CN109087324B - 基于颜色拮抗感受野及黑白通道的轮廓检测方法 - Google Patents

基于颜色拮抗感受野及黑白通道的轮廓检测方法 Download PDF

Info

Publication number
CN109087324B
CN109087324B CN201810875994.XA CN201810875994A CN109087324B CN 109087324 B CN109087324 B CN 109087324B CN 201810875994 A CN201810875994 A CN 201810875994A CN 109087324 B CN109087324 B CN 109087324B
Authority
CN
China
Prior art keywords
channel
antagonistic
dual
black
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810875994.XA
Other languages
English (en)
Other versions
CN109087324A (zh
Inventor
林川
赵浩钧
万术娟
崔林昊
潘勇才
张玉薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Science and Technology
Original Assignee
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Science and Technology filed Critical Guangxi University of Science and Technology
Priority to CN201810875994.XA priority Critical patent/CN109087324B/zh
Publication of CN109087324A publication Critical patent/CN109087324A/zh
Application granted granted Critical
Publication of CN109087324B publication Critical patent/CN109087324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

本发明旨在提供基于颜色拮抗感受野及黑白通道的轮廓检测方法,包括以下步骤:A、输入待检测图像,提取红、绿、蓝分量,计算黄、黑、白分量;B、预设红绿、蓝黄、黑白3个颜色组合及对应的通道,计算各自的单拮抗响应;C、预设均分圆周的多个方向参数,构建对应各个方向参数的双拮抗感受野滤波器模板;对于各像素点计算该像素点的各通道的双拮抗响应;D、对于各像素点计算各通道的两个双拮抗抑制轮廓响应;E、对于各像素点:将各通道全部的双拮抗抑制轮廓响应进行归一化后,所得结果的最大值即为该像素点的最终轮廓响应。该方法克服现有技术缺陷,具有检测效果好、计算效率高的特点。

Description

基于颜色拮抗感受野及黑白通道的轮廓检测方法
技术领域
本发明涉及图像轮廓检测领域,具体涉及一种基于颜色拮抗感受野及黑白通道的轮廓检测方法。
背景技术
边缘检测是目标识别、图像分割等图像处理工作的必要基础与前提,其准确度对于图像压缩、模式识别、工业检测、人脸识别等依赖于物体关键特征与轮廓的应用有着重要的影响。随着图像处理应用的不断深入和发展,研究发现轮廓更能描述图像中目标的形状信息,轮廓检测应运而生。在图像中,轮廓与边缘有所不同,那些连续体现主体目标的边缘是轮廓,而那些复杂背景所产生的纹理边缘信息则不是轮廓。由于大多数图像均含有噪声等背景信息的干扰,有效地提取主体的轮廓,尤其是达到检测准确率高、定位精确的要求非常困难。
1946年,匈牙利科学家Gabor提出Gabor函数来描述经典感受野,模拟感受野的朝向选择、带通等响应特性。1962年,Hubel等提出初级视皮层神经元感受野具有朝向选择的特性,同时发现视皮层中相邻神经元感受野对外界刺激具有相似的朝向选择性。1965年,Rodieck发现感受野呈同心圆拮抗的结构,提出经典感受野模型。1980年,Marcelja把一维的Gabor函数推广到二维,并指出二维Gabor函数可以很好地模拟初级视皮层简单细胞经典感受野的响应特性。1992年,李朝义发现非经典感受野的特性,为视觉处理机制解决图像处理等问题提供了新的思路。2003年,Grigorescu等利用非经典感受野对经典感受野的抑制特性实现图像中主体目标轮廓检测和纹理边缘的抑制。该模型虽然提高了轮廓检测效果,但会将一部分主体轮廓抑制掉,从而影响检测结果;此外,该模型不能准确地体现非经典感受野的结构特性。针对这个问题,2007年,唐奇伶等人提出一个蝶形抑制模型,包括侧区抑制和端区易化,提高了轮廓提取的完整性。为了体现颜色信息在轮廓检测中的重要性,2013年,杨开富等提出CO模型,该模型利用颜色拮抗原理提取图像中的目标轮廓,取得了很好的检测效果,但该模型的计算效率仍有待于提高。
发明内容
本发明旨在提供一种基于颜色拮抗感受野及黑白通道的轮廓检测方法,该方法克服现有技术缺陷,具有检测效果好、计算效率高的特点。
本发明的技术方案如下:
一种基于颜色拮抗感受野及黑白通道的轮廓检测方法,包括以下步骤:
A、输入待检测图像,将待检测图像中的各像素点的红、绿、蓝分量提取出来,并利用红、绿分量计算出各像素点的黄分量、黑分量、白分量,所述的黄分量的值为红分量与绿分量和值的一半,所述的黑分量的值为红、绿、蓝分量的最小值,所述的白分量的值为红、绿、蓝分量的和值,或者所述的白分量的值为红、绿、蓝分量的最大值;
B、预设红绿、蓝黄、黑白三个颜色组合,红绿组合设有红/绿通道、绿/红通道,蓝黄组合设有蓝/黄通道、黄/蓝通道,黑白组合设有黑/白通道、白/黑通道,计算各像素点的红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应;
C、预设均分圆周的多个方向参数,构建对应各个方向参数的双拮抗感受野滤波器模板;
对于各像素点,使用各个双拮抗感受野滤波器模板对各通道的单拮抗响应分别进行滤波,得到该像素点各通道的各方向参数下的边界响应值;对于各个通道,选取该通道各方向参数下的边界响应值的最大值,作为该通道的双拮抗响应;从而得到该像素点的各通道的双拮抗响应;
D、对于各像素点,利用高斯差分函数对各通道的双拮抗响应进行滤波,并对滤波结果进行归一化处理得到各通道的双拮抗抑制响应;各通道的双拮抗响应减去该通道的双拮抗抑制响应得到第一双拮抗抑制轮廓响应,各通道的双拮抗响应减去该通道所属的颜色组合中的另一通道的双拮抗抑制响应得到第二双拮抗抑制轮廓响应;
E、对于各像素点:将所有第一双拮抗抑制轮廓响应和第二双拮抗抑制轮廓响应进行归一化后,所得结果的最大值即为该像素点的最终轮廓响应。
优选地,所述的步骤B中各个通道的单拮抗响应计算公式为:
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (1);
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (2);
Sby(x,y)=ω1·B(x,y)+ω2·Y(x,y) (3);
Syb(x,y)=ω1·Y(x,y)+ω2·B(x,y) (4);
Sblw(x,y)=ω1·BL(x,y)+ω2·W(x,y) (5);
Swbl(x,y)=ω1·W(x,y)+ω2·BL(x,y) (6);
其中,R(x,y)表示像素点(x,y)的红分量,G(x,y)表示像素点(x,y)的绿分量,B(x,y)表示像素点(x,y)的蓝分量;Y(x,y)表示像素点(x,y)的黄分量,
Figure BDA0001753269850000021
BL(x,y)表示像素点(x,y)的黑分量,BL(x,y)=min(R(x,y),G(x,y),B(x,y)),W(x,y)表示像素点(x,y)的白分量,W(x,y)=R(x,y)+G(x,y)+B(x,y)或者W(x,y)=max(R(x,y),G(x,y),B(x,y));
Srg(x,y)、Srg(x,y)、Sby(x,y)、Syb(x,y)、Sblw(x,y)、Swbl(x,y)分别为红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应,其中
Figure BDA0001753269850000031
优选地,所述的步骤C中,各像素点的各通道的各方向参数下的边界响应值如下:
Figure BDA0001753269850000032
Figure BDA0001753269850000033
Figure BDA0001753269850000034
Figure BDA0001753269850000035
Figure BDA0001753269850000036
Figure BDA0001753269850000037
其中rg、gr、by、yb、blw、wbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道;θi为方向参数,Crg、Cgr、Cby、Cyb、Cblw、Cwbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道双拮抗感受野滤波器模板范围,m,n分别为双拮抗感受野滤波器模板的横轴、纵轴的偏移量;
Figure BDA0001753269850000038
Nθ为方向参数的个数;
RF(m,n;θi)为双拮抗感受野滤波器函数;其中:
Figure BDA0001753269850000039
Figure BDA00017532698500000310
Figure BDA00017532698500000311
σ1为双拮抗感受野的尺寸参数;
各通道的双拮抗响应计算公式如下:
Drg(x,y)=max{Drg(x,y;θi)|i=1,2,...Nθ} (16);
Dgr(x,y)=max{Dgr(x,y;θi)|i=1,2,...Nθ} (17);
Dby(x,y)=max{Dby(x,y;θi)|i=1,2,...Nθ} (18);
Dyb(x,y)=max{Dyb(x,y;θi)|i=1,2,...Nθ} (19);
Dblw(x,y)=max{Dblw(x,y;θi)|i=1,2,...Nθ} (20);
Dwbl(x,y)=max{Dwbl(x,y;θi)|i=1,2,...Nθ} (21)。
优选地,所述的步骤D中,高斯差分函数如下:
Figure BDA0001753269850000041
其中,σ2为高斯差分函数模板中心区域的带宽;
滤波结果如下:
DoGab(x,y;σ2)=Dab(x,y)*DoG(x,y;σ2) (23);其中ab=(rg,gr,by,yb,blw,wbl);
所述的归一化函数为:
Figure BDA0001753269850000042
Figure BDA0001753269850000043
各像素点各通道的两个双拮抗抑制轮廓响应计算公式如下:
R1 rg(x,y;σ2)=Drg(x,y)-αωrg(x,y;σ2) (25);
R2 rg(x,y;σ2)=Drg(x,y)-αωgr(x,y;σ2) (26);
R1 gr(x,y;σ2)=Dgr(x,y)-αωgr(x,y;σ2) (27);
R2 gr(x,y;σ2)=Dgr(x,y)-αωrg(x,y;σ2) (28);
R1 by(x,y;σ2)=Dby(x,y)-αωby(x,y;σ2) (29);
R2 by(x,y;σ2)=Dby(x,y)-αωyb(x,y;σ2) (30);
R1 yb(x,y;σ2)=Dyb(x,y)-αωyb(x,y;σ2) (31);
R2 yb(x,y;σ2)=Dyb(x,y)-αωby(x,y;σ2) (32);
R1 blw(x,y;σ2)=Dblw(x,y)-αωblw(x,y;σ2) (33);
R2 blw(x,y;σ2)=Dblw(x,y)-αωwbl(x,y;σ2) (34);
R1 wbl(x,y;σ2)=Dwbl(x,y)-αωwbl(x,y;σ2) (35);
R2 wbl(x,y;σ2)=Dwbl(x,y)-αωblw(x,y;σ2) (36);
其中R1 rg(x,y;σ2)、R2 rg(x,y;σ2)为红/绿通道的两个双拮抗抑制轮廓响应。
优选地,所述的步骤E中,对各双拮抗抑制轮廓响应进行的归一化公式如下:
Figure BDA0001753269850000051
其中Xn表示数据X的归一化值,Xmax、Xmin分别表示数据X中的最大值和最小值;
T(x,y)=max(R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln);
其中T(x,y)为像素点(x,y)的最终轮廓响应:
R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln分别为各双拮抗抑制轮廓响应的归一化值。
本发明采用方向参数进行具有朝向选择性的双拮抗抑制,并结合DOG函数来进行纹理抑制,模拟周边神经元细胞感受野区域对中心神经元响应产生随距离改变拮抗作用;同时,增加了黑白颜色通道进一步增加检测准确率,并且考虑颜色通道本身的双拮抗作用,因此对同一颜色通道进行双拮抗抑制轮廓响应计算,提高了纹理抑制的效果,提高轮廓检测成功率。
附图说明
图1为本发明实施例1提供的轮廓检测效果对比图。
图2为本发明实施例2提供的轮廓检测效果对比图。
具体实施方式
下面结合附图和实施例具体说明本发明。
实施例1
本实施例提供的基于颜色拮抗感受野及黑白通道的轮廓检测方法,包括以下步骤:
一种基于颜色拮抗感受野及黑白通道的轮廓检测方法,其特征在于包括以下步骤:
A、输入待检测图像,将待检测图像中的各像素点的红、绿、蓝分量提取出来,并利用红、绿分量计算出各像素点的黄分量、黑分量、白分量,所述的黄分量的值为红分量与绿分量和值的一半,所述的黑分量的值为红、绿、蓝分量的最小值,所述的白分量的值为红、绿、蓝分量的和值;
B、预设红绿、蓝黄、黑白三个颜色组合,红绿组合设有红/绿通道、绿/红通道,蓝黄组合设有蓝/黄通道、黄/蓝通道,黑白组合设有黑/白通道、白/黑通道,计算各像素点的红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应;
所述的步骤B中各个通道的单拮抗响应计算公式为:
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (1);
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (2);
Sby(x,y)=ω1·B(x,y)+ω2·Y(x,y) (3);
Syb(x,y)=ω1·Y(x,y)+ω2·B(x,y) (4);
Sblw(x,y)=ω1·BL(x,y)+ω2·W(x,y) (5);
Swbl(x,y)=ω1·W(x,y)+ω2·BL(x,y) (6);
其中,R(x,y)表示像素点(x,y)的红分量,G(x,y)表示像素点(x,y)的绿分量,B(x,y)表示像素点(x,y)的蓝分量;Y(x,y)表示像素点(x,y)的黄分量,
Figure BDA0001753269850000061
BL(x,y)表示像素点(x,y)的黑分量,BL(x,y)=min(R(x,y),G(x,y),B(x,y)),W(x,y)表示像素点(x,y)的白分量,W(x,y)=R(x,y)+G(x,y)+B(x,y);
Srg(x,y)、Srg(x,y)、Sby(x,y)、Syb(x,y)、Sblw(x,y)、Swbl(x,y)分别为红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应,其中
Figure BDA0001753269850000062
C、预设均分圆周的12个方向参数,构建对应各个方向参数的双拮抗感受野滤波器模板;
对于各像素点,使用各个双拮抗感受野滤波器模板对各通道的单拮抗响应分别进行滤波,得到该像素点各通道的各方向参数下的边界响应值;对于各个通道,选取该通道各方向参数下的边界响应值的最大值,作为该通道的双拮抗响应;从而得到该像素点的各通道的双拮抗响应;
所述的步骤C中,各像素点的各通道的各方向参数下的边界响应值计算公式如下:
Figure BDA0001753269850000071
Figure BDA0001753269850000072
Figure BDA0001753269850000073
Figure BDA0001753269850000074
Figure BDA0001753269850000075
Figure BDA0001753269850000076
其中rg、gr、by、yb、blw、wbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道;θi为方向参数,Crg、Cgr、Cby、Cyb、Cblw、Cwbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道双拮抗感受野滤波器模板范围,m,n分别为双拮抗感受野滤波器模板的横轴、纵轴的偏移量;
Figure BDA0001753269850000077
RF(m,n;θi)为双拮抗感受野滤波器函数;其中:
Figure BDA0001753269850000078
Figure BDA0001753269850000079
Figure BDA00017532698500000710
σ1为双拮抗感受野的尺寸参数;
各通道的双拮抗响应计算公式如下:
Drg(x,y)=max{Drg(x,y;θi)|i=1,2,...12} (16);
Dgr(x,y)=max{Dgr(x,y;θi)|i=1,2,...12} (17);
Dby(x,y)=max{Dby(x,y;θi)|i=1,2,...12} (18);
Dyb(x,y)=max{Dyb(x,y;θi)|i=1,2,...12} (19);
Dblw(x,y)=max{Dblw(x,y;θi)|i=1,2,...12} (20);
Dwbl(x,y)=max{Dwbl(x,y;θi)|i=1,2,...12} (21);
D、对于各像素点,利用高斯差分函数对各通道的双拮抗响应进行滤波,并对滤波结果进行归一化处理得到各通道的双拮抗抑制响应;各通道的双拮抗响应减去该通道的双拮抗抑制响应得到第一双拮抗抑制轮廓响应,各通道的双拮抗响应减去该通道所属的颜色组合中的另一通道的双拮抗抑制响应得到第二双拮抗抑制轮廓响应;
所述的步骤D中,高斯差分函数如下:
Figure BDA0001753269850000081
其中,σ2为高斯差分函数模板中心区域的带宽;
滤波结果如下:
DoGab(x,y;σ2)=Dab(x,y)*DoG(x,y;σ2) (23);
其中ab=(rg,gr,by,yb,blw,wbl);
所述的归一化函数为:
Figure BDA0001753269850000082
Figure BDA0001753269850000083
各像素点各通道的两个双拮抗抑制轮廓响应如下:
R1 rg(x,y;σ2)=Drg(x,y)-αωrg(x,y;σ2) (25);
R2 rg(x,y;σ2)=Drg(x,y)-αωgr(x,y;σ2) (26);
R1 gr(x,y;σ2)=Dgr(x,y)-αωgr(x,y;σ2) (27);
R2 gr(x,y;σ2)=Dgr(x,y)-αωrg(x,y;σ2) (28);
R1 by(x,y;σ2)=Dby(x,y)-αωby(x,y;σ2) (29);
R2 by(x,y;σ2)=Dby(x,y)-αωyb(x,y;σ2) (30);
R1 yb(x,y;σ2)=Dyb(x,y)-αωyb(x,y;σ2) (31);
R2 yb(x,y;σ2)=Dyb(x,y)-αωby(x,y;σ2) (32);
R1 blw(x,y;σ2)=Dblw(x,y)-αωblw(x,y;σ2) (33);
R2 blw(x,y;σ2)=Dblw(x,y)-αωwbl(x,y;σ2) (34);
R1 wbl(x,y;σ2)=Dwbl(x,y)-αωwbl(x,y;σ2) (35);
R2 wbl(x,y;σ2)=Dwbl(x,y)-αωblw(x,y;σ2) (36);
其中R1 rg(x,y;σ2)、R2 rg(x,y;σ2)为红/绿通道的两个双拮抗抑制轮廓响应;
E、对于各像素点:将所有第一双拮抗抑制轮廓响应和第二双拮抗抑制轮廓响应进行归一化后,所得结果的最大值即为该像素点的最终轮廓响应;
所述的步骤E中,对各双拮抗抑制轮廓响应进行的归一化公式如下:
Figure BDA0001753269850000091
其中Xn表示数据X的归一化值,Xmax、Xmin分别表示数据X中的最大值和最小值;
T(x,y)=max(R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln);
其中T(x,y)为像素点(x,y)的最终轮廓响应:
R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln分别为各双拮抗抑制轮廓响应的归一化值。
下面将本实施例的轮廓检测方法与文献1提供的轮廓检测各项同性模型进行有效性对比,文献1如下:
文献1:Yang,K.,et al.Efficient Color Boundary Detection with Color-Opponent Mechanisms.in IEEE Conference on Computer Vision and PatternRecognition.2013;
其中性能评价指标P采用如下标准:
Figure BDA0001753269850000092
式中nTP、nFP、nFN分别表示检测得到的正确轮廓、错误轮廓以及遗漏的轮廓的数目,评测指标P取值在[0,1]之间,越接近1表示轮廓检测的效果越好,另外,定义容忍度为:在5*5的邻域内检测到的都算正确检测;
选取来自BSDS300数据库的4幅图片进行有效性对比,图片编号如下:302008(图片1)、376043(图片2)、119082(图片3)、159008(图片4);分别采用文献1中方法以及实施例1方法对上述4幅图进行轮廓检测,其中实施例1方法选用的参数组如表1所示,文献1方法选用的参数组如表2所示;
表1实施例1参数组表
Figure BDA0001753269850000101
表2文献1参数组表
Figure BDA0001753269850000102
如图1所示为分别为图片1-4的原图、实际轮廓图、文献1方法检测的最优轮廓图,实施例1方法检测的最优轮廓图;如表3所示为上述4幅图像的文献1方法检测的的最优P值与实施例1方法检测的的最优P值;
表3P值对比
Figure BDA0001753269850000103
从上述结果可以看出,不论从轮廓提取的效果上还是从性能指标参数上看,实施例1方法均优于文献1中的方法。
实施例2
本实施例提供的基于颜色拮抗感受野及黑白通道的轮廓检测方法,包括以下步骤:
A、输入待检测图像,将待检测图像中的各像素点的红、绿、蓝分量提取出来,并利用红、绿分量计算出各像素点的黄分量、黑分量、白分量,所述的黄分量的值为红分量与绿分量和值的一半,所述的黑分量的值为红、绿、蓝分量的最小值,所述的白分量的值为红、绿、蓝分量的最大值;
B、预设红绿、蓝黄、黑白三个颜色组合,红绿组合设有红/绿通道、绿/红通道,蓝黄组合设有蓝/黄通道、黄/蓝通道,黑白组合设有黑/白通道、白/黑通道,计算各像素点的红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应;
所述的步骤B中各个通道的单拮抗响应计算公式为:
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (1);
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (2);
Sby(x,y)=ω1·B(x,y)+ω2·Y(x,y) (3);
Syb(x,y)=ω1·Y(x,y)+ω2·B(x,y) (4);
Sblw(x,y)=ω1·BL(x,y)+ω2·W(x,y) (5);
Swbl(x,y)=ω1·W(x,y)+ω2·BL(x,y) (6);
其中,R(x,y)表示像素点(x,y)的红分量,G(x,y)表示像素点(x,y)的绿分量,B(x,y)表示像素点(x,y)的蓝分量;Y(x,y)表示像素点(x,y)的黄分量,
Figure BDA0001753269850000111
BL(x,y)表示像素点(x,y)的黑分量,BL(x,y)=min(R(x,y),G(x,y),B(x,y)),W(x,y)表示像素点(x,y)的白分量,W(x,y)=max(R(x,y),G(x,y),B(x,y));
Srg(x,y)、Srg(x,y)、Sby(x,y)、Syb(x,y)、Sblw(x,y)、Swbl(x,y)分别为红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应,其中
Figure BDA0001753269850000112
C、预设均分圆周的12个方向参数,构建对应各个方向参数的双拮抗感受野滤波器模板;
对于各像素点,使用各个双拮抗感受野滤波器模板对各通道的单拮抗响应分别进行滤波,得到该像素点各通道的各方向参数下的边界响应值;对于各个通道,选取该通道各方向参数下的边界响应值的最大值,作为该通道的双拮抗响应;从而得到该像素点的各通道的双拮抗响应;
所述的步骤C中各像素点的各通道的各方向参数下的边界响应值计算公式如下:
各像素点的各通道的各方向参数下的边界响应值如下
Figure BDA0001753269850000113
Figure BDA0001753269850000114
Figure BDA0001753269850000121
Figure BDA0001753269850000122
Figure BDA0001753269850000123
Figure BDA0001753269850000124
其中rg、gr、by、yb、blw、wbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道;θi为方向参数,Crg、Cgr、Cby、Cyb、Cblw、Cwbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道双拮抗感受野滤波器模板范围,m,n分别为双拮抗感受野滤波器模板的横轴、纵轴的偏移量;
Figure BDA0001753269850000125
RF(m,n;θi)为双拮抗感受野滤波器函数;其中:
Figure BDA0001753269850000126
Figure BDA0001753269850000127
Figure BDA0001753269850000128
σ1为双拮抗感受野的尺寸参数;
各通道的双拮抗响应计算公式如下:
Drg(x,y)=max{Drg(x,y;θi)|i=1,2,...12} (16);
Dgr(x,y)=max{Dgr(x,y;θi)|i=1,2,...12} (17);
Dby(x,y)=max{Dby(x,y;θi)|i=1,2,...12} (18);
Dyb(x,y)=max{Dyb(x,y;θi)|i=1,2,...12} (19);
Dblw(x,y)=max{Dblw(x,y;θi)|i=1,2,...12} (20);
Dwbl(x,y)=max{Dwbl(x,y;θi)|i=1,2,...12} (21);
D、对于各像素点,利用高斯差分函数对各通道的双拮抗响应进行滤波,并对滤波结果进行归一化处理得到各通道的双拮抗抑制响应;各通道的双拮抗响应减去该通道的双拮抗抑制响应得到第一双拮抗抑制轮廓响应,各通道的双拮抗响应减去该通道所属的颜色组合中的另一通道的双拮抗抑制响应得到第二双拮抗抑制轮廓响应;
所述的步骤D中,高斯差分函数如下:
Figure BDA0001753269850000131
其中,σ2为高斯差分函数模板中心区域的带宽;
滤波结果如下:
DoGab(x,y;σ2)=Dab(x,y)*DoG(x,y;σ2) (23);
其中ab=(rg,gr,by,yb,blw,wbl);
所述的归一化函数为:
Figure BDA0001753269850000132
Figure BDA0001753269850000133
各像素点各通道的两个双拮抗抑制轮廓响应如下:
R1 rg(x,y;σ2)=Drg(x,y)-αωrg(x,y;σ2) (25);
R2 rg(x,y;σ2)=Drg(x,y)-αωgr(x,y;σ2) (26);
R1 gr(x,y;σ2)=Dgr(x,y)-αωgr(x,y;σ2) (27);
R2 gr(x,y;σ2)=Dgr(x,y)-αωrg(x,y;σ2) (28);
R1 by(x,y;σ2)=Dby(x,y)-αωby(x,y;σ2) (29);
R2 by(x,y;σ2)=Dby(x,y)-αωyb(x,y;σ2) (30);
R1 yb(x,y;σ2)=Dyb(x,y)-αωyb(x,y;σ2) (31);
R2 yb(x,y;σ2)=Dyb(x,y)-αωby(x,y;σ2) (32);
R1 blw(x,y;σ2)=Dblw(x,y)-αωblw(x,y;σ2) (33);
R2 blw(x,y;σ2)=Dblw(x,y)-αωwbl(x,y;σ2) (34);
R1 wbl(x,y;σ2)=Dwbl(x,y)-αωwbl(x,y;σ2) (35);
R2 wbl(x,y;σ2)=Dwbl(x,y)-αωblw(x,y;σ2) (36);
其中R1 rg(x,y;σ2)、R2 rg(x,y;σ2)为红/绿通道的两个双拮抗抑制轮廓响应;
E、对于各像素点:将所有第一双拮抗抑制轮廓响应和第二双拮抗抑制轮廓响应进行归一化后,所得结果的最大值即为该像素点的最终轮廓响应;
所述的步骤E中,对各双拮抗抑制轮廓响应进行的归一化公式如下:
Figure BDA0001753269850000141
其中Xn表示数据X的归一化值,Xmax、Xmin分别表示数据X中的最大值和最小值;
T(x,y)=max(R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln);
其中T(x,y)为像素点(x,y)的最终轮廓响应:
R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln分别为各双拮抗抑制轮廓响应的归一化值。
下面将本实施例的轮廓检测方法与文献1提供的轮廓检测各项同性模型进行有效性对比,文献1如下:
文献1:Yang,K.,et al.Efficient Color Boundary Detection with Color-Opponent Mechanisms.in IEEE Conference on Computer Vision and PatternRecognition.2013;
其中性能评价指标P采用如下标准:
Figure BDA0001753269850000142
式中nTP、nFP、nFN分别表示检测得到的正确轮廓、错误轮廓以及遗漏的轮廓的数目,评测指标P取值在[0,1]之间,越接近1表示轮廓检测的效果越好,另外,定义容忍度为:在5*5的邻域内检测到的都算正确检测;
选取来自BSDS300数据库的4幅图片进行有效性对比,图片编号如下:302008(图片1)、376043(图片2)、119082(图片3)、159008(图片4);分别采用文献1中方法以及实施例2方法对上述4幅图进行轮廓检测,其中实施例2方法选用的参数组如表4所示,文献1方法选用的参数组如表5所示;
表4实施例2参数组表
Figure BDA0001753269850000143
Figure BDA0001753269850000151
表5文献1参数组表
Figure BDA0001753269850000152
如图2所示为分别为图片1-4的原图、实际轮廓图、文献1方法检测的最优轮廓图,实施例1方法检测的最优轮廓图;如表6所示为上述4幅图像的文献1方法检测的的最优P值与实施例1方法检测的的最优P值;
表6P值对比
Figure BDA0001753269850000153
从上述结果可以看出,不论从轮廓提取的效果上还是从性能指标参数上看,实施例2方法均优于文献1中的方法。

Claims (5)

1.一种基于颜色拮抗感受野及黑白通道的轮廓检测方法,其特征在于包括以下步骤:
A、输入待检测图像,将待检测图像中的各像素点的红、绿、蓝分量提取出来,并利用红、绿、蓝分量计算出各像素点的黄分量、黑分量、白分量,所述的黄分量的值为红分量与绿分量和值的一半,所述的黑分量的值为红、绿、蓝分量的最小值,所述的白分量的值为红、绿、蓝分量的和值;
B、预设红绿、蓝黄、黑白三个颜色组合,红绿组合设有红/绿通道、绿/红通道,蓝黄组合设有蓝/黄通道、黄/蓝通道,黑白组合设有黑/白通道、白/黑通道,计算各像素点的红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应;
C、预设均分圆周的多个方向参数,构建对应各个方向参数的双拮抗感受野滤波器模板;
对于各像素点,使用各个双拮抗感受野滤波器模板对各通道的单拮抗响应分别进行滤波,得到该像素点各通道的各方向参数下的边界响应值;对于各个通道,选取该通道各方向参数下的边界响应值的最大值,作为该通道的双拮抗响应;从而得到该像素点的各通道的双拮抗响应;
D、对于各像素点,利用高斯差分函数对各通道的双拮抗响应进行滤波,并对滤波结果进行归一化处理得到各通道的双拮抗抑制响应;各通道的双拮抗响应减去该通道的双拮抗抑制响应得到第一双拮抗抑制轮廓响应,各通道的双拮抗响应减去该通道所属的颜色组合中的另一通道的双拮抗抑制响应得到第二双拮抗抑制轮廓响应;
E、对于各像素点:将所有第一双拮抗抑制轮廓响应和第二双拮抗抑制轮廓响应进行归一化后,所得结果的最大值即为该像素点的最终轮廓响应。
2.如权利要求1所述的基于颜色拮抗感受野及黑白通道的轮廓检测方法,其特征在于:
所述的步骤B中各个通道的单拮抗响应计算公式为:
Srg(x,y)=ω1·R(x,y)+ω2·G(x,y) (1);
Sgr(x,y)=ω1·G(x,y)+ω2·R(x,y) (2);
Sby(x,y)=ω1·B(x,y)+ω2·Y(x,y) (3);
Syb(x,y)=ω1·Y(x,y)+ω2·B(x,y) (4);
Sblw(x,y)=ω1·BL(x,y)+ω2·W(x,y) (5);
Swbl(x,y)=ω1·W(x,y)+ω2·BL(x,y) (6);
其中,R(x,y)表示像素点(x,y)的红分量,G(x,y)表示像素点(x,y)的绿分量,B(x,y)表示像素点(x,y)的蓝分量;Y(x,y)表示像素点(x,y)的黄分量,
Figure FDA0003160475070000021
BL(x,y)表示像素点(x,y)的黑分量,BL(x,y)=min(R(x,y),G(x,y),B(x,y),W(x,y)表示像素点(x,y)的白分量,W(x,y)=R(x,y)+G(x,y)+B(x,y);
Srg(x,y)、Sgr(x,y)、Sby(x,y)、Syb(x,y)、Sblw(x,y)、Swbl(x,y)分别为红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道各自的单拮抗响应,其中
Figure FDA0003160475070000022
3.如权利要求2所述的基于颜色拮抗感受野及黑白通道的轮廓检测方法,其特征在于:
所述的步骤C中,各像素点的各通道的各方向参数下的边界响应值计算公式如下
Figure FDA0003160475070000023
Figure FDA0003160475070000024
Figure FDA0003160475070000025
Figure FDA0003160475070000026
Figure FDA0003160475070000027
Figure FDA0003160475070000028
其中rg、gr、by、yb、blw、wbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道;θi为方向参数,Crg、Cgr、Cby、Cyb、Cblw、Cwbl分别表示红/绿通道、绿/红通道、蓝/黄通道、黄/蓝通道、黑/白通道、白/黑通道双拮抗感受野滤波器模板范围,m,n分别为双拮抗感受野滤波器模板的横轴、纵轴的偏移量;
Figure FDA0003160475070000029
Nθ为方向参数的个数;
RF(m,n;θi)为双拮抗感受野滤波器函数;其中:
Figure FDA0003160475070000031
Figure FDA0003160475070000032
Figure FDA0003160475070000033
σ1为双拮抗感受野的尺寸参数;
各通道的双拮抗响应计算公式如下:
Drg(x,y)=max{Drg(x,y;θi)|i=1,2,...Nθ} (16);
Dgr(x,y)=max{Dgr(x,y;θi)|i=1,2,...Nθ} (17);
Dby(x,y)=max{Dby(x,y;θi)|i=1,2,...Nθ} (18);
Dyb(x,y)=max{Dyb(x,y;θi)|i=1,2,...Nθ} (19);
Dblw(x,y)=max{Dblw(x,y;θi)|i=1,2,...Nθ} (20);
Dwbl(x,y)=max{Dwbl(x,y;θi)|i=1,2,...Nθ} (21)。
4.如权利要求3所述的基于颜色拮抗感受野及黑白通道的轮廓检测方法,其特征在于:
所述的步骤D中,高斯差分函数如下:
Figure FDA0003160475070000034
其中,σ2为高斯差分函数模板中心区域的带宽;
滤波结果如下:
DoGab(x,y;σ2)=Dab(x,y)*DoG(x,y;σ2) (23);
其中ab=(rg,gr,by,yb,blw,wbl);
所述的归一化函数为:
Figure FDA0003160475070000035
Figure FDA0003160475070000041
各像素点各通道的两个双拮抗抑制轮廓响应如下:
R1 rg(x,y;σ2)=Drg(x,y)-αωrg(x,y;σ2) (25);
R2 rg(x,y;σ2)=Drg(x,y)-αωgr(x,y;σ2) (26);
R1 gr(x,y;σ2)=Dgr(x,y)-αωgr(x,y;σ2) (27);
R2 gr(x,y;σ2)=Dgr(x,y)-αωrg(x,y;σ2) (28);
R1 by(x,y;σ2)=Dby(x,y)-αωby(x,y;σ2) (29);
R2 by(x,y;σ2)=Dby(x,y)-αωyb(x,y;σ2) (30);
R1 yb(x,y;σ2)=Dyb(x,y)-αωyb(x,y;σ2) (31);
R2 yb(x,y;σ2)=Dyb(x,y)-αωby(x,y;σ2) (32);
R1 blw(x,y;σ2)=Dblw(x,y)-αωblw(x,y;σ2) (33);
R2 blw(x,y;σ2)=Dblw(x,y)-αωwbl(x,y;σ2) (34);
R1 wbl(x,y;σ2)=Dwbl(x,y)-αωwbl(x,y;σ2) (35);
R2 wbl(x,y;σ2)=Dwbl(x,y)-αωblw(x,y;σ2) (36);
其中R1 rg(x,y;σ2)、R2 rg(x,y;σ2)为红/绿通道的两个双拮抗抑制轮廓响应;R1 gr(x,y;σ2)、R2 gr(x,y;σ2)为绿/红通道的两个双拮抗抑制轮廓响应;R1 by(x,y;σ2)、R2 by(x,y;σ2)表示蓝/黄通道的两个双拮抗抑制轮廓响应;R1 yb(x,y;σ2)、R2 yb(x,y;σ2)表示黄/蓝通道的两个双拮抗抑制轮廓响应;R1 blw(x,y;σ2)、R2 blw(x,y;σ2)表示黑/白通道的两个双拮抗抑制轮廓响应;R1 wbl(x,y;σ2)、R2 wbl(x,y;σ2)表示白/黑通道的两个双拮抗抑制轮廓响应。
5.如权利要求1所述的基于颜色拮抗感受野及黑白通道的轮廓检测方法,其特征在于:
所述的步骤E中,对各双拮抗抑制轮廓响应进行的归一化公式如下:
Figure FDA0003160475070000051
其中Xn表示数据X的归一化值,Xmax、Xmin分别表示数据X中的最大值和最小值;
T(x,y)=max(R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln);
其中T(x,y)为像素点(x,y)的最终轮廓响应:
R1 rgn,R2 rgn,R1 grn,R2 grn,R1 ybn,R2 ybn、R1 byn,R2 byn、R1 blwn,R2 blwn、R1 wbln,R2 wbln分别为各双拮抗抑制轮廓响应的归一化值。
CN201810875994.XA 2018-08-03 2018-08-03 基于颜色拮抗感受野及黑白通道的轮廓检测方法 Active CN109087324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810875994.XA CN109087324B (zh) 2018-08-03 2018-08-03 基于颜色拮抗感受野及黑白通道的轮廓检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810875994.XA CN109087324B (zh) 2018-08-03 2018-08-03 基于颜色拮抗感受野及黑白通道的轮廓检测方法

Publications (2)

Publication Number Publication Date
CN109087324A CN109087324A (zh) 2018-12-25
CN109087324B true CN109087324B (zh) 2021-08-31

Family

ID=64833405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810875994.XA Active CN109087324B (zh) 2018-08-03 2018-08-03 基于颜色拮抗感受野及黑白通道的轮廓检测方法

Country Status (1)

Country Link
CN (1) CN109087324B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111062957B (zh) * 2019-10-28 2024-02-09 广西科技大学鹿山学院 一种基于非经典感受野轮廓检测方法
CN113095334B (zh) * 2021-03-26 2022-04-01 广西科技大学 一种基于视网膜明适应机制的轮廓检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033608A (zh) * 2015-07-24 2016-10-19 广西科技大学 仿生物平滑跟踪眼动信息处理机制的目标轮廓检测方法
CN106228547A (zh) * 2016-07-15 2016-12-14 华中科技大学 一种基于视觉颜色理论和同质抑制的轮廓与边界检测算法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175057A1 (en) * 2003-03-04 2004-09-09 Thomas Tsao Affine transformation analysis system and method for image matching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033608A (zh) * 2015-07-24 2016-10-19 广西科技大学 仿生物平滑跟踪眼动信息处理机制的目标轮廓检测方法
CN106228547A (zh) * 2016-07-15 2016-12-14 华中科技大学 一种基于视觉颜色理论和同质抑制的轮廓与边界检测算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Efficient Color Boundary Detection with Color-Opponent Mechanisms;Kaifu Yang et al.;《2013 IEEE Conference on Computer Vision and Pattern Recognition》;20131003;全文 *

Also Published As

Publication number Publication date
CN109087324A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
CN109146901B (zh) 基于颜色拮抗感受野的轮廓检测方法
Wen et al. COVERAGE—A novel database for copy-move forgery detection
CN104318548B (zh) 一种基于空间稀疏度和sift特征提取的快速图像配准实现方法
Hildebrandt et al. Benchmarking face morphing forgery detection: Application of stirtrace for impact simulation of different processing steps
Zhang et al. Detecting and extracting the photo composites using planar homography and graph cut
CN106611160B (zh) 一种基于卷积神经网络的图像头发识别方法及其装置
Huang et al. When face recognition meets occlusion: A new benchmark
Lavania et al. Leaf recognition using contour based edge detection and SIFT algorithm
CN106778517A (zh) 一种监控视频序列图像车辆再识别的方法
CN102722731A (zh) 一种基于改进sift算法的高效图像匹配方法
CN109255358B (zh) 一种基于视觉显著性和深度图的3d图像质量评价方法
CN109087324B (zh) 基于颜色拮抗感受野及黑白通道的轮廓检测方法
CN108197577B (zh) 联合Sobel和MFRAT的指静脉图像特征提取方法
CN105631285A (zh) 一种生物特征身份识别方法及装置
CN109146902B (zh) 一种基于颜色拮抗感受野及黑白通道的轮廓检测方法
CN110852292A (zh) 一种基于跨模态多任务深度度量学习的草图人脸识别方法
JP3877274B2 (ja) 画像照合処理システム
Khongkraphan An efficient color edge detection using the mahalanobis distance
CN108830238A (zh) 唇膏颜色自适应选择系统
Guan et al. A new metric for latent fingerprint image preprocessing
Faria et al. Combined Correlation Rules to Detect Skin based on Dynamic Color Clustering.
Rahulkar et al. Fast discrete curvelet transform based anisotropic feature extraction for iris recognition
Han et al. A new method for tenprint image quality evaluation
Vázquez-Padín et al. Exposing original and duplicated regions using SIFT features and resampling traces
Ronzhin et al. Mathematical methods to estimate image blur and recognize faces in the system of automatic conference participant registration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant