CN109100255A - 一种油田注采井堵塞物组分的分离分析方法 - Google Patents

一种油田注采井堵塞物组分的分离分析方法 Download PDF

Info

Publication number
CN109100255A
CN109100255A CN201810980984.2A CN201810980984A CN109100255A CN 109100255 A CN109100255 A CN 109100255A CN 201810980984 A CN201810980984 A CN 201810980984A CN 109100255 A CN109100255 A CN 109100255A
Authority
CN
China
Prior art keywords
analysis
raffinate
tamper
sample
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810980984.2A
Other languages
English (en)
Other versions
CN109100255B (zh
Inventor
胡科
张健
王秀军
康晓东
薛新生
李先杰
陈文娟
赵文森
王姗姗
杨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC Research Institute Co Ltd
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC Research Institute Co Ltd filed Critical China National Offshore Oil Corp CNOOC
Priority to CN201810980984.2A priority Critical patent/CN109100255B/zh
Publication of CN109100255A publication Critical patent/CN109100255A/zh
Application granted granted Critical
Publication of CN109100255B publication Critical patent/CN109100255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Abstract

本发明涉及一种油田注采井堵塞物组分的分离分析方法,包括:(1)观测堵塞物复合结构形貌及组成特征;(2)脱除样品水分;(3)用混合溶剂萃取步骤2中的样品,分离成抽提物和抽余物,计算收率;(4)抽提物进行四组分分离,化学表征分析;(5)抽余物进行灰分分析,称量并计算灰分含量,并进行化学表征分析;(6)取步骤3中的抽余物,加入盐酸,溶解,萃取,静置分层,过滤;(7)取盐酸不溶物,加入氢氟酸,溶解,萃取,静置分层,过滤。本发明将堵塞物按照极性和非极性物质层层剥离,通过针对性的分析手段获得各组分详细元素组成,从而帮助明确堵塞物的组成及成因,为油田注采井堵塞物尤其是化学驱开发油田堵塞物的分析提供一种快捷、准确的堵塞物组分的分离分析方法。

Description

一种油田注采井堵塞物组分的分离分析方法
技术领域
本发明涉及油田开发领域,具体涉及一种油田注采井堵塞物组分的分离分析方法。
背景技术
伴随着油田的开发过程,油田油水井出现堵塞的现象,造成注入井注入能力和生产井产液量下降,制约了油田的产量。造成油水井堵塞的原因有很多,如注入水中的固悬物、乳化油滴等本身会造成储层堵塞,当注入水和地层水中普遍存在的钙、镁、铁等离子不配伍时,也会产生沉淀,堵塞油层。同时,油田注入系统中存在着大量的细菌及其生长繁殖后的代谢物,菌落和代谢物都会对地层造成堵塞,特别是代谢产物中的粘胶与铁离子结合后,会形成一种刚性颗粒并吸附在岩石孔道表面而堵塞地层。另外,随着化学驱在三次采油中的大规模运用,尤其是聚合物驱技术。聚合物溶液在储层岩石孔隙中流动时,极易发生吸附滞留,且在地层中经过高温、微生物的作用后,加剧了油水井堵塞物的形成,在一些油水井作业过程中,发现了大量的堵塞物附着于油管、泵头或筛网上,对油田生产造成了一定的影响。现有的堵塞物分析方法和流程不固定,主要是针对特定堵塞物进行分析,需要形成一套完整的堵塞物分离分析方法,可以针对任何油田堵塞物。
针对上述堵塞物导致的注入及产液下降,目前采取了常规解堵措施,但堵塞物成分,尤其是产出端堵塞物组分复杂及堵塞机理尚不明确,导致常规解堵酸化作业不同程度的存在效果不明显,且有效期很短,产能无法得到有效释放等问题。为了提高解堵措施的针对性,弄清油水井堵塞物的组分十分关键。
发明内容
为了解决上述问题,本发明提供一种油田注采井堵塞物组分的分离分析方法。
本发明所提供的油田注采井堵塞物组分的分离分析方法,包括下述步骤:
1)观测原始堵塞物样品的复合结构形貌及组成特征;
2)对堵塞物样品进行水分脱除,记录脱水质量,得到脱水后样品;
3)用有机溶剂萃取所述脱水后样品,分离,得到抽提物和抽余物,干燥至恒重,分别称取重量并计算收率;
4)取抽提物进行四组分分离及化学表征分析;
5)取部分步骤3)中的抽余物进行灰分分析,称量并计算灰分含量,确定抽余物中有机物与无机物占比,再分别对抽余物和灰分进行化学表征分析;
6)另取部分步骤3)中的抽余物,加入盐酸溶液,超声溶解,将得到的混合溶液与二氯甲烷溶剂混合,震荡、静置分层,分别收集上层有机可溶物,下层盐酸可溶物,固体相盐酸不溶物;对有机可溶物进行化学表征分析确定其组成;
7)取步骤6)中的盐酸不溶物,加入氢氟酸溶液,超声溶解,向混合溶液中依次加入去离子水和二氯甲烷,静置分层,分别收集上层有机可溶物,下层氢氟酸可溶物,固体相氢氟酸不溶物;对有机可溶物进行化学表征分析确定其组成;对氢氟酸不溶物进行分析确定其组成;
8)综合所有的分析结果,对堵塞物组分及成因进行分析。
上述方法步骤1)中,所述观测借助环境扫描电子显微镜实现,所述复合结构形貌包括样品的几何形貌、微观组织、结晶形态、颗粒度及颗粒度的分布以及形貌微区的成份和物相结构等方面。
上述方法步骤2)中,所述水分脱除通过真空干燥或冷冻干燥实现。
其中,所述冷冻干燥的操作为:将样品置于冰箱冷冻室至完全结冰后,将其放在冻干机托盘,冷冻温度为-40-76℃,真空度为40-66mTorr,托盘内冰完全升华后,称取脱水质量。
上述方法中在进行步骤3)之前,还可包括对脱水后样品进行破碎,得到破碎的脱水后样品的操作。
所述破碎具体可为研磨、碾碎或剪碎。
上述方法步骤3)中,所述有机溶剂可为二氯甲烷溶剂与甲醇的混合溶剂,其中,二氯甲烷溶剂与甲醇的体积比可为97:3。
所述萃取的具体操作为:将有机溶剂加入脱水后样品中,加热连续抽提,分离成抽提物和抽余物。
所述加热连续抽提的时间可为8-72h,具体可为48h。
所述干燥的具体操作为:分别将抽提物和抽余物放置于80℃的真空干燥箱内恒重2h。
上述方法步骤4)中,所述四组分分离及化学表征分析,采用《SY/T 5119-2008岩石中可溶有机物及原油族组分分析》方法,将抽提物分离成饱和烃、芳香烃、胶质、沥青质四种组分。
所述化学表征分析为:通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析等分析手段剖析抽提物分子组成。
上述方法步骤5)中,在进行灰分分析之前,还可包括将抽余物破碎的操作。
所述破碎具体可为研磨、碾碎或剪碎。
所述灰分分析的具体方法为:将抽余物置于坩埚中,在马弗炉中加热坩埚,由室温升至800℃,保持3小时,然后样品在马弗炉中自然冷却至室温后,称量并计算灰分含量。
可采用元素分析、X光电子能谱、X射线衍射对灰分和抽余物进行化学表征分析。
通过灰分、裂解色谱质谱分析确定抽余物中有机质的含量。
上述方法步骤6)中,收集得到的盐酸不溶物还可再次进行下述操作:用盐酸溶液溶解后与二氯甲烷溶剂混合,震荡、静止分层,分别收集上层有机可溶物,下层盐酸可溶物,固体相盐酸不溶物。所述操作重复进行两次或以上。
所述盐酸溶液的浓度可为1-5mol/L。
上述方法步骤6)中,所述有机可溶物化学表征分析通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析等实现,盐酸不溶物可进行元素分析、X光电子能谱、X射线衍射分析获取无机物组成特征。
上述方法步骤7)中,收集得到的氢氟酸不溶物还可再次进行下述操作:用氢氟酸溶液溶解后与去离子水和二氯甲烷混合,静置分层,分别收集上层有机可溶物,下层氢氟酸可溶物,固体相氢氟酸不溶物。所述操作重复进行两次或以上。
所述氢氟酸溶液的浓度可为1-5mol/L。
上述方法步骤7)中,所述有机可溶物化学表征分析通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析等实现,氢氟酸不溶物可进行元素分析、X光电子能谱、X射线衍射分析获取无机物组成特征。
本发明通过对堵塞物层层分离,首先可分为有机可溶物含量(抽提物,具体可分析原油的组分)、有机不溶物含量(抽余物),有机不溶物通过分析又继续分为有机物及无机物组成,进而可以分析有机物的主要元素含量,如碳、氢、氧,无机物的元素含量,如铁、钙、铝、氟等元素。将分析样品归为有机堵塞物、无机堵塞物,并根据各组分具体组成,结合油田开发的历史可得到堵塞物形成的原因。
本发明提供一种油田注采井堵塞物组分的分离分析方法,该方法将堵塞物按照极性和非极性物质层层剥离,并通过针对性的分析手段获得各组分详细元素组成,从而帮助明确堵塞物的组成及成因,为油田生产堵塞物尤其是化学驱开发油田堵塞物的分析提供一种快捷、准确的堵塞物组分的分离分析方法。
附图说明
图1为本发明的堵塞物组分的分离分析方法流程图。
图2为本发明的1#堵塞物样品照片。
图3为本发明的2#堵塞物样品照片。
图4为本发明的1#堵塞物扫描电子显微镜图。
图5为本发明的2#堵塞物扫描电子显微镜图。
图6为本发明的1#堵塞物抽余物照片。
图7为本发明的2#堵塞物抽余物照片。
图8为本发明的1#堵塞物抽余物灰分X光电子能谱图。
图9为本发明的2#堵塞物抽余物灰分X光电子能谱图。
图10为本发明的1#堵塞物抽余物高分辨质谱图。
图11为本发明的2#堵塞物抽余物高分辨质谱图。
图12为本发明的2#堵塞物抽余物红外光谱图。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
使用本发明的堵塞物组分的分离分析方法(见图1),对渤海某油田采出井堵塞物(1#样品,图2)和注入井堵塞物(2#样品,图3)取样进行分离分析。步骤如下:
(1)1#与2#样品用环境扫描电子显微镜直接观测堵塞物复合结构形貌及组成特征,见图4与图5。
(2)1#与2#样品分别置于冰箱冷冻室至完全结冰后,将其放在冻干机托盘,冷冻温度为-40--76℃,真空度为40-66mTorr,托盘内冰完全升华后,碾碎至粒状(若可行),称取脱水质量。
(3)1#与2#样品分别采用二氯甲烷溶剂与甲醇的混合溶剂(97:3体积比)为萃取试剂加热连续抽提48h,分离成抽提物和抽余物,并放置于80℃在真空干燥箱内恒重2h,分别称取重量并计算收率,并对抽余物进行元素分析(表1)、X光电子能谱、X射线衍射分析等。1#与2#样品抽余物见图6与图7。
表1堵塞物样品元素分析(wt%)
(4)将上述1#与2#样品抽余物分别置于坩埚中,在马弗炉中加热坩埚,由室温升至800℃,保持3小时,样品在马弗炉中自然冷却至室温后,称量并计算灰分含量,并对灰分进行元素分析、X光电子能谱(图8与图9)、X射线衍射分析等。
(5)将上述1#与2#样品抽余物,分别加入盐酸溶液,超声溶解,将混合溶液与二氯甲烷溶剂一同转移至分液漏斗,震荡、静止分层,上层有机可溶物,下层为盐酸可溶物,固体相为盐酸不溶物,重复上述步骤三次后,滤纸过滤得盐酸不溶物;分别对有机可溶物、盐酸不溶物进行分析;
(6)将上述1#与2#样品盐酸不溶物,加入氢氟酸溶液,超声溶解,向混合溶液中依次加入去离子水和二氯甲烷,溶液移至分液漏斗,静置分层,上层为有机可溶物,下层为氢氟酸可溶物,固体相为氢氟酸不溶物,重复上述步骤三次后,滤纸过滤得氢氟酸不溶物,并可分别对不溶物进行元素分析。分别对有机可溶物、氢氟酸不溶物进行分析;
样品组成分析详见下表2。
表2堵塞物样品组成分布(wt%)
(7)将上述1#与2#样品抽提物采用《SY/T 5119-2008岩石中可溶有机物及原油族组分分析》,将其分离成饱和烃、芳香烃、胶质、沥青质四组分,再通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析等分析手段剖析抽提物分子组成。
1#与2#样品抽余物高分辨质谱见图10及图11,1#样品抽余物红外光谱见图12。
由上述分析可知,1#样品环境扫描电子显微镜显示器微观结构呈晶体结晶状,且抽余物研磨破碎后呈粉状,抽余物有机元素分析C、H含量分别为7.10wt%、0.81wt%、,有机含量较低,Fe及灰分含量高达73.81wt%、78.08wt%,抽余物盐酸不溶物、抽余物氢氟酸不溶物分别为15.21wt%、1.63wt%,说明酸基本可以溶解1#样品抽余物,说明1#样品除含部分原油外,主要为无机盐结晶和粘土矿物与油状物相互吸附而形成的一种混合物无机堵塞物。
2#样品环境扫描电子显微镜显示器微观结构呈无机盐与聚合物相互吸附,形成大面积的聚合物沉积,成层状、成片分布,且抽余物研磨破碎扔后呈块状,抽余物有机元素分析C、H含量分别为42.06wt%、7.90wt%,有机含量较高,Fe及灰分含量1.18wt%、7.57wt%,含量均很低,抽余物盐酸不溶物、抽余物氢氟酸不溶物分别为80.72wt%、80.66wt%,且与聚合物对比样红外光谱特征吸收峰基本吻合,说明酸基本不溶解2#样品抽余物,说明2#样品除含部分原油外,主要为聚合物交联体与地层中粘土矿物、原油、水中微粒机杂等相结合,形成即具有高弹性又有形变能力的凝胶状堵塞物。

Claims (8)

1.一种油田注采井堵塞物组分的分离分析方法,包括下述步骤:
1)观测原始堵塞物样品的复合结构形貌及组成特征;
2)对堵塞物样品进行水分脱除,记录脱水质量,得到脱水后样品;
3)用有机溶剂萃取所述脱水后样品,分离,得到抽提物和抽余物,干燥至恒重,分别称取重量并计算收率;
4)取抽提物进行四组分分离及化学表征分析;
5)取部分步骤3)中的抽余物进行灰分分析,称量并计算灰分含量,确定抽余物中有机物与无机物占比,再分别对抽余物和灰分进行化学表征分析;
6)另取部分步骤3)中的抽余物,加入盐酸溶液,超声溶解,将得到的混合溶液与二氯甲烷溶剂混合,震荡、静置分层,分别收集上层有机可溶物,下层盐酸可溶物,固体相盐酸不溶物;对有机可溶物进行化学表征分析确定其组成;
7)取步骤6)中的盐酸不溶物,加入氢氟酸溶液,超声溶解,向混合溶液中依次加入去离子水和二氯甲烷,静置分层,分别收集上层有机可溶物,下层氢氟酸可溶物,固体相氢氟酸不溶物;对有机可溶物进行化学表征分析确定其组成;对氢氟酸不溶物进行分析确定其组成;
8)综合所有的分析结果,对堵塞物组分及成因进行分析。
2.根据权利要求1所述的方法,其特征在于:步骤1)中,所述观测借助环境扫描电子显微镜实现。
3.根据权利要求1或2所述的方法,其特征在于:步骤2)中,所述水分脱除通过真空干燥或冷冻干燥实现;
其中,所述冷冻干燥的操作为:将样品置于冰箱冷冻室至完全结冰后,将其放在冻干机托盘,冷冻温度为-40-76℃,真空度为40-66mTorr,托盘内冰完全升华后,称取脱水质量。
4.根据权利要求1-3中任一项所述的方法,其特征在于:步骤3)中,所述有机溶剂为二氯甲烷溶剂与甲醇的混合溶剂,其中,二氯甲烷溶剂与甲醇的体积比为97:3;
所述萃取的操作为:将有机溶剂加入脱水后样品中,加热连续抽提,分离成抽提物和抽余物;
所述加热连续抽提的时间为8-72h h,
所述干燥的操作为:分别将抽提物和抽余物放置于80℃的真空干燥箱内恒重2h。
5.根据权利要求1-4任一项所述的方法,其特征在于:步骤4)中,所述四组分分离及化学表征分析,采用《SY/T 5119-2008岩石中可溶有机物及原油族组分分析》方法,将抽提物分离成饱和烃、芳香烃、胶质、沥青质四种组分;
所述化学表征分析为:通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析等分析手段剖析抽提物分子组成。
6.根据权利要求1-5中任一项所述的方法,其特征在于:步骤5)中,所述灰分分析的方法为:将抽余物置于坩埚中,在马弗炉中加热坩埚,由室温升至800℃,保持3小时,然后样品在马弗炉中自然冷却至室温后,称量并计算灰分含量;
采用元素分析、X光电子能谱、X射线衍射对灰分和抽余物进行化学表征分析;
通过灰分、裂解色谱质谱分析确定抽余物中有机质的含量。
7.根据权利要求1-6中任一项所述的方法,其特征在于:步骤6)中,所述盐酸溶液的浓度为1-5mol/L;
所述有机可溶物化学表征分析通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析实现,
盐酸不溶物进行元素分析、X光电子能谱、X射线衍射分析获取无机物组成特征。
8.根据权利要求1-7中任一项所述的方法,其特征在于:步骤7)中,所述氢氟酸溶液的浓度为1-5mol/L;
所述有机可溶物化学表征分析通过元素分析、红外光谱、高温模拟蒸馏、气相色谱、气相色谱质谱以及高分辨质谱分析实现,
氢氟酸不溶物进行元素分析、X光电子能谱、X射线衍射分析获取无机物组成特征。
CN201810980984.2A 2018-08-27 2018-08-27 一种油田注采井堵塞物组分的分离分析方法 Active CN109100255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810980984.2A CN109100255B (zh) 2018-08-27 2018-08-27 一种油田注采井堵塞物组分的分离分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810980984.2A CN109100255B (zh) 2018-08-27 2018-08-27 一种油田注采井堵塞物组分的分离分析方法

Publications (2)

Publication Number Publication Date
CN109100255A true CN109100255A (zh) 2018-12-28
CN109100255B CN109100255B (zh) 2021-04-06

Family

ID=64851303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810980984.2A Active CN109100255B (zh) 2018-08-27 2018-08-27 一种油田注采井堵塞物组分的分离分析方法

Country Status (1)

Country Link
CN (1) CN109100255B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007065A (zh) * 2019-05-05 2019-07-12 西南石油大学 一种井筒堵塞物系统检测分析方法
CN111793487A (zh) * 2020-07-14 2020-10-20 中海石油(中国)有限公司 海上油田注聚井砾石充填层内堵塞物模拟原理及制备方法
CN114486605A (zh) * 2020-11-12 2022-05-13 中国石油化工股份有限公司 一种储层堵漏材料酸溶率测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080313378A1 (en) * 2007-05-29 2008-12-18 Hewlett-Packard Development Company, L.P. Method And System To Determine Device Criticality For Hot-Plugging In Computer Configurations
US9080453B2 (en) * 2010-03-17 2015-07-14 Thermal Wave Imaging, Inc. Thermographic detection of internal passageway blockages
CN106526096A (zh) * 2017-01-10 2017-03-22 中海石油(中国)有限公司 一种化学驱油田注采井堵塞模拟与解堵评价的实验方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080313378A1 (en) * 2007-05-29 2008-12-18 Hewlett-Packard Development Company, L.P. Method And System To Determine Device Criticality For Hot-Plugging In Computer Configurations
US9080453B2 (en) * 2010-03-17 2015-07-14 Thermal Wave Imaging, Inc. Thermographic detection of internal passageway blockages
CN106526096A (zh) * 2017-01-10 2017-03-22 中海石油(中国)有限公司 一种化学驱油田注采井堵塞模拟与解堵评价的实验方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHOU TUO ET.AL.: "Experimental analysis on reservoir blockage mechanism for CO2", 《PETROLEUM EXPLORATION AND DEVELOPMENT》 *
周风山 等: "注聚调驱井聚合物堵塞物的矿物复合结构形貌及组成特征", 《地学前缘》 *
方培林 等: "秦皇岛 33-1WHP平台水相滤网堵塞物成分分析", 《油气田地面工程》 *
杨祖国 等: "塔河原油井筒沥青堵塞与防治技术研究", 《应用化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007065A (zh) * 2019-05-05 2019-07-12 西南石油大学 一种井筒堵塞物系统检测分析方法
CN111793487A (zh) * 2020-07-14 2020-10-20 中海石油(中国)有限公司 海上油田注聚井砾石充填层内堵塞物模拟原理及制备方法
CN111793487B (zh) * 2020-07-14 2022-12-23 中海石油(中国)有限公司 海上油田注聚井砾石充填层内堵塞物模拟原理及制备方法
CN114486605A (zh) * 2020-11-12 2022-05-13 中国石油化工股份有限公司 一种储层堵漏材料酸溶率测试方法

Also Published As

Publication number Publication date
CN109100255B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN109100255A (zh) 一种油田注采井堵塞物组分的分离分析方法
CN101680869B (zh) 用于从油藏样品中获取重油样品的方法和设备
Qin et al. Evolution of the pore structure in coal subjected to freeze− thaw using liquid nitrogen to enhance coalbed methane extraction
Wang et al. Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams
Yang et al. Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils
Buol et al. Clay skin genesis in Wisconsin soils
Belgrave et al. Comprehensive kinetic models for the aquathermolysis of heavy oils
Konishchev et al. Investigations of cryogenic weathering in Europe and Northern Asia
CA2789383C (en) Process for the recovery of oils from a solid matrix
Gao et al. Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China
Liao et al. Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control
Pu et al. Snowfall-related deterioration behavior of the Ming Great Wall in the eastern Qinghai-Tibet Plateau
Nicosia et al. Anthropogenic deposits from the Bronze Age site of Fondo Paviani (Verona, Italy): Pedochemical and micropedological characteristics
Min et al. The effect of clay content on filter-cake formation in highly permeable gravel
CN103923686A (zh) 一种用于油砂常温萃取分离的复合溶剂
Zhu et al. Thermodynamic characteristics of methane adsorption about coking coal molecular with different sulfur components: Considering the influence of moisture contents
Han et al. Coal fines migration, deposition, and output simulation during drainage stage in coalbed methane production
Dong et al. Review of CO2-kerogen interaction and its effects on enhanced oil recovery and carbon sequestration in shale oil reservoirs
Li et al. Evaluation of the organic matter product of Huadian oil shale during pyrolysis using multiple approaches: Guidance for the in situ conversion of oil shale
Wang et al. Influence of ammonium sulfate leaching agent on engineering properties of weathered crust elution-deposited rare earth ore
CN105038848B (zh) 一种生物质热解焦油的预处理方法
US20210154592A1 (en) Method and system for drying mine tailings
Mu et al. The solvent extraction is a potential choice to recover asphalt from unconventional oil ores
CN103755547A (zh) 利用硅胶柱层析提取天然产物中脂肪酸的新方法
Bunting High Arctic soils through the microscope: Prospect and Retrospect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant