CN109102185B - 一种评估光储充一体化电站全寿命周期经济性的方法和系统 - Google Patents

一种评估光储充一体化电站全寿命周期经济性的方法和系统 Download PDF

Info

Publication number
CN109102185B
CN109102185B CN201810891534.6A CN201810891534A CN109102185B CN 109102185 B CN109102185 B CN 109102185B CN 201810891534 A CN201810891534 A CN 201810891534A CN 109102185 B CN109102185 B CN 109102185B
Authority
CN
China
Prior art keywords
total
life cycle
power station
charging integrated
integrated power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810891534.6A
Other languages
English (en)
Other versions
CN109102185A (zh
Inventor
李相俊
艾瑶瑶
袁晓冬
马会萌
李建林
杨水丽
杨雄
贾学翠
王晓清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CN201810891534.6A priority Critical patent/CN109102185B/zh
Publication of CN109102185A publication Critical patent/CN109102185A/zh
Application granted granted Critical
Publication of CN109102185B publication Critical patent/CN109102185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种评估光储充一体化电站全寿命周期经济性的方法和系统,在考虑化学电池作为储能系统情景下,以考虑储能电池全寿命周期成本的光伏电动汽车充电站年最大收益为目标,建立光储充一体化电站全寿命周期收益模型,采用多种群遗传算法对建立的收益模型求解确定收益最大化时最佳光伏和储能容量,再结合确立技术经济效益和财务效益指标的数学模型以及概率模型建立评估光储充一体化电站全寿命周期经济性的模型进行经济性效益评估。所述方法和系统通过建立评估光储充一体化电站全寿命周期经济性的模型,并在不同光储容量配置下对经济性的评估,较好地验证了电池储能加入光伏汽车充电站的必要性及其最佳收益可能性。

Description

一种评估光储充一体化电站全寿命周期经济性的方法和系统
技术领域
本发明涉及,并且更具体地,涉及一种评估光储充一体化电站全寿命周期经济性的方法和系统。
背景技术
近年来,电动汽车光伏充电站的建立,对改善环境和节约能源做出了很大贡献。但是光照能源的间歇性因素并不能与电动汽车充电需求即时匹配。因为储能可调度,若将储能加入光伏汽车充电站,能够很好解这一问题。蓄电池储能中,锂离子电池、铅酸电池在我国已开始商业化运行。近几年,磷酸铁锂电池因其长循环寿命、快充电能力和高放电率等优势也在储能行业中逐渐发展应用。
目前,国内对于光伏充电站中储能配置问题研究颇多。以光伏利用率最大和年净利润最大为目标,采用NSGA-II算法对构建的储能容量优化配置模型进行求解,经过优化的储能系统可在离网情况下保证系统中重要负荷的稳定运行,在并网运行时促进光伏的就地消纳。针对储能装置和光伏系统共同运行经济性,建立经济调度模型并对其求解,可以证明合理容量的蓄电池不仅可以平滑光伏输出,提高电力系统运行的经济性,而且具有一定的削峰填谷效应。国内对于加入储能的发电单元的经济性分析方面研究大多从系统收益展开。储能单元加入发电系统,可为用电系统带来额外的经济效益。不同类型的负荷特性下,光伏系统和储能成本、电价模式及负荷特性均是影响用户安装光伏-储能系统的经济性的重要因素,不同用户适合安装的系统类型不同。
但是针对光储充一体化电站全寿命周期经济性评估的相关方法缺失,急需研究并提出相关理论与方法,开展商业化的运行验证。
发明内容
为了解决现有技术中对光储充一体化电站全寿命周期经济性评估缺少方法的技术问题,本发明提供一种评估光储充一体化电站全寿命周期经济性的方法,所述方法包括:
步骤1、建立光储充一体化电站全寿命周期总收益模型F,以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置值,所述全寿命周期是指光储充一体化电站从项目规划到拆除的时间;
步骤2、当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF
步骤3、确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型;
步骤4、根据所述每个指标模型近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型;
步骤5、根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P;
步骤6、建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性。
进一步地,所述建立光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用。
进一步地,所述以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置包括:
确定多个种群,每个种群个体中包括光伏容量和储能容量两个决策变量;
所述多个种群由不同控制参数的普通标准遗传算法保持种群的差异化,并且通过人工选择算子选出每个种群的最优个体;
将所述每个种群的最优个体存入精华种群中,当精华种群满足收敛条件时,算法终止,并确定光伏发电系统和储能系统的最佳容量配置。
进一步地,所述当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF是指光储充一体化电站全寿命周期总收益小于根据光储充一体化电站全寿命周期总收益模型求取的任一总收益的概率,即以全寿命周期光储充一体化电站收益近似服从的正态分布函数为概率密度函数,在全寿命周期总收益小于根据光储充一体化电站全寿命周期总收益模型求取的任一总收益的区间上的积分值,计算公式为:
Figure GDA0003494841700000031
式中,F表示根据光储充一体化电站全寿命周期总收益模型求取的任一总收益,c为光储充一体化电站全寿命周期总收益,σc 2为光储充一体化电站全寿命周期总收益的方差,E(c)为光储充一体化电站全寿命周期总收益的数学期望。
进一步地,所述确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型包括:
确定年均发电量、供电效益、平准化电力成本LCOE、财务净现值和动态投资回收期为评估光储充一体化电站全寿命周期经济性的指标;
根据确定的指标建立指标模型,其中:
年均发电量Gy为光储充一体化电站全寿命周期内总发电量与运行周期的比值;
供电效益Heq为光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
平准化电力成本LCOE为光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
净现值NPV为全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
动态投资回收期K为光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限。
进一步地,根据所述每个指标近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型包括:
发电量概率模型为光储充一体化电站运行周期内发电量小于根据发电量指标模型求取的任一总发电量的概率,即以运行期内光储充一体化电站发电量近似服从的正态分布函数为概率密度函数,计算在运行周期内发电量小于根据发电量指标模型求取的任一总发电量的区间上的积分值,其计算公式为:
Figure GDA0003494841700000041
式中,G表示根据发电量指标模型求取的任一总发电量,其为年均发电量Gy与运行周期的积,g为光储充一体化电站运行周期内发电量,σg 2为任一总发电量的方差,E(g)为任一总发电量的数学期望;
供电效益概率模型为光储充一体化电站运行周期内供电效益小于根据供电效益指标模型求取的任一总供电效益的概率,即以总运行期内光储充一体化电站供电效益模型近似服从的正态分布函数为概率密度函数,在总运行周期内供电效益小于根据供电效益指标模型求取的任一总供电效益的区间上的积分值,其计算公式为:
Figure GDA0003494841700000042
式中,Heq表示根据供电效益指标模型求取的任一总供电效益,h为光储充一体化电站运行周期内供电效益,σh 2为光储充一体化电站运行周期内供电效益的方差,E(h)为光储充一体化电站运行周期内供电效益的数学期望;
LCOE概率模型为光储充一体化电站全寿命周期内总LCOE小于根据LCOE指标模型求取的任一总LCOE的概率,即以全寿命周期光储充一体化电站LCOE指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内LCOE小于根据LCOE指标模型求取的任一总LCOE的区间上的积分值,其计算公式为:
Figure GDA0003494841700000051
式中,LCOE表示根据LCOE指标模型求取的任一LCOE,l为光储充一体化电站全寿命周期内总LCOE,σl 2为光储充一体化电站全寿命周期内总LCOE的方差,E(l)为光储充一体化电站全寿命周期内总LCOE的数学期望;
净现值概率模型为光储充一体化电站全寿命周期总净现值小于根据净现值指标模型求取的任一总净现值的概率,即以光储充一体化电站全寿命周期净现值指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内净现值小于根据净现值指标模型求取的任一总净现值的区间上的积分值,其计算公式为:
Figure GDA0003494841700000052
式中,NPV表示根据净现值指标模型求取的任一总净现值,n为光储充一体化电站全寿命周期内总净现值,σn 2为光储充一体化电站全寿命周期内总净现值的方差,E(n)为光储充一体化电站全寿命周期内总净现值的数学期望,且:
净现值的数学期望E(n)和方差的计算公式为:
E(n)=E(I1+I2)+E(O1+O2)
σn 2=σ2(I1+I2)+σ2(O1+O2)
式中,E(I1+I2)为全寿命周内总收入的期望值,E(O1+O2)为全寿命周内总成本的期望值之和,σ2(I1+I2)为全寿命周内总收入的方差,σ2(O1+O2)全寿命周内总成本的方差;
动态投资回收期概率模型为根据投资回收期的近似期望值,在近似期望值附近拟定一组数值作为投资回收期,结合净现值概率模型中求取的数学期望与方差,分别计算每个拟定投资回收期数值下净现值的数学期望值和均方差以确定净现值大于0的概率,其计算公式为:
Figure GDA0003494841700000061
式中,r为折现率,I1为光伏发电系统收益,I2为政府补贴;O1为光储充一体化电站全寿命周期内光伏储能成本,O2为光储充一体化电站从电网购电的费用。
进一步地,所述根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P包括:
确定供电效益Heq、财务净现值NPV和年均发电量Gy与动态回收年限K的比值B1,其计算公式为:
B1=(Gy*Heq*NPV)/K;
确定平准化电力成本LCOE与动态回收年限K的比值B2,其计算公式为:
B2=LCOE/K;
根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、每个指标的概率模型、B1和B2建立评估光储充一体化电站全寿命周期经济性的模型P,其计算公式为:
Figure GDA0003494841700000062
式中,
Figure GDA0003494841700000063
是供电效益Heq的概率模型,PNPV是财务净现值NPV的概率模型,PG是发电量G的概率模型,PK是动态回收年限K的概率模型,PLCOE是平准化电力成本LCOE的概率模型。
进一步地,所述建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性是指在不同容量配置下,光储充一体化电站全寿命周期的总收益F,总收益概率PF,根据每个指标的值求取的B1和B2,以及每个指标的概率均不同,当根据经济性模型P所求取的P的值越小,则在所述容量配置下光储充一体化电站全寿命周期经济性越好。
根据本发明的另一方面,本发明提供一种评估光储充一体化电站全寿命周期经济性的系统,所述系统包括:
收益模型单元,其用于建立光储充一体化电站全寿命周期总收益模型F,以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置值,所述全寿命周期是指光储充一体化电站从项目规划到拆除的时间;
收益概率模型单元,其用于当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF
指标模型单元,其用于确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型;
指标概率模型单元,其用于根据所述每个指标模型近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型;
经济性模型单元,其用于根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P;
经济性评估单元,其用于建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性。
进一步地,所述收益模型单元建立的光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用。
进一步地,所述收益模型单元以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置包括:
确定多个种群,每个种群个体中包括光伏容量和储能容量两个决策变量;
所述多个种群由不同控制参数的普通标准遗传算法保持种群的差异化,并且通过人工选择算子选出每个种群的最优个体;
将所述每个种群的最优个体存入精华种群中,当精华种群满足收敛条件时,算法终止,并确定光伏发电系统和储能系统的最佳容量配置。
进一步地,所述收益概率模型单元用于当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF,其计算公式为:
Figure GDA0003494841700000081
式中,PF是指光储充一体化电站全寿命周期总收益小于根据光储充一体化电站全寿命周期收益模型单元求取的任一总收益的概率,即以全寿命周期光储充一体化电站收益近似服从的正态分布函数为概率密度函数,在全寿命周期总收益小于根据光储充一体化电站全寿命周期收益模型单元求取的任一总收益的区间上的积分值,F表示根据光储充一体化电站全寿命周期总收益模型求取的任一总收益,c为光储充一体化电站全寿命周期总收益,σc 2为光储充一体化电站全寿命周期总收益的方差,E(c)为光储充一体化电站全寿命周期总收益的数学期望。
进一步地,指标模型单元包括:
指标确定单元,其用于确定年均发电量、供电效益、平准化电力成本LCOE、财务净现值和动态投资回收期为评估光储充一体化电站全寿命周期经济性的指标;
第一指标模型单元,其用于计算光储充一体化电站全寿命周期内总发电量与运行周期的比值;
第二指标模型单元,其用于计算光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
第三指标模型单元,其用于计算光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
第四指标模型单元,其用于计算全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
第五指标模型单元,其用于计算光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限;
进一步地,所述指标概率模型单元包括:
第一概率模型单元用于计算光储充一体化电站运行周期内发电量小于根据第一指标模型单元求取的任一总发电量的概率,其计算公式为:
Figure GDA0003494841700000091
式中,pG是以运行期内光储充一体化电站发电量近似服从的正态分布函数为概率密度函数,计算在运行周期内发电量小于根据第一指标模型单元求取的任一总发电量的区间上的积分值,G表示根据第一指标模型单元求取的任一总发电量,其为年均发电量Gy与运行周期的积,g为光储充一体化电站运行周期内发电量,σg 2为任一总发电量的方差,E(g)为任一总发电量的数学期望;
第二概率模型单元用于计算光储充一体化电站运行周期内供电效益小于根据第二指标模型单元求取的任一总供电效益的概率,其计算公式为:
Figure GDA0003494841700000101
式中,
Figure GDA0003494841700000102
是以总运行期内光储充一体化电站供电效益模型近似服从的正态分布函数为概率密度函数,在总运行周期内供电效益小于根据第二指标模型单元求取的任一总供电效益的区间上的积分值,Heq表示根据第二指标模型单元求取的任一总供电效益,h为光储充一体化电站运行周期内供电效益,σh 2为光储充一体化电站运行周期内供电效益的方差,E(h)为光储充一体化电站运行周期内供电效益的数学期望;
第三概率模型单元用于计算光储充一体化电站全寿命周期内总LCOE小于根据第三指标模型单元求取的任一总LCOE的概率,其计算公式为:
Figure GDA0003494841700000103
式中,PLCOE是以全寿命周期光储充一体化电站LCOE指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内LCOE小于根据第三指标模型单元求取的任一总LCOE的区间上的积分值,LCOE表示根据第三指标模型单元求取的任一LCOE,l为光储充一体化电站全寿命周期内总LCOE,σl 2为光储充一体化电站全寿命周期内总LCOE的方差,E(l)为光储充一体化电站全寿命周期内总LCOE的数学期望;
第四概率模型单元用于光储充一体化电站全寿命周期总净现值小于根据第四指标模型单元求取的任一总净现值的概率,其计算公式为:
Figure GDA0003494841700000104
式中,PNPV是以光储充一体化电站全寿命周期净现值指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内净现值小于根据第四指标模型单元求取的任一总净现值的区间上的积分值,NPV表示根据第四指标模型单元求取的任一总净现值,n为光储充一体化电站全寿命周期内总净现值,σn 2为光储充一体化电站全寿命周期内总净现值的方差,E(n)为光储充一体化电站全寿命周期内总净现值的数学期望,且:
净现值的数学期望E(n)和方差的计算公式为:
E(n)=E(I1+I2)+E(O1+O2)
σn 2=σ2(I1+I2)+σ2(O1+O2)
式中,E(I1+I2)为全寿命周内总收入的期望值,E(O1+O2)为全寿命周内总成本的期望值之和,σ2(I1+I2)为全寿命周内总收入的方差,σ2(O1+O2)全寿命周内总成本的方差;
第五概率模型单元用于计算根据投资回收期的近似期望值,在近似期望值附近拟定一组数值作为投资回收期,结合第四概率模型单元中求取的数学期望与方差,分别计算每个拟定投资回收期数值下净现值的数学期望值和均方差以确定净现值大于0的概率,其计算公式为:
Figure GDA0003494841700000111
式中,r为折现率,I1为光伏发电系统收益,I2为政府补贴;O1为光储充一体化电站全寿命周期内光伏储能成本,O2为光储充一体化电站从电网购电的费用。
进一步地,所述经济性模型单元包括:
第一比值确定单元,其用于确定供电效益Heq、财务净现值NPV和年均发电量Gy与动态回收年限K的比值B1,其计算公式为:
B1=(Gy*Heq*NPV)/K;
第二比值确定单元,其用于确定平准化电力成本LCOE与动态回收年限K的比值B2,其计算公式为:
B2=LCOE/K;
经济性模型确定单元,其用于根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、每个指标的概率模型、B1和B2建立评估光储充一体化电站全寿命周期经济性的模型P,其计算公式为:
Figure GDA0003494841700000112
式中,
Figure GDA0003494841700000113
是供电效益Heq的概率模型,PNPV是财务净现值NPV的概率模型,PG是发电量G的概率模型,PK是动态回收年限K的概率模型,PLCOE是平准化电力成本LCOE的概率模型。
进一步地,所述经济性评估单元在不同容量配置下,根据经济性模型单元所求取的P的值越小,则在所述容量配置下光储充一体化电站全寿命周期经济性越好。
本发明技术方案提供的评估光储充一体化电站全寿命周期经济性的方法和系统,在考虑化学电池作为储能系统情景下,以考虑储能电池全寿命周期成本的光伏电动汽车充电站年最大收益为目标,建立光储充一体化电站全寿命周期收益模型,采用多种群遗传算法对建立的收益模型求解确定收益最大化时最佳光伏和储能容量,再结合确立技术经济效益和财务效益指标的数学模型以及概率模型建立评估光储充一体化电站全寿命周期经济性的模型进行经济性效益评估,并结合求解得到的最优容量,针对光储充一体电站进行动态经济性评估,比较分析配置储能前后的优异性。
本发明所述的评估光储充一体化电站全寿命周期经济性的方法和系统以光储充一体化电站最大经济收益为目标,充分考虑光储电站功率的平衡、光伏储能容量及光储系统收益等约束指标,构建了光储充电站最大经济模型。利用多种群遗传算法计算得出收益最大时最佳光伏和储能容量;其次建立基于概率方法的全寿命周期光储充电站一体化经济模型,依据计算得出的容量进一步计算经济性评估指标供电效益、年均发电量、动态投资回收期、平准化电力成本及财务净现值对应的概率模型及其期望与方差,实现了对光储充电站最大经济性进行评估及其目的,同时得到收益概率分布,进而验证了电池储能加入光伏汽车充电站的必要性及其最佳收益可能性。
附图说明
通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:
图1为根据本发明优选实施方式的评估光储充一体化电站全寿命周期经济性的光储充一体化电站的结构示意图;
图2为根据本发明优选实施方式的评估光储充一体化电站全寿命周期的经济性的方法的流程图;
图3为根据本发明优选实施方式的评估光储充一体化电站全寿命周期的经济性的系统的结构示意图。
具体实施方式
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图1为根据本发明优选实施方式的评估光储充一体化电站全寿命周期经济性的光储充一体化电站的结构示意图。如图1所示,光储充一体化电站主要由4部分构成:光伏发电系统、电池储能系统、电动汽车负荷和光储充电站监控系统。其中,采用单向DC/DC变换器将光伏发电系统和电动汽车负荷接入,而电池储能系统则通过双向DC/DC变换器接入。
光储充一体化电站的储能充放电控制策略原则是最大限度利用光伏发电。当光伏发电除为电动汽车负荷及电池储能系统充电外仍有富余,则富余发电上网;当光伏发电及储能电量小于负荷需求,则负荷超出部分由电网供电。当配置电池储能时,光储充一体化电站充放电控制策略按时间段进行设置:00:00-7L00,此时光伏发电为零,电动汽车由电网直接充电,同时保证电池储能系统处于满充状态。7:00-18:00,光伏系统工作,光伏发电首选为电动汽车充电,多余电量送入电池储能系统。当两者均充满时,富余的光伏发电送入电网。18:00-24:00,电池储能系统先为电动汽车充电,供给不足时,由电网充电。
图2为根据本发明优选实施方式的评估光储充一体化电站全寿命周期的经济性的方法的流程图。在本优选实施方式中,采用北京某快速充电站为例,在所述充电站中,光伏发电系统运行寿命20年,磷酸铁锂储能电池寿命为10年,置换次数为1。选取该充电站的典型日负荷,以光储充电站系统全寿命周期的经济性为目标,采用多种群遗传算法求解光储容量配置,并对其技术经济和财务效益指标结合概率分布进行分析,从而评估光储充电站全寿命周期经济性及其最佳经济性时的概率分布。
如图2所示,本优选实施方式所述的评估光储充一体化电站全寿命周期经济性的方法从步骤201开始。
在步骤201,建立光储充一体化电站全寿命周期总收益模型F,以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置值,所述全寿命周期是指光储充一体化电站从项目规划到拆除的时间。
优选地,所述建立光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用。
优选地,所述建立光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
Figure GDA0003494841700000141
Figure GDA0003494841700000142
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用,P0、Cpv为光伏装机功率与光伏功率单价,i为贴现率;n1、n2分别为光伏、储能系统的使用年限,Eb为储能容量,CE、Cp分别为为储能单位容量、功率价格,Pb为储能额定功率,kpv、kb分别为光伏、储能系统运维系数,pg(t)为t时刻从电网购电功率,s为电网电价,q1为光储充电站的充电电价,q2为光储充电站服务费,Pl(t)为电动汽车充电负荷,Δt为功率数据采样间隔。
优选地,所述以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置包括:
确定多个种群,每个种群个体中包括光伏容量和储能容量两个决策变量;
所述多个种群由不同控制参数的普通标准遗传算法保持种群的差异化,并且通过人工选择算子选出每个种群的最优个体;
将所述每个种群的最优个体存入精华种群中,当精华种群满足收敛条件时,算法终止,并确定光伏发电系统和储能系统的最佳容量配置。
在步骤202,当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF
优选地,所述当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF是指光储充一体化电站全寿命周期总收益小于根据光储充一体化电站全寿命周期总收益模型求取的任一总收益的概率,即以全寿命周期光储充一体化电站收益近似服从的正态分布函数为概率密度函数,在全寿命周期总收益小于根据光储充一体化电站全寿命周期总收益模型求取的任一总收益的区间上的积分值,计算公式为:
Figure GDA0003494841700000151
式中,F表示根据光储充一体化电站全寿命周期总收益模型求取的任一总收益,c为光储充一体化电站全寿命周期总收益,σc 2为光储充一体化电站全寿命周期总收益的方差,E(c)为光储充一体化电站全寿命周期总收益的数学期望。
在步骤203,确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型。
优选地,所述确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型包括:
确定年均发电量、供电效益、平准化电力成本LCOE、财务净现值和动态投资回收期为评估光储充一体化电站全寿命周期经济性的指标;
根据确定的指标建立指标模型,其中:
年均发电量Gy为光储充一体化电站全寿命周期内总发电量与运行周期的比值;
供电效益Heq为光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
平准化电力成本LCOE为光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
净现值NPV为全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
动态投资回收期K为光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限。
优选地,所述确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型包括:
确定年均发电量、供电效益、平准化电力成本LCOE、财务净现值和动态投资回收期为评估光储充一体化电站全寿命周期经济性的指标;
根据确定的指标建立指标模型,其中:
年均发电量Gy为光储充一体化电站全寿命周期内总发电量与运行周期的比值;
供电效益Heq为光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
平准化电力成本LCOE为光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
净现值NPV为全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
动态投资回收期K为光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限。
在步骤204,根据所述每个指标模型近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型。
优选地,根据所述每个指标近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型包括:
发电量概率模型为光储充一体化电站运行周期内发电量小于根据发电量指标模型求取的任一总发电量的概率,即以运行期内光储充一体化电站发电量近似服从的正态分布函数为概率密度函数,计算在运行周期内发电量小于根据发电量指标模型求取的任一总发电量的区间上的积分值,其计算公式为:
Figure GDA0003494841700000171
式中,G表示根据发电量指标模型求取的任一总发电量,其为年均发电量Gy与运行周期的积,g为光储充一体化电站运行周期内发电量,σg 2为任一总发电量的方差,E(g)为任一总发电量的数学期望;
供电效益概率模型为光储充一体化电站运行周期内供电效益小于根据供电效益指标模型求取的任一总供电效益的概率,即以总运行期内光储充一体化电站供电效益模型近似服从的正态分布函数为概率密度函数,在总运行周期内供电效益小于根据供电效益指标模型求取的任一总供电效益的区间上的积分值,其计算公式为:
Figure GDA0003494841700000181
式中,Heq表示根据供电效益指标模型求取的任一总供电效益,h为光储充一体化电站运行周期内供电效益,σh 2为光储充一体化电站运行周期内供电效益的方差,E(h)为光储充一体化电站运行周期内供电效益的数学期望;
LCOE概率模型为光储充一体化电站全寿命周期内总LCOE小于根据LCOE指标模型求取的任一总LCOE的概率,即以全寿命周期光储充一体化电站LCOE指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内LCOE小于根据LCOE指标模型求取的任一总LCOE的区间上的积分值,其计算公式为:
Figure GDA0003494841700000182
式中,LCOE表示根据LCOE指标模型求取的任一LCOE,l为光储充一体化电站全寿命周期内总LCOE,σl 2为光储充一体化电站全寿命周期内总LCOE的方差,E(l)为光储充一体化电站全寿命周期内总LCOE的数学期望;
净现值概率模型为光储充一体化电站全寿命周期总净现值小于根据净现值指标模型求取的任一总净现值的概率,即以光储充一体化电站全寿命周期净现值指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内净现值小于根据净现值指标模型求取的任一总净现值的区间上的积分值,其计算公式为:
Figure GDA0003494841700000183
式中,NPV表示根据净现值指标模型求取的任一总净现值,n为光储充一体化电站全寿命周期内总净现值,σn 2为光储充一体化电站全寿命周期内总净现值的方差,E(n)为光储充一体化电站全寿命周期内总净现值的数学期望,且:
净现值的数学期望E(n)和方差的计算公式为:
E(n)=E(I1+I2)+E(O1+O2)
σn 2=σ2(I1+I2)+σ2(O1+O2)
式中,E(I1+I2)为全寿命周内总收入的期望值,E(O1+O2)为全寿命周内总成本的期望值之和,σ2(I1+I2)为全寿命周内总收入的方差,σ2(O1+O2)全寿命周内总成本的方差;
动态投资回收期概率模型为根据投资回收期的近似期望值,在近似期望值附近拟定一组数值作为投资回收期,结合净现值概率模型中求取的数学期望与方差,分别计算每个拟定投资回收期数值下净现值的数学期望值和均方差以确定净现值大于0的概率,其计算公式为:
Figure GDA0003494841700000191
式中,r为折现率,I1为光伏发电系统收益,I2为政府补贴;O1为光储充一体化电站全寿命周期内光伏储能成本,O2为光储充一体化电站从电网购电的费用。
在步骤205,根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P。
优选地,所述根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P包括:
确定供电效益Heq、财务净现值NPV和年均发电量Gy与动态回收年限K的比值B1,其计算公式为:
B1=(Gy*Heq*NPV)/K;
确定平准化电力成本LCOE与动态回收年限K的比值B2,其计算公式为:
B2=LCOE/K;
根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、每个指标的概率模型、B1和B2建立评估光储充一体化电站全寿命周期经济性的模型P,其计算公式为:
Figure GDA0003494841700000201
式中,
Figure GDA0003494841700000202
是供电效益Heq的概率模型,PNPV是财务净现值NPV的概率模型,PG是发电量G的概率模型,PK是动态回收年限K的概率模型,PLCOE是平准化电力成本LCOE的概率模型。
在步骤206,建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性。
优选地,所述建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性是指在不同容量配置下,光储充一体化电站全寿命周期的总收益F,总收益概率PF,根据每个指标的值求取的B1和B2,以及每个指标的概率均不同,当根据经济性模型P所求取的P的值越小,则在所述容量配置下光储充一体化电站全寿命周期经济性越好。
所述方法通过在不同光储容量配置下对经济性的评估,较好地验证了电池储能加入光伏汽车充电站的必要性及其最佳收益可能性。
图3是根据本发明优选实施方式的评估光储充一体化电站全寿命周期的经济性的系统的结构示意图。如图3所示,本优选实施方式所述的评估光储充一体化电站全寿命周期经济性的系统300包括:
收益模型单元301,其用于建立光储充一体化电站全寿命周期总收益模型F,以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置值,所述全寿命周期是指光储充一体化电站从项目规划到拆除的时间。
优选地,所述收益模型单元建立的光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用。
优选地,所述收益模型单元301以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置包括:
确定多个种群,每个种群个体中包括光伏容量和储能容量两个决策变量;
所述多个种群由不同控制参数的普通标准遗传算法保持种群的差异化,并且通过人工选择算子选出每个种群的最优个体;
将所述每个种群的最优个体存入精华种群中,当精华种群满足收敛条件时,算法终止,并确定光伏发电系统和储能系统的最佳容量配置。
收益概率模型单元302,其用于当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF
优选地,所述收益概率模型单元302用于当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF,其计算公式为:
Figure GDA0003494841700000211
式中,PF是指光储充一体化电站全寿命周期总收益小于根据光储充一体化电站全寿命周期收益模型单元求取的任一总收益的概率,即以全寿命周期光储充一体化电站收益近似服从的正态分布函数为概率密度函数,在全寿命周期总收益小于根据光储充一体化电站全寿命周期收益模型单元求取的任一总收益的区间上的积分值,F表示根据光储充一体化电站全寿命周期总收益模型求取的任一总收益,c为光储充一体化电站全寿命周期总收益,σc 2为光储充一体化电站全寿命周期总收益的方差,E(c)为光储充一体化电站全寿命周期总收益的数学期望。
指标模型单元303,其用于确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型。
优选地,指标模型单元303包括:
指标确定单元331,其用于确定年均发电量、供电效益、平准化电力成本LCOE、财务净现值和动态投资回收期为评估光储充一体化电站全寿命周期经济性的指标;
第一指标模型单元332,其用于计算光储充一体化电站全寿命周期内总发电量与运行周期的比值;
第二指标模型单元333,其用于计算光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
第三指标模型单元334,其用于计算光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
第四指标模型单元335,其用于计算全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
第五指标模型单元336,其用于计算光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限。
指标概率模型单元304,其用于根据所述每个指标模型近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型。
优选地,所述指标概率模型单元304包括:
第一概率模型单元341用于计算光储充一体化电站运行周期内发电量小于根据第一指标模型单元332求取的任一总发电量的概率,其计算公式为:
Figure GDA0003494841700000221
式中,PG是以运行期内光储充一体化电站发电量近似服从的正态分布函数为概率密度函数,计算在运行周期内发电量小于根据第一指标模型单元332求取的任一总发电量的区间上的积分值,G表示根据第一指标模型单元332求取的任一总发电量,其为年均发电量Gy与运行周期的积,g为光储充一体化电站运行周期内发电量,σg 2为任一总发电量的方差,E(g)为任一总发电量的数学期望;
第二概率模型单元342用于计算光储充一体化电站运行周期内供电效益小于根据第二指标模型单元333求取的任一总供电效益的概率,其计算公式为:
Figure GDA0003494841700000231
式中,
Figure GDA0003494841700000232
是以总运行期内光储充一体化电站供电效益模型近似服从的正态分布函数为概率密度函数,在总运行周期内供电效益小于根据第二指标模型单元333求取的任一总供电效益的区间上的积分值,Heq表示根据第二指标模型单元333求取的任一总供电效益,h为光储充一体化电站运行周期内供电效益,σh 2为光储充一体化电站运行周期内供电效益的方差,E(h)为光储充一体化电站运行周期内供电效益的数学期望;
第三概率模型单元343用于计算光储充一体化电站全寿命周期内总LCOE小于根据第三指标模型单元334求取的任一总LCOE的概率,其计算公式为:
Figure GDA0003494841700000233
式中,PLCOE是以全寿命周期光储充一体化电站LCOE指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内LCOE小于根据第三模型单元334求取的任一总LCOE的区间上的积分值,LCOE表示根据第三指标模型单元334求取的任一LCOE,l为光储充一体化电站全寿命周期内总LCOE,σl 2为光储充一体化电站全寿命周期内总LCOE的方差,E(l)为光储充一体化电站全寿命周期内总LCOE的数学期望;
第四概率模型单元344用于光储充一体化电站全寿命周期总净现值小于根据第四指标模型单元335求取的任一总净现值的概率,其计算公式为:
Figure GDA0003494841700000241
式中,PNPV是以光储充一体化电站全寿命周期净现值指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内净现值小于根据第四指标模型单元335求取的任一总净现值的区间上的积分值,NPV表示根据第四指标模型单元335求取的任一总净现值,n为光储充一体化电站全寿命周期内总净现值,σn 2为光储充一体化电站全寿命周期内总净现值的方差,E(n)为光储充一体化电站全寿命周期内总净现值的数学期望,且:
净现值的数学期望E(n)和方差的计算公式为:
E(n)=E(I1+I2)+E(O1+O2)
σn 2=σ2(I1+I2)+σ2(O1+O2)
式中,E(I1+I2)为全寿命周内总收入的期望值,E(O1+O2)为全寿命周内总成本的期望值之和,σ2(I1+I2)为全寿命周内总收入的方差,σ2(O1+O2)全寿命周内总成本的方差;
第五概率模型单元345用于计算根据投资回收期的近似期望值,在近似期望值附近拟定一组数值作为投资回收期,结合第四概率模型单元344中求取的数学期望与方差,分别计算每个拟定投资回收期数值下净现值的数学期望值和均方差以确定净现值大于0的概率,其计算公式为:
Figure GDA0003494841700000242
式中,r为折现率,I1为光伏发电系统收益,I2为政府补贴;O1为光储充一体化电站全寿命周期内光伏储能成本,O2为光储充一体化电站从电网购电的费用。
经济性模型单元305,其用于根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P。
优选地,所述经济性模型单元305包括:
第一比值确定单元351,其用于确定供电效益Heq、财务净现值NPV和年均发电量Gy与动态回收年限K的比值B1,其计算公式为:
B1=(Gy*Heq*NPV)/K;
第二比值确定单元352,其用于确定平准化电力成本LCOE与动态回收年限K的比值B2,其计算公式为:
B2=LCOE/K;
经济性模型确定单元353,其用于根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、每个指标的概率模型、B1和B2建立评估光储充一体化电站全寿命周期经济性的模型P,其计算公式为:
Figure GDA0003494841700000251
式中,
Figure GDA0003494841700000252
是供电效益Heq的概率模型,PNPV是财务净现值NPV的概率模型,PG是发电量G的概率模型,PK是动态回收年限K的概率模型,PLCOE是平准化电力成本LCOE的概率模型。
经济性评估单元306,其用于建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性。
优选地,所述经济性评估单元306在不同容量配置下,根据经济性模型单元所求取的P的值越小,则在所述容量配置下光储充一体化电站全寿命周期经济性越好。
所述系统通过在不同光储容量配置下对经济性的评估,较好地验证了电池储能加入光伏汽车充电站的必要性及其最佳收益可能性。
已经通过参考少量实施方式描述了本发明。然而,本领域技术人员所公知的,正如附带的专利权利要求所限定的,除了本发明以上公开的其他的实施例等同地落在本发明的范围内。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。

Claims (12)

1.一种评估光储充一体化电站全寿命周期经济性的方法,其特征在于,所述方法包括:
步骤1、建立光储充一体化电站全寿命周期总收益模型F,以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置值,所述全寿命周期是指光储充一体化电站从项目规划到拆除的时间;
步骤2、当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF
步骤3、确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型,具体地:
确定年均发电量、供电效益、平准化电力成本LCOE、财务净现值和动态投资回收期为评估光储充一体化电站全寿命周期经济性的指标;
根据确定的指标建立指标模型,其中:
年均发电量Gy为光储充一体化电站全寿命周期内总发电量与运行周期的比值;
供电效益Heq为光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
平准化电力成本LCOE为光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
财务净现值NPV为全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
动态投资回收期K为光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限;
步骤4、根据所述每个指标模型近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型;
步骤5、根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P,其包括:
确定供电效益Heq、财务净现值NPV和年均发电量Gy与动态回收年限K的比值B1,其计算公式为:
B1=(Gy*Heq*NPV)/K;
确定平准化电力成本LCOE与动态回收年限K的比值B2,其计算公式为:
B2=LCOE/K;
根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、每个指标的概率模型、B1和B2建立评估光储充一体化电站全寿命周期经济性的模型P,其计算公式为:
Figure FDA0003494841690000021
式中,
Figure FDA0003494841690000022
是供电效益Heq的概率模型,PNPV是财务净现值NPV的概率模型,PG是发电量G的概率模型,PK是动态回收年限K的概率模型,PLCOE是平准化电力成本LCOE的概率模型;
步骤6、建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性。
2.根据权利要求1所述的方法,其特征在于,所述建立光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用。
3.根据权利要求1所述的方法,其特征在于,所述以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置包括:
确定多个种群,每个种群个体中包括光伏容量和储能容量两个决策变量;
所述多个种群由不同控制参数的普通标准遗传算法保持种群的差异化,并且通过人工选择算子选出每个种群的最优个体;
将所述每个种群的最优个体存入精华种群中,当精华种群满足收敛条件时,算法终止,并确定光伏发电系统和储能系统的最佳容量配置。
4.根据权利要求1所述的方法,其特征在于,所述当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF是指光储充一体化电站全寿命周期总收益小于根据光储充一体化电站全寿命周期总收益模型求取的任一总收益的概率,即以全寿命周期光储充一体化电站收益近似服从的正态分布函数为概率密度函数,在全寿命周期总收益小于根据光储充一体化电站全寿命周期总收益模型求取的任一总收益的区间上的积分值,计算公式为:
Figure FDA0003494841690000031
式中,F表示根据光储充一体化电站全寿命周期总收益模型求取的任一总收益,c为光储充一体化电站全寿命周期总收益,σc 2为光储充一体化电站全寿命周期总收益的方差,E(c)为光储充一体化电站全寿命周期总收益的数学期望。
5.根据权利要求1所述的方法,其特征在于,根据所述每个指标近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型包括:
发电量概率模型为光储充一体化电站运行周期内发电量小于根据发电量指标模型求取的任一总发电量的概率,即以运行期内光储充一体化电站发电量近似服从的正态分布函数为概率密度函数,计算在运行周期内发电量小于根据发电量指标模型求取的任一总发电量的区间上的积分值,其计算公式为:
Figure FDA0003494841690000041
式中,G表示根据发电量指标模型求取的任一总发电量,其为年均发电量Gy与运行周期的积,g为光储充一体化电站运行周期内发电量,σg 2为任一总发电量的方差,E(g)为任一总发电量的数学期望;
供电效益概率模型为光储充一体化电站运行周期内供电效益小于根据供电效益指标模型求取的任一总供电效益的概率,即以总运行期内光储充一体化电站供电效益模型近似服从的正态分布函数为概率密度函数,在总运行周期内供电效益小于根据供电效益指标模型求取的任一总供电效益的区间上的积分值,其计算公式为:
Figure FDA0003494841690000042
式中,Heq表示根据供电效益指标模型求取的任一总供电效益,h为光储充一体化电站运行周期内供电效益,σh 2为光储充一体化电站运行周期内供电效益的方差,E(h)为光储充一体化电站运行周期内供电效益的数学期望;
LCOE概率模型为光储充一体化电站全寿命周期内总LCOE小于根据LCOE指标模型求取的任一总LCOE的概率,即以全寿命周期光储充一体化电站LCOE指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内LCOE小于根据LCOE指标模型求取的任一总LCOE的区间上的积分值,其计算公式为:
Figure FDA0003494841690000043
式中,LCOE表示根据LCOE指标模型求取的任一LCOE,l为光储充一体化电站全寿命周期内总LCOE,σl 2为光储充一体化电站全寿命周期内总LCOE的方差,E(l)为光储充一体化电站全寿命周期内总LCOE的数学期望;
净现值概率模型为光储充一体化电站全寿命周期总净现值小于根据净现值指标模型求取的任一总净现值的概率,即以光储充一体化电站全寿命周期净现值指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内净现值小于根据净现值指标模型求取的任一总净现值的区间上的积分值,其计算公式为:
Figure FDA0003494841690000051
式中,NPV表示根据净现值指标模型求取的任一总净现值,n为光储充一体化电站全寿命周期内总净现值,σn 2为光储充一体化电站全寿命周期内总净现值的方差,E(n)为光储充一体化电站全寿命周期内总净现值的数学期望,且:
净现值的数学期望E(n)和方差的计算公式为:
E(n)=E(I1+I2)+E(O1+O2)
σn 2=σ2(I1+I2)+σ2(O1+O2)
式中,E(I1+I2)为全寿命周内总收入的期望值,E(O1+O2)为全寿命周内总成本的期望值之和,σ2(I1+I2)为全寿命周内总收入的方差,σ2(O1+O2)全寿命周内总成本的方差;
动态投资回收期概率模型为根据投资回收期的近似期望值,在近似期望值附近拟定一组数值作为投资回收期,结合净现值概率模型中求取的数学期望与方差,分别计算每个拟定投资回收期数值下净现值的数学期望值和均方差以确定净现值大于0的概率,其计算公式为:
Figure FDA0003494841690000052
式中,r为折现率,I1为光伏发电系统收益,I2为政府补贴;O1为光储充一体化电站全寿命周期内光伏储能成本,O2为光储充一体化电站从电网购电的费用。
6.根据权利要求1所述的方法,其特征在于,所述建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性是指在不同容量配置下,光储充一体化电站全寿命周期的总收益F,总收益概率PF,根据每个指标的值求取的B1和B2,以及每个指标的概率均不同,当根据经济性模型P所求取的P的值越小,则在所述容量配置下光储充一体化电站全寿命周期经济性越好。
7.一种评估光储充一体化电站全寿命周期经济性的系统,其特征在于,所述系统包括:
收益模型单元,其用于建立光储充一体化电站全寿命周期总收益模型F,以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置值,所述全寿命周期是指光储充一体化电站从项目规划到拆除的时间;
收益概率模型单元,其用于当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF
指标模型单元,其用于确定评估光储充一体化电站全寿命周期经济性的若干个指标以及指标模型,具体地:
指标确定单元,其用于确定年均发电量Gy、供电效益Heq、平准化电力成本LCOE、财务净现值NPV和动态投资回收期K为评估光储充一体化电站全寿命周期经济性的指标;
第一指标模型单元,其用于计算光储充一体化电站全寿命周期内总发电量与运行周期的比值;
第二指标模型单元,其用于计算光储充一体化电站供电运行周期内因光伏发电系统发电而获得的收益,所述运行周期是指光储充一体化电站从投入运行到结束运行的时间;
第三指标模型单元,其用于计算光储充一体化电站全部折算为现值的全寿命周期成本与全寿命周期内总发电量的比值;
第四指标模型单元,其用于计算全寿命周期内每年收入折现之和减去初始投资成本现值,其中所述每年的收入包括光伏发电系统发电所获得的收益和政府补贴;
第五指标模型单元,其用于计算光储充一体化电站供电运行周期内流出现金与流入现金之差折现后的收益大于等于初始投资成本的回收年限;
指标概率模型单元,其用于根据所述每个指标模型近似服从的函数分布建立评估光储充一体化电站全寿命周期经济性的每个指标的概率模型;
经济性模型单元,其用于根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、所述每个指标的指标模型及其概率模型建立评估光储充一体化电站全寿命周期经济性的模型P,其包括:
第一比值确定单元,其用于确定供电效益Heq、财务净现值NPV和年均发电量Gy与动态回收年限K的比值B1,其计算公式为:
B1=(Gy*Heq*NPV)/K;
第二比值确定单元,其用于确定平准化电力成本LCOE与动态回收年限K的比值B2,其计算公式为:
B2=LCOE/K:
经济性模型确定单元,其用于根据光储充一体电化站全寿命周期的总收益模型F、总收益概率模型PF、每个指标的概率模型、B1和B2建立评估光储充一体化电站全寿命周期经济性的模型P,其计算公式为:
Figure FDA0003494841690000071
式中,
Figure FDA0003494841690000072
是供电效益Heq的概率模型,PNPV是财务净现值NPV的概率模型,PG是发电量G的概率模型,PK是动态回收年限K的概率模型,PLCOE是平准化电力成本LCOE的概率模型;
经济性评估单元,其用于建立以光伏发电系统和储能系统的最佳容量配置值为基准的容量配置群,分别计算不同容量配置值下光储充一体化电站全寿命周期经济性的模型P的值以评估光储充一体化电站全寿命周期经济性。
8.根据权利要求7所述的系统,其特征在于,所述收益模型单元建立的光储充一体化电站全寿命周期总收益模型的计算公式为:
F=I1+I2-O1-O2
式中,F为光储充一体化电站全寿命周期的总收益,I1为光伏发电系统收益,I2为政府补贴,O1为光储充一体化电站全寿命周期内光伏储能成本;O2为光储充一体化电站从电网购电的费用。
9.根据权利要求7所述的系统,其特征在于,所述收益模型单元以光储充一体化电站的收益最大化为目标函数,采用多种群遗传算法计算光伏发电系统和储能系统的最佳容量配置包括:
确定多个种群,每个种群个体中包括光伏容量和储能容量两个决策变量;
所述多个种群由不同控制参数的普通标准遗传算法保持种群的差异化,并且通过人工选择算子选出每个种群的最优个体;
将所述每个种群的最优个体存入精华种群中,当精华种群满足收敛条件时,算法终止,并确定光伏发电系统和储能系统的最佳容量配置。
10.根据权利要求8所述的系统,其特征在于,所述收益概率模型单元用于当光储充一体化电站全寿命周期总收益模型F符合正态分布时,计算光储充一体化电站全寿命周期总收益的数学期望和方差,建立光储充一体化电站全寿命周期总收益的概率模型PF,其计算公式为:
Figure FDA0003494841690000081
式中,PF是指光储充一体化电站全寿命周期总收益小于根据光储充一体化电站全寿命周期收益模型单元求取的任一总收益的概率,即以全寿命周期光储充一体化电站收益近似服从的正态分布函数为概率密度函数,在全寿命周期总收益小于根据光储充一体化电站全寿命周期收益模型单元求取的任一总收益的区间上的积分值,F表示根据光储充一体化电站全寿命周期总收益模型求取的任一总收益,c为光储充一体化电站全寿命周期总收益,σc 2为光储充一体化电站全寿命周期总收益的方差,E(c)为光储充一体化电站全寿命周期总收益的数学期望。
11.根据权利要求7所述的系统,其特征在于,所述指标概率模型单元包括:
第一概率模型单元用于计算光储充一体化电站运行周期内发电量小于根据第一指标模型单元求取的任一总发电量的概率,其计算公式为:
Figure FDA0003494841690000091
式中,pG是以运行期内光储充一体化电站发电量近似服从的正态分布函数为概率密度函数,计算在运行周期内发电量小于根据第一指标模型单元求取的任一总发电量的区间上的积分值,G表示根据第一指标模型单元求取的任一总发电量,其为年均发电量Gy与运行周期的积,g为光储充一体化电站运行周期内发电量,σg 2为任一总发电量的方差,E(g)为任一总发电量的数学期望;
第二概率模型单元用于计算光储充一体化电站运行周期内供电效益小于根据第二指标模型单元求取的任一总供电效益的概率,其计算公式为:
Figure FDA0003494841690000092
式中,
Figure FDA0003494841690000093
是以总运行期内光储充一体化电站供电效益模型近似服从的正态分布函数为概率密度函数,在总运行周期内供电效益小于根据第二指标模型单元求取的任一总供电效益的区间上的积分值,Heq表示根据第二指标模型单元求取的任一总供电效益,h为光储充一体化电站运行周期内供电效益,σh 2为光储充一体化电站运行周期内供电效益的方差,E(h)为光储充一体化电站运行周期内供电效益的数学期望;
第三概率模型单元用于计算光储充一体化电站全寿命周期内总LCOE小于根据第三指标模型单元求取的任一总LCOE的概率,其计算公式为:
Figure FDA0003494841690000101
式中,PLCOE是以全寿命周期光储充一体化电站LCOE指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内LCOE小于根据第三指标模型单元求取的任一总LCOE的区间上的积分值,LCOE表示根据第三指标模型单元求取的任一LCOE,l为光储充一体化电站全寿命周期内总LCOE,σl 2为光储充一体化电站全寿命周期内总LCOE的方差,E(l)为光储充一体化电站全寿命周期内总LCOE的数学期望;
第四概率模型单元用于光储充一体化电站全寿命周期总净现值小于根据第四指标模型单元求取的任一总净现值的概率,其计算公式为:
Figure FDA0003494841690000102
式中,PNPV是以光储充一体化电站全寿命周期净现值指标模型近似服从的正态分布函数为概率密度函数,在全寿命周期内净现值小于根据第四指标模型单元求取的任一总净现值的区间上的积分值,NPV表示根据第四指标模型单元求取的任一总净现值,n为光储充一体化电站全寿命周期内总净现值,σn 2为光储充一体化电站全寿命周期内总净现值的方差,E(n)为光储充一体化电站全寿命周期内总净现值的数学期望,且:
净现值的数学期望E(n)和方差的计算公式为:
E(n)=E(I1+I2)+E(O1+O2)
σn 2=σ2(I1+I2)+σ2(O1+O2)
式中,E(I1+I2)为全寿命周内总收入的期望值,E(O1+O2)为全寿命周内总成本的期望值之和,σ2(I1+I2)为全寿命周内总收入的方差,σ2(O1+O2)全寿命周内总成本的方差;
第五概率模型单元用于计算根据投资回收期的近似期望值,在近似期望值附近拟定一组数值作为投资回收期,结合第四概率模型单元中求取的数学期望与方差,分别计算每个拟定投资回收期数值下净现值的数学期望值和均方差以确定净现值大于0的概率,其计算公式为:
Figure FDA0003494841690000111
式中,r为折现率,I1为光伏发电系统收益,I2为政府补贴;O1为光储充一体化电站全寿命周期内光伏储能成本,O2为光储充一体化电站从电网购电的费用。
12.根据权利要求7所述的系统,其特征在于,所述经济性评估单元在不同容量配置下,根据经济性模型单元所求取的P的值越小,则在所述容量配置下光储充一体化电站全寿命周期经济性越好。
CN201810891534.6A 2018-08-07 2018-08-07 一种评估光储充一体化电站全寿命周期经济性的方法和系统 Active CN109102185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810891534.6A CN109102185B (zh) 2018-08-07 2018-08-07 一种评估光储充一体化电站全寿命周期经济性的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810891534.6A CN109102185B (zh) 2018-08-07 2018-08-07 一种评估光储充一体化电站全寿命周期经济性的方法和系统

Publications (2)

Publication Number Publication Date
CN109102185A CN109102185A (zh) 2018-12-28
CN109102185B true CN109102185B (zh) 2022-04-15

Family

ID=64848714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810891534.6A Active CN109102185B (zh) 2018-08-07 2018-08-07 一种评估光储充一体化电站全寿命周期经济性的方法和系统

Country Status (1)

Country Link
CN (1) CN109102185B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110060165B (zh) * 2019-06-03 2022-07-15 阳光新能源开发股份有限公司 光伏储能系统收益测算方法及能量管理控制方法
CN110783950B (zh) * 2019-10-29 2023-10-31 上海电力大学 一种配电网节点光伏最佳配置容量确定方法
CN111144655A (zh) * 2019-12-27 2020-05-12 国网河北省电力有限公司经济技术研究院 一种分布式电源选址定容与配电网网架联合优化方法
CN111082446B (zh) * 2020-01-23 2021-08-03 江苏南通发电有限公司 一种考虑电池自消耗的储能优化配置方法
CN111680816A (zh) * 2020-04-21 2020-09-18 中国电力科学研究院有限公司 一种提供多重服务的储能系统运营方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102855402A (zh) * 2012-09-11 2013-01-02 上海交通大学 基于全寿命周期成本的电网经济性评价数据处理系统
CN103854070A (zh) * 2014-03-07 2014-06-11 天津大学 独立微网系统的随机优化规划方法
EP3007302A1 (en) * 2014-10-10 2016-04-13 ABB Technology AG State of charge management in battery systems
CN105719197A (zh) * 2016-01-21 2016-06-29 华北电力大学(保定) 一种光储联合运行电站全寿命周期经济评价方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX358105B (es) * 2013-03-14 2018-08-06 The Powerwise Group Inc Sistema y método de medición a demanda de rejilla inteligente autónoma.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102855402A (zh) * 2012-09-11 2013-01-02 上海交通大学 基于全寿命周期成本的电网经济性评价数据处理系统
CN103854070A (zh) * 2014-03-07 2014-06-11 天津大学 独立微网系统的随机优化规划方法
EP3007302A1 (en) * 2014-10-10 2016-04-13 ABB Technology AG State of charge management in battery systems
CN105719197A (zh) * 2016-01-21 2016-06-29 华北电力大学(保定) 一种光储联合运行电站全寿命周期经济评价方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Including life-time and options in residual income indicators;F.Neri等;《2003 IEEE International Conference on Computational Intelligence for Financial Engineering》;20030429;第31-37页 *
基于全寿命周期理论的光储电站容量优化配置;徐岩等;《华北电力大学学报》;20180331;第45卷(第2期);第16-23页 *
基于概率方法的全寿命周期交直流混合配电网经济性评估;孙国萌等;《电力建设》;20160531;第37卷(第5期);第21-27页 *
基于电池储能的光伏充电站经济性评估;李朝晖等;《电器与能效管理技术》;20180115(第1期);第33-38页 *

Also Published As

Publication number Publication date
CN109102185A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
Liu et al. Optimal sizing of a wind-energy storage system considering battery life
CN109102185B (zh) 一种评估光储充一体化电站全寿命周期经济性的方法和系统
CN108667052B (zh) 一种面向虚拟电厂优化运行的多类型储能系统规划配置方法及系统
CN109599856B (zh) 一种微网多楼宇中电动汽车充放电管理优化方法及装置
US8571720B2 (en) Supply-demand balance controller
Saez-de-Ibarra et al. Second life battery energy storage system for residential demand response service
CN111404206B (zh) 考虑投资回报约束的风光储发电系统容量双层规划方法
US20220036392A1 (en) Deep Reinforcement Learning Based Real-time scheduling of Energy Storage System (ESS) in Commercial Campus
US20120197452A1 (en) Energy Storage and Power Management System
CN104376385A (zh) 一种微电网电价优化方法
CN111244991B (zh) 一种考虑电池寿命的储能电站运行控制方法及系统
CN114243795A (zh) 一种典型充电站综合能源协同交互优化配置方法及系统
CN110086187A (zh) 计及负荷特性的储能调峰日前优化调度方法
US20190027936A1 (en) Power supply control method and system
CN112001598A (zh) 基于储能选型的不同用户储能配置评估与运行优化方法
CN107104462A (zh) 一种用于风电场储能调度的方法
CN114301081B (zh) 一种考虑蓄电池储能寿命损耗与需求响应的微电网优化方法
CN114944661A (zh) 一种基于储能系统滚动优化的微电网三阶段优化控制方法
CN113313351B (zh) 计及多能耦合影响的电-气-热系统灵活性评估方法
CN111160618A (zh) 一种结合电动汽车充电场站的建筑能量优化调度方法
CN110826801A (zh) 电动车充电站分布式电能管理方法
JP6764769B2 (ja) 電力供給制御装置、電力供給制御プログラム、電力料金設定システム
JP2017046507A (ja) 系統安定化システム
Martinsen A business model for an EV charging station with battery energy storage
CN117333058A (zh) 一种基于典型应用场景的储能综合评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant