * 2019-07-30 2019-12-03 平安科技(深圳)有限公司 基于光流法的像素变化的动态多帧测速方法
CN110619654B (zh) * 2019-08-02 2022-05-13 北京佳讯飞鸿电气股份有限公司 一种运动目标检测与跟踪方法
CN110619654A (zh) * 2019-08-02 2019-12-27 北京佳讯飞鸿电气股份有限公司 一种运动目标检测与跟踪方法
CN110570459A (zh) * 2019-08-23 2019-12-13 天津大学 一种基于鼠态的运动跟踪方法
CN110532943A (zh) * 2019-08-28 2019-12-03 郑州轻工业学院 基于Camshift算法与影像逐帧结合的航道状态分析方法
CN110533693A (zh) * 2019-08-29 2019-12-03 北京精英路通科技有限公司 一种目标跟踪方法及目标跟踪装置
CN110532989B (zh) * 2019-09-04 2022-10-14 哈尔滨工业大学 一种海上目标自动探测方法
CN110532989A (zh) * 2019-09-04 2019-12-03 哈尔滨工业大学 一种海上目标自动探测方法
CN110599486A (zh) * 2019-09-20 2019-12-20 福州大学 一种视频抄袭的检测方法及系统
CN110751635A (zh) * 2019-10-12 2020-02-04 湖南师范大学 一种基于帧间差分和hsv颜色空间的口腔检测方法
CN110751635B (zh) * 2019-10-12 2024-03-19 湖南师范大学 一种基于帧间差分和hsv颜色空间的口腔检测方法
CN110825123A (zh) * 2019-10-21 2020-02-21 哈尔滨理工大学 一种基于运动算法的自动跟随载物车的控制系统及方法
CN110827324A (zh) * 2019-11-08 2020-02-21 江苏科技大学 一种视频目标跟踪方法
CN110910429A (zh) * 2019-11-19 2020-03-24 普联技术有限公司 一种运动目标检测方法、装置、存储介质及终端设备
CN110910429B (zh) * 2019-11-19 2023-03-17 成都市联洲国际技术有限公司 一种运动目标检测方法、装置、存储介质及终端设备
CN110942642B (zh) * 2019-11-20 2021-01-19 中科视元科技(杭州)有限公司 一种基于视频的交通缓驶检测方法及系统
CN110942642A (zh) * 2019-11-20 2020-03-31 中科视元科技(杭州)有限公司 一种基于视频的交通缓驶检测方法及系统
CN111311640A (zh) * 2020-02-21 2020-06-19 中国电子科技集团公司第五十四研究所 一种基于运动估计的无人机识别跟踪方法
CN111311640B (zh) * 2020-02-21 2022-11-01 中国电子科技集团公司第五十四研究所 一种基于运动估计的无人机识别跟踪方法
CN111402292A (zh) * 2020-03-10 2020-07-10 南昌航空大学 基于特征变形误差遮挡检测的图像序列光流计算方法
CN111415372A (zh) * 2020-03-20 2020-07-14 桂林电子科技大学 一种基于hsi颜色空间和上下文信息的运动目标归并方法
CN111415372B (zh) * 2020-03-20 2023-04-25 桂林电子科技大学 一种基于hsi颜色空间和上下文信息的运动目标归并方法
CN111460949B (zh) * 2020-03-25 2023-09-29 上海电机学院 一种输电线路防外力破坏实时监测方法和系统
CN111460949A (zh) * 2020-03-25 2020-07-28 上海电机学院 一种输电线路防外力破坏实时监测方法和系统
CN111507977B (zh) * 2020-04-28 2024-04-02 同济大学 一种图像中钡剂信息提取方法
CN111507977A (zh) * 2020-04-28 2020-08-07 同济大学 一种图像中钡剂信息提取方法
CN111709968B (zh) * 2020-05-08 2022-10-11 中国人民解放军空军工程大学 一种基于图像处理的低空目标探测跟踪方法
CN111709968A (zh) * 2020-05-08 2020-09-25 中国人民解放军空军工程大学 一种基于图像处理的低空目标探测跟踪方法
CN111667503A (zh) * 2020-06-12 2020-09-15 中国科学院长春光学精密机械与物理研究所 基于前景检测的多目标跟踪方法、装置、设备及存储介质
CN111695536A (zh) * 2020-06-17 2020-09-22 无锡雪浪数制科技有限公司 一种基于深度视觉的智能取货识别方法
CN111914627A (zh) * 2020-06-18 2020-11-10 广州杰赛科技股份有限公司 一种车辆识别与追踪方法及装置
CN111724319A (zh) * 2020-06-19 2020-09-29 马鞍山职业技术学院 视频监控系统中的图像处理方法
CN111739059A (zh) * 2020-06-20 2020-10-02 马鞍山职业技术学院 基于帧差法的运动物体检测方法与轨迹跟踪方法
CN111814602A (zh) * 2020-06-23 2020-10-23 成都信息工程大学 一种基于视觉的智能车环境动态目标检测的方法
CN111814602B (zh) * 2020-06-23 2022-06-17 成都信息工程大学 一种基于视觉的智能车环境动态目标检测的方法
CN111896540A (zh) * 2020-07-14 2020-11-06 江苏云聚汇科技有限公司 一种基于区块链的水质在线监测系统
CN111951296A (zh) * 2020-08-28 2020-11-17 福州大学 一种目标跟踪方法及装置
CN111951296B (zh) * 2020-08-28 2022-07-08 福州大学 一种目标跟踪方法及装置
CN112150545A (zh) * 2020-09-28 2020-12-29 中国科学院空间应用工程与技术中心 一种基于Tobit Kalman滤波器的光斑质心获取方法和装置
CN112146834B (zh) * 2020-09-30 2022-10-14 石家庄铁道大学 结构振动位移测量方法及装置
CN112146834A (zh) * 2020-09-30 2020-12-29 石家庄铁道大学 结构振动位移测量方法及装置
CN112329584A (zh) * 2020-10-29 2021-02-05 深圳技术大学 基于机器视觉自动识别电网异物的方法及系统、设备
CN112288767A (zh) * 2020-11-04 2021-01-29 成都寰蓉光电科技有限公司 一种基于目标自适应投影的自动检测与跟踪方法
CN112562358A (zh) * 2020-11-27 2021-03-26 石家庄铁道大学 基于视频数据的交通量检测方法、装置及终端设备
CN112750136B (zh) * 2020-12-30 2023-12-05 深圳英集芯科技股份有限公司 一种图像处理方法和系统
CN112750136A (zh) * 2020-12-30 2021-05-04 深圳英集芯科技股份有限公司 一种图像处理方法和系统
CN112907626A (zh) * 2021-02-08 2021-06-04 中国空间技术研究院 基于卫星超时相数据多源信息的运动目标提取方法
CN112862854A (zh) * 2021-02-08 2021-05-28 桂林电子科技大学 一种改进kcf算法的多无人机跟踪方法
CN112989963A (zh) * 2021-02-24 2021-06-18 唐山不锈钢有限责任公司 一种基于图形识别的洛氏硬度试验过程监督判定方法
CN112989963B (zh) * 2021-02-24 2022-10-18 唐山不锈钢有限责任公司 一种基于图形识别的洛氏硬度试验过程监督判定方法
CN113297926B (zh) * 2021-05-06 2023-07-04 山东大学 行为检测识别方法及系统
CN113297926A (zh) * 2021-05-06 2021-08-24 山东大学 行为检测识别方法及系统
CN113362280A (zh) * 2021-05-14 2021-09-07 同济大学 一种基于医学造影的动态目标跟踪方法
CN113362280B (zh) * 2021-05-14 2022-07-05 同济大学 一种基于医学造影的动态目标跟踪方法
CN113362371A (zh) * 2021-05-18 2021-09-07 北京迈格威科技有限公司 目标跟踪方法及装置、电子设备、存储介质
CN113379789A (zh) * 2021-06-11 2021-09-10 天津大学 一种复杂环境下运动目标跟踪方法
CN113344964A (zh) * 2021-06-23 2021-09-03 江苏三恒科技股份有限公司 一种基于图像处理的矿井机器人落石监测预警方法
CN113344964B (zh) * 2021-06-23 2024-02-23 江苏三恒科技股份有限公司 一种基于图像处理的矿井机器人落石监测预警方法
CN113870203A (zh) * 2021-09-18 2021-12-31 西安交通大学 一种针对重影边界圆心定位的高精度运动测量方法
CN113870203B (zh) * 2021-09-18 2024-04-02 西安交通大学 一种针对重影边界圆心定位的高精度运动测量方法
CN113743368A (zh) * 2021-09-18 2021-12-03 内蒙古工业大学 一种行为监测方法、装置、存储介质及电子设备
CN113947608B (zh) * 2021-09-30 2023-10-20 西安交通大学 一种基于几何匹配法控制的结构不规则运动高精度测量方法
CN113947608A (zh) * 2021-09-30 2022-01-18 西安交通大学 一种基于几何匹配法控制的结构不规则运动高精度测量方法
CN114419106A (zh) * 2022-03-30 2022-04-29 深圳市海清视讯科技有限公司 车辆违章行为检测方法、设备及存储介质
CN114419106B (zh) * 2022-03-30 2022-07-22 深圳市海清视讯科技有限公司 车辆违章行为检测方法、设备及存储介质
CN115359240A (zh) * 2022-07-15 2022-11-18 北京中科思创云智能科技有限公司 基于多帧图像运动特征的小目标检测方法、装置和设备
CN115359240B (zh) * 2022-07-15 2024-03-15 北京中科思创云智能科技有限公司 基于多帧图像运动特征的小目标检测方法、装置和设备
CN114943955A (zh) * 2022-07-25 2022-08-26 山东广通汽车科技股份有限公司 一种用于半挂车自动卸货控制方法
CN114943955B (zh) * 2022-07-25 2022-11-01 山东广通汽车科技股份有限公司 一种用于半挂车自动卸货控制方法
CN115937263A (zh) * 2023-02-27 2023-04-07 南昌理工学院 基于视觉的目标跟踪方法、系统、电子设备及存储介质
CN116205914A (zh) * 2023-04-28 2023-06-02 山东中胜涂料有限公司 一种防水涂料生产智能监测系统
CN117078722B (zh) * 2023-10-17 2023-12-22 四川迪晟新达类脑智能技术有限公司 基于灰度直方图提取小目标的目标跟踪方法及装置
CN117078722A (zh) * 2023-10-17 2023-11-17 四川迪晟新达类脑智能技术有限公司 基于灰度直方图提取小目标的目标跟踪方法及装置
CN117218161B (zh) * 2023-11-09 2024-01-16 聊城市敏锐信息科技有限公司 一种鱼缸内鱼类轨迹跟踪方法及系统
CN117218161A (zh) * 2023-11-09 2023-12-12 聊城市敏锐信息科技有限公司 一种鱼缸内鱼类轨迹跟踪方法及系统

Similar Documents

Publication Publication Date Title
CN109102523A (zh) 一种运动目标检测和跟踪方法
CN106846359B (zh) 基于视频序列的运动目标快速检测方法
CN109949375B (zh) 一种基于深度图感兴趣区域的移动机器人目标跟踪方法
CN104392468B (zh) 基于改进视觉背景提取的运动目标检测方法
CN104200485B (zh) 一种面向视频监控的人体跟踪方法
CN101299268B (zh) 适于低景深图像的语义对象分割方法
CN104239865B (zh) 一种基于多级检测的行人检测与跟踪方法
CN109102547A (zh) 基于物体识别深度学习模型的机器人抓取位姿估计方法
CN110490907B (zh) 基于多目标特征和改进相关滤波器的运动目标跟踪方法
CN109685045B (zh) 一种运动目标视频跟踪方法及系统
CN108022258B (zh) 基于单次多框检测器与卡尔曼滤波的实时多目标跟踪方法
CN103077539A (zh) 一种复杂背景及遮挡条件下的运动目标跟踪方法
CN110555868A (zh) 一种复杂地面背景下运动小目标检测方法
CN112581540B (zh) 一种大场景下基于人体姿态估计的相机标定方法
CN107705321A (zh) 基于嵌入式系统的运动目标检测与跟踪方法
CN101408983A (zh) 基于粒子滤波和活动轮廓模型的多目标跟踪方法
CN105160649A (zh) 基于核函数非监督聚类的多目标跟踪方法及系统
CN106204594A (zh) 一种基于视频图像的弥散性运动物体的方向检测方法
CN106709938B (zh) 基于改进tld的多目标追踪方法
CN106228569A (zh) 一种适用于水质监测的鱼体运动速度检测方法
CN114677323A (zh) 一种室内动态场景下基于目标检测的语义视觉slam定位方法
CN108256567A (zh) 一种基于深度学习的目标识别方法及系统
CN102289822A (zh) 一种多摄像机协同跟踪运动目标的方法
Tsechpenakis et al. A snake model for object tracking in natural sequences
CN109064498A (zh) 基于Meanshift、卡尔曼滤波和图像匹配的目标跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181228

RJ01 Rejection of invention patent application after publication