CN109086999A - 灌装生产线远程数据采集分析系统及其异常分析方法 - Google Patents

灌装生产线远程数据采集分析系统及其异常分析方法 Download PDF

Info

Publication number
CN109086999A
CN109086999A CN201810868396.XA CN201810868396A CN109086999A CN 109086999 A CN109086999 A CN 109086999A CN 201810868396 A CN201810868396 A CN 201810868396A CN 109086999 A CN109086999 A CN 109086999A
Authority
CN
China
Prior art keywords
data
module
node
control
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810868396.XA
Other languages
English (en)
Other versions
CN109086999B (zh
Inventor
张志胜
叶锋
郑超强
戴敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu South High Intelligent Equipment Innovation Center Co Ltd
Southeast University
Original Assignee
Jiangsu South High Intelligent Equipment Innovation Center Co Ltd
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu South High Intelligent Equipment Innovation Center Co Ltd, Southeast University filed Critical Jiangsu South High Intelligent Equipment Innovation Center Co Ltd
Priority to CN201810868396.XA priority Critical patent/CN109086999B/zh
Publication of CN109086999A publication Critical patent/CN109086999A/zh
Application granted granted Critical
Publication of CN109086999B publication Critical patent/CN109086999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Factory Administration (AREA)

Abstract

本发明公开了一种灌装生产线远程数据采集分析系统,包括用于实时在线采集生产特性数据的数据采集端、用于传输和存储生产特性数据的数据中心服务器和用于处理生产特性数据的数据采集分析系统远程客户端,该数据采集分析系统远程客户端从数据中心服务器中读取生产特性数据并对其进行分析;所述数据采集分析系统远程客户端包括用户登录与管理模块、设备参数实时监测模块、在线数据分析模块、专家会议模块、灌装现场视频监控模块和生产查询模块。该系统对灌装生产线的各个工作环节进行数据采集,可在远程全面实时地监测灌装生产线上的生产过程,同时系统还可以对灌装产品的质量进行在线数据分析,有利于提高产品合格率和质量,节省故障诊断成本。

Description

灌装生产线远程数据采集分析系统及其异常分析方法
技术领域
本发明涉及一种数据采集分析系统,尤其涉及一种灌装生产线远程数据采集分析系统及其异常分析方法。
背景技术
在制造业不断提升现有生产自动化水平的背景下,要加快迈向智慧工厂的步伐,需要更智能、更开放的信息化系统来面对日益增加的生产、质量和个性化产品的需求。远程数据采集分析系统是集数据采集与数据分析于一体的系统,通过软硬件结合,采集、记录和计算生产现场各类数据,形成相应图形并对其进行分析。尤其对于自动化生产线而言,智能化和网络化的远程数据采集分析系统已经是生产线数字化管理必不可缺的部分,同时也是实现“智慧工厂”的重要基石。
因此,亟待解决上述问题。
发明内容
发明目的:为了解决现有灌装生产线上数据采集系统的不足,本发明的第一目的在于提供一种灌装生产线远程数据采集分析系统,该系统对灌装生产线的各个工作环节进行数据采集,可以在远程全面实时地监测灌装生产线上的生产过程,了解灌装设备的运行状况和实际的生产状况,同时系统还可以对灌装产品的质量进行在线数据分析,解决了数据实时性和共享性差的问题,有利于提高产品合格率和产品质量,节省故障诊断成本。
本发明的第二目的是提供一种基于灌装生产线远程数据采集分析系统的采用八条控制图判异准则和BP神经网络对控制图进行异常识别的异常分析方法。
技术方案:为实现以上目的,本发明公开了一种灌装生产线远程数据采集分析系统,包括用于实时在线采集生产特性数据的数据采集端、用于传输和存储生产特性数据的数据中心服务器和用于处理生产特性数据的数据采集分析系统远程客户端,该数据采集分析系统远程客户端从数据中心服务器中读取生产特性数据并对其进行分析;所述数据采集分析系统远程客户端包括用户登录与管理模块、设备参数实时监测模块、在线数据分析模块、专家会议模块、灌装现场视频监控模块和生产查询模块。
其中,所述数据采集端包括基于Cortex-M3内核的32位ARM微处理器、信号转换模块、温度检测模块、充气气压检测模块、充气时间检测模块、灌液流量检测模块、原料液面高度检测模块、产品重量检测模块、气缸位置检测模块、产品数量检测模块和人机交互模块。
优选的,所述ARM微处理器,包括3个12位模拟转换器,2通道12位D/A转换器,11个定时器,13个通信接口,112个快速I/O端口;所述信号转换电路采用2组4 通道的光耦芯片TLP521-4来实现,可完成8路PLC信号的输入与转换;所述温度检测模块包括水浴温度检测模块、电机温度检测模块和产线车间温度检测模块,采用热敏电阻至数字输出转换器MAX31865来测温;所述产品重量检测采用AD转换器芯片 HX711;所述人机交互模块采用3.5寸串口触摸显示屏,该显示屏自带GPU字库,支持多种组态控件。
再者,所述数据中心服务器包括数据存储模块和消息中转模块,该消息中转模块上传数据时采用web service技术,让用户选择是否备份数据到数据中心服务器,上传过程发生异常时可用数据库复制的方法同步数据。
进一步,所述用户登录与管理模块用于用户管理和进行权限设置,先根据系统功能进行划分建立系统角色,并给角色分配相应的权限,最后给用户定义系统角色,其中一个系统用户可以同时拥有多种系统角色;
所述设备参数实时监测模块,用于实时显示灌装生产线上相关设备的运行状况和工作参数,包括压缩机的实时工作气压、各个气缸的运动位置、传送带的运动状态和电机和检漏池的温度;
所述在线数据分析模块用于对灌装产品的质量进行分析,根据生产特性数据计算过程能力指数和绘制控制图,采用数学模型建立回归分析并生成数据分析报告;灌装现场根据数据分析报告预估当前的产量和合格率,调整灌装生产线上的各工作参数;灌装现场根据控制图的判异结果进行报警;
所述专家会议模块用于灌装生产商与技术人员之间的在线交流,包括多人实时视频、多人实时语音、多人电子白板共享和远程桌面控制;
所述灌装现场视频监控模块用于用户对灌装生产线现场的生产情况进行远程监控和实时查看生产车间的状况,包括视频实时监控、视频录像回放和摄像头云控制;
所述生产查询模块用于对产品质量进行追溯和根据产品的基本生产信息进行生产计划与调度。
本发明一种基于灌装生产线远程数据采集分析系统的异常分析方法,包括如下步骤:
(1)、数据采集终端实时在线采集生产特性数据,所述生产特性数据包括产品重量、产品数量、气缸的位置、水浴的温度、电机的温度、产线车间的温度、充气的时间、充气的气压、灌液的流量和原料液面的高度;
(2)、将生产特性数据存储在数据中心服务器中;
(3)、向数据中心服务器请求生产特性数据,并对生产特性数据进行提取与处理剔除异常数据;
(4)、根据处理后的生产特性数据计算统计指标,所述统计指标包括生产特性数据的均值、极差、标准差、中位数、单值、移动极差、不合格品数、不合格品率、缺陷数和单位缺陷数中的一种或多种;
(5)、根据统计指标绘制控制图,所述控制图包括均值-极差控制图、均值-标准差控制图、中位数-极差控制图、单值-移动极差控制图、不合格品数控制图、不合格品率控制图、缺陷数控制图和单位缺陷数控制图中的一种或多种;
(6)、所述控制图的异常类型包括有数据超出控制限的第一类异常和数据在界限内呈异常排列规则的第二类异常;采用八条控制图判异准则对具有第一类异常的控制图进行异常识别,若存在异常则进行异常处理,否则继续生产;
(7)、采用BP神经网络对第二类异常的控制图进行异常识别,该异常识别的具体步骤包括如下步骤:
(7.1)、利用实际灌装生产过程中已知六种控制图模式的样本数据进行BP神经网络的训练,以得到BP神经网络的所需参数,六种控制图模式分别为正常模式、上升趋势模式、下降趋势模式、向上阶跃模式、向下阶跃模式和周期模式;具有训练步骤:
(7.1.1)、首先将已知六种控制图模式的样本数据进行标准化和编码化的预处理,标准化后样本数据z(t)的计算公式见下式:
其中,x(t)表示实际灌装生产过程中已知六种控制图模式的样本数据,t为样本序列,表示实际灌装生产过程中已知六种控制图模式的样本数据的均值,σ表示实际灌装生产过程中已知六种控制图模式的样本数据的标准差;经过标准化处理后,已知六种控制图模式的样本数据正常时z(t)服从标准正态分布,即z(t)~N(0,1),且﹣3≤z(t)≤3, N(0,1)为标准正态;
将z(t)在[-4,4]上划分为80个子区域进行编码化处理得到编码后数据x,编码规则如下:
其中,m=1,2…80;
(7.1.2)、将编码后数据x代入BP神经网络传递函数中进行计算得到输出层节点数据,具体计算包括如下步骤:
首先设置BP神经网络中输入层节点数为15,隐含层节点数为25,输出层节点数为6,输入层第i个节点到隐含层第j个节点的权值为ωij,隐含层第j个节点到输出层第 k个节点的权值为ω′jk,其中i=1,2…15,j=1,2…25,k=1,2…6,权值ωij和权值ω′jk在[0,1]范围内被随机赋初值,在传统的神经网络基础上引入可调参数和动态阈值;计算隐含层第j个节点输入具体公式为:
其中,xi表示输入层第i个节点的输入的编码后数据,θj表示隐含层第j个节点的动态阈值,fj表示节点状态,其中fj=1,xi>0,表示节点兴奋状态;fj=0,xi≤0,表示节点抑制状态;
再将隐含层第j个节点输入代入BP神经网络的隐含层传递函数中得到隐含层传递函数的输出值aj,具体公式为:
其中,f1为隐含层传递函数,λj表示隐含层第j个节点的可调参数,e为欧拉数;隐含层传递函数的输出值aj存放在隐藏层中作为隐藏层到输出层的输入,得到输出层的第j个节点输入为具体公式为:
再将输出层第j个节点输入代入BP神经网络的输出层传递函数中得到输出层传递函数的输出值为yk,具体公式为:
f2为输出层传递函数,α表示隐含层的映射系数;
输出层的预设输出值为Yk,Yk为1或-1中的任一值;根据控制图模式选取预设输出值Yk,其中正常模式的6个输出层节点数据分别为1,-1,-1,-1,-1,-1;上升趋势模式的6个输出层节点数据分别为-1,1,-1,-1,-1,-1;下降趋势模式的6个输出层节点数据分别为-1,-1,1,-1,-1,-1;向上阶跃模式的6个输出层节点数据分别为-1,-1,-1,1,-1,-1;向下阶跃模式的6个输出层节点数据分别为-1,-1,-1, -1,1,-1;周期模式的6个输出层节点数据分别为-1,-1,-1,-1,-1,1;
根据所有样本数据的输出层传递函数的输出值yk和输出层的预设输出值Yk,计算BP神经网络的误差函数δ,具体计算公式为:
若误差函数δ的误差值小于0.001时,则BP神经网络训练结束,当前权值ωij、当前权值ω'jk、当前可调参数λj和当前动态阈值θj即为BP神经网络所需参数;
若误差函数δ的误差值不小于0.001时,则更新迭代权值ωij、权值ω'jk、可调参数λj和动态阈值θj
(7.1.3)、更新迭代权值ωij、权值ω'jk、可调参数λj和动态阈值θj,具体计算包括如下步骤:
采用梯度下降算法求出权值ωij、权值ω'jk、可调参数λj和动态阈值θj,其迭代公式分别为:
ω′jk=ω′jk-η·δjk·aj
ωij=ωij-η·δij·xi
其中,r表示迭代次数,q表示训练样本总数,α表示动量因子,α取0.95,η表示学习率,η取0.01;
更新迭代后的权值ωij、权值ω'jk、可调参数λj和动态阈值θj,并将其代入步骤(7.1.2) 中重新计算得到误差函数δ的误差值,直至最终误差函数δ的误差值小于0.001,BP神经网络训练结束,当前权值ωij、当前权值ω′jk、当前可调参数λj和当前动态阈值θj即为BP神经网络所需参数;
(7.2)、利用训练好的BP神经网络对未知控制图模式的生产特性数据样本进行异常识别,具体步骤如下:
将待异常识别的、未知控制图模式的生产特性数据样本作为原始数据,进行标准化和编码化的预处理,得到预处理后的生产特性数据x,将预处理后生产特性数据x代入训练好的BP神经网络传递函数中得到输出层的六个输出值yk(,其中k=1.2.3…6,再分别计算与六种控制图模式的误差值δn(n=1.2.3…6),具体计算公式为:
其中,计算得到的最小误差值δn即为对应的控制图模式,最后输出识别结果。
有益效果:与现有技术相比,本发明具有以下显著优点:
1)本发明根据企业实际需求和灌装生产线的工作流程,提出了结合使用嵌入式系统和web服务的系统整体设计方案;系统中嵌入式数据采集终端负责数据的采集和上传,web服务负责远程数据的交互;
2)本发明中在线数据分析模块根据灌装生产的数据分析需求,绘制灌装过程质量特性数据的控制图,计算灌装工序的过程能力指数,实现了对灌装生产线生产状态的分析与评估;
3)本发明采用八条控制图判异准则和BP神经网络对控制图的模式进行高效识别,设计BP神经网络,通过数据仿真对BP神经网络进行训练和测试,最终利用企业的实际质量特性数据验证了网络的识别效果;
4)本发明利用多线程技术和web service技术,对现场上位机软件进行设计,实现了上位机与数据采集终端的通信;同时对上位机与终端的通信协议和通信的数据格式进行设计,完成了罐装现场数据的采集与上传;
5)本发明根据实际功能需求对数据采集分析系统远程客户端和数据中心服务器进行设计,在客户端按照功能模块分别对用户登录与管理模块、设备参数实时监测模块、在线数据分析模块、专家会议模块、灌装现场视频监控模块和生产查询模块等进行设计;在服务端对数据库和web服务进行详细的设计,实现了系统数据的远程交互。
附图说明
图1为本发明的模块示意图;
图2为本发明中数据采集端的功能模块图;
图3是本发明中在线数据分析模块的工作流程图;
图4是本发明中用户登录的流程图;
图5为本发明中异常分析方法的流程示意图;
图6为本发明中BP神经网络的拓扑结构示意图;
图7为本发明中控制图模式与BP神经网络输出层节点数据的关系表;
图8为本发明中BP神经网络的测试结果和识别精度表。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
如图1所示,本发明一种灌装生产线远程数据采集分析系统,包括用于实时在线采集生产特性数据的数据采集端、用于传输和存储生产特性数据的数据中心服务器和用于处理生产特性数据的数据采集分析系统远程客户端,该数据采集分析系统远程客户端从数据中心服务器中读取生产特性数据并对其进行分析。
如图2所示,数据采集端包括基于Cortex-M3内核的32位ARM微处理器、信号转换模块、温度检测模块、充气气压检测模块、充气时间检测模块、灌液流量检测模块、原料液面高度检测模块、产品重量检测模块、气缸位置检测模块、产品数量检测模块和人机交互模块。其中ARM微处理器,包括3个12位模拟转换器,2通道12位D/A转换器,11个定时器,13个通信接口,112个快速I/O端口;所述信号转换电路采用2组 4通道的光耦芯片TLP521-4来实现,可完成8路PLC信号的输入与转换;所述温度检测模块包括水浴温度检测模块、电机温度检测模块和产线车间温度检测模块,采用热敏电阻至数字输出转换器MAX31865来测温;所述产品重量检测采用AD转换器芯片 HX711;所述人机交互模块采用3.5寸串口触摸显示屏,该显示屏自带GPU字库,支持多种组态控件。
本发明的数据中心服务器包括数据存储模块和消息中转模块,该消息中转模块上传数据时采用web service技术,让用户选择是否备份数据到数据中心服务器,上传过程发生异常时可用数据库复制的方法同步数据。
本发明的数据采集分析系统远程客户端包括用户登录与管理模块、设备参数实时监测模块、在线数据分析模块、专家会议模块、灌装现场视频监控模块和生产查询模块。
本发明用户登录与管理模块用于用户管理和进行权限设置,先根据系统功能进行划分建立系统角色,并给角色分配相应的权限,最后给用户定义系统角色,其中一个系统用户可以同时拥有多种系统角色。本发明为了加强采集分析系统的安全性,在用户进入系统时要对登录用户的身份和权限进行认证,通过后才能进行相关操作;用户登录的流程图如图4所示。远程客户端中采用的用户权限管理模式是“功能—角色—用户”结构,即先根据系统的功能进行划分,而后建立系统角色,并给角色分配相应的权限,最后给用户定义系统角色,一个系统用户可以同时拥有多种系统角色。
设备参数实时监测模块,用于实时显示灌装生产线上相关设备的运行状况和工作参数,包括压缩机的实时工作气压、各个气缸的运动位置、传送带的运动状态和电机和检漏池的温度;
本发明在线数据分析模块用于对灌装产品的质量进行分析,根据生产特性数据计算过程能力指数和绘制控制图,采用数学模型建立回归分析并生成数据分析报告;灌装现场根据数据分析报告预估当前的产量和合格率,调整灌装生产线上的各工作参数;灌装现场根据控制图的判异结果进行报警;在线数据分析模块为远程数据采集分析系统的基础,主要是对灌装过程中的关键生产特性数据(例如称重质量,充气时间和气压,灌液体积等)进行分析,包括过程能力指数的计算,控制图和直方图的绘制,控制图模式的判异以及数据分析报表的生成等。如图3所示,在进行动态监测时,数据采集分析系统远程客户端实时地向数据中心服务器端请求灌装质量特性数据最近若干次的测量数据,计算得到平均数、方差、最大值和最小值等统计指标,绘出控制图并通过用户选择的判异准则判断该控制图模式是否异常;在进行静态分析时,根据用户选择数据类型和数据量,系统可以绘制质量特性数据的均值图、单值图、极差值图和直方图等,计算工序的过程能力指数,分析评价灌装生产过程并给出处理意见。
本发明中专家会议模块的本质是在远程数据采集分析系统上扩展了一个视频会议子系统,主要的目的是便于灌装生产商与技术人员之间的交流,为灌装生产线的远程故障诊断提供有效手段。因此,专家会议模块的主要功能有如下几点:
I.多人视频语音文字会话功能:视频语音会话时,视频编码质量根据网络状况进行调解,且当网络拥塞时,系统选择主动弃帧,优先保证语音通话的质量;同时,语音对话支持回音消除(AEC)、噪音抑制(DENOISE)、自动增益(AGC)和静音检测(VAD) 等语音技术。
II.多人协作电子白板功能:多人协作电子白板支持常用视图元素,可以插入图片和截屏,支持将整个白板保存为位图;系统提供观看模式和控制模式两种选择,为参会者赋予不同的操作权限;此外当某个客户端断线自动重连时,白板始终保持最新的内容。
III.文件共享功能:会议房间内的任何一个成员都可以共享自己的文件,其他的成员可以下载这个文件,会议控制者也可以取消这个文件的共享权限。
IV.桌面共享功能:会议房间内的任何一个成员都可以共享自己的桌面,其他成员可以观看该桌面;同时桌面共享者还可以授权给房间内的其他成员来操作自己的桌面,实现远程桌面控制效果。
本发明中灌装现场视频监控模块是为了方便用户对灌装生产线现场的生产情况进行远程视频监控,实时查看生产车间的状况。同时,通过录像回放可以有效追溯生产异常和产线故障,极大地缩减人工排查成本。因此,灌装现场视频监控模块的功能包括:
I.实时预览功能:实时预览时支持分屏观察远近不同的视频监控情况,远景摄像头用于查看车间生产的概况,近景摄像头用于查看充气和灌液等工位上的具体工作情况。视频监控的清晰度高,在低带宽或者多次路由的条件下不会出现“马赛克”的现象。
II.录像与回放功能:视频监控模块除了要求能够实时视频查看现场的生产情况,还要求对一段时间内的视频进行回放查看。车间内部(局域网内)的视频录像和回放采用网络摄像头内置的SD卡即可实现,但是对于远程用户,网络摄像头在服务器端进行视频数据转发的同时还需要对数据的进行存储。
III.截图保存功能:用户在查看实时视频监控或者回放录像视频时,能够保存关键帧图像到用户本地。
IV.远程控制功能:有权限的远程用户可以在客户端上对灌装现场网络摄像头进行控制,包括预置点设置、巡航路线更改、快速定位和镜头变焦等。
本发明的生产查询模块的主要作用是按照产品的生产批次和编号进行筛选,查询产品的基本生产信息,还可以将数据导出到本地Excel;通过获取灌装产品在关键工位上的加工过程信息,可以对产品进行质量追溯;此外,生产查询模块还可以获取车间的生产计划和人员调度安排信息,提高企业生产的效率。
如图5所示,本发明一种基于灌装生产线远程数据采集分析系统的异常分析方法,包括如下步骤:
(1)、数据采集终端实时在线采集生产特性数据,所述生产特性数据包括产品重量、产品数量、气缸的位置、水浴的温度、电机的温度、产线车间的温度、充气的时间、充气的气压、灌液的流量和原料液面的高度;
(2)、将生产特性数据存储在数据中心服务器中;
(3)、向数据中心服务器请求生产特性数据,并对生产特性数据进行提取与处理剔除异常数据;
(4)、根据处理后的生产特性数据计算统计指标,所述统计指标包括生产特性数据的均值、极差、标准差、中位数、单值、移动极差、不合格品数、不合格品率、缺陷数和单位缺陷数中的一种或多种;
(5)、根据统计指标绘制控制图,所述控制图包括均值-极差控制图、均值-标准差控制图、中位数-极差控制图、单值-移动极差控制图、不合格品数控制图、不合格品率控制图、缺陷数控制图和单位缺陷数控制图中的一种或多种;
(6)、所述控制图的异常类型包括有数据超出控制限的第一类异常和数据在界限内呈异常排列规则的第二类异常;采用八条控制图判异准则对具有第一类异常的控制图进行异常识别,若存在异常则进行异常处理,否则继续生产;
(7)、采用BP神经网络对第二类异常的控制图进行异常识别,该异常识别的具体步骤包括如下步骤:
(7.1)、利用实际灌装生产过程中已知六种控制图模式的样本数据进行BP神经网络的训练,以得到BP神经网络的所需参数,六种控制图模式分别为正常模式、上升趋势模式、下降趋势模式、向上阶跃模式、向下阶跃模式和周期模式;具有训练步骤:
(7.1.1)、首先将已知六种控制图模式的样本数据进行标准化和编码化的预处理,标准化后样本数据z(t)的计算公式见下式:
其中,x(t)表示实际灌装生产过程中已知六种控制图模式的样本数据,t为样本序列,表示实际灌装生产过程中已知六种控制图模式的样本数据的均值,σ表示实际灌装生产过程中已知六种控制图模式的样本数据的标准差;经过标准化处理后,已知六种控制图模式的样本数据正常时z(t)服从标准正态分布,即z(t)~N(0,1),且﹣3≤z(t)≤3, N(0,1)为标准正态;
编码是将控制图划分区域,每个区带对应一个编码数值,为了使溢出的数据也能被识别,可以扩大编码区域,本发明将z(t)在[-4,4]上划分为80个子区域进行编码化处理得到编码后数据x,编码规则如下:
其中,m=1,2…80;原始数据经过标准化和编码处理后,保留样本数据特征的同时削弱了微小的波动信息,使得训练的BP神经网络收敛性更好,能够增加网络的通用性和识别率;
(7.1.2)、如图6所示,将编码后数据x代入BP神经网络传递函数中进行计算得到输出层节点数据,具体计算包括如下步骤:
本发明在训练BP神经网络时,首先选取不同的网络隐含层节点数,依次取值为5,15,20,25,30,然后分别对这些网络模型进行了训练;得到不同隐含层节点数的BP神经网络的误差性能曲线;通过不同隐含层节点数网络的误差性能曲线可以发现,隐含层节点数为小于等于20时,训练出来的神经网络未能达到设定的训练要求精度10-3。当隐含层节点数取25和30时,神经网络能够达到设定的目标误差精度。实际训练时发现,随着隐含层节点数的继续增加,网络的训练时间和复杂度也相应增加了。
因此首先设置BP神经网络中输入层节点数为15,隐含层节点数为25,输出层节点数为6,输入层第i个节点到隐含层第j个节点的权值为ωij,隐含层第j个节点到输出层第k个节点的权值为ω′jk,其中i=1,2…15,j=1,2…25,k=1,2…6,权值ωij和权值ω′jk在[0,1]范围内被随机赋初值,在传统的神经网络基础上引入可调参数和动态阈值;计算隐含层第j个节点输入具体公式为:
其中,xi表示输入层第i个节点的输入的编码后数据,θj表示隐含层第j个节点的动态阈值,fj表示节点状态,其中fj=1,xi>0,表示节点兴奋状态;fj=0,xi≤0,表示节点抑制状态;
再将隐含层第j个节点输入代入BP神经网络的隐含层传递函数中得到隐含层传递函数的输出值aj,具体公式为:
其中,f1为隐含层传递函数,λj表示隐含层第j个节点的可调参数,e为欧拉数;隐含层传递函数的输出值aj存放在隐藏层中作为隐藏层到输出层的输入,得到输出层的第j个节点输入为具体公式为:
再将输出层第j个节点输入代入BP神经网络的输出层传递函数中得到输出层传递函数的输出值为yk,具体公式为:
f2为输出层传递函数,α表示隐含层的映射系数;
输出层的预设输出值为Yk,Yk为1或-1中的任一值;如图7所示,根据控制图模式选取预设输出值Yk,其中正常模式的6个输出层节点数据分别为1,-1,-1,-1,-1, -1;上升趋势模式的6个输出层节点数据分别为-1,1,-1,-1,-1,-1;下降趋势模式的6个输出层节点数据分别为-1,-1,1,-1,-1,-1;向上阶跃模式的6个输出层节点数据分别为-1,-1,-1,1,-1,-1;向下阶跃模式的6个输出层节点数据分别为 -1,-1,-1,-1,1,-1;周期模式的6个输出层节点数据分别为-1,-1,-1,-1,-1, 1;
根据所有样本数据的输出层传递函数的输出值yk和输出层的预设输出值Yk,计算BP神经网络的误差函数δ,具体计算公式为:
若误差函数δ的误差值小于0.001时,则BP神经网络训练结束,当前权值ωij、当前权值ω'jk、当前可调参数λj和当前动态阈值θj即为BP神经网络所需参数;
若误差函数δ的误差值不小于0.001时,则更新迭代权值ωij、权值ω'jk、可调参数λj和动态阈值θj
(7.1.3)、更新迭代权值ωij、权值ω'jk、可调参数λj和动态阈值θj,具体计算包括如下步骤:
采用梯度下降算法求出权值ωij、权值ω'jk、可调参数λj和动态阈值θj,其迭代公式分别为:
ω′jk=ω′jk-η·δjk·aj
ωij=ωij-η·δij·xi
其中,r表示迭代次数,q表示训练样本总数,α表示动量因子,α取0.95,η表示学习率,η取0.01;
更新迭代后的权值ωij、权值ω'jk、可调参数λj和动态阈值θj,并将其代入步骤(7.1.2) 中重新计算得到误差函数δ的误差值,直至最终误差函数δ的误差值小于0.001,BP神经网络训练结束,当前权值ωij、当前权值ω′jk、当前可调参数λj和当前动态阈值θj即为BP神经网络所需参数;
(7.2)、利用训练好的BP神经网络对未知控制图模式的生产特性数据样本进行异常识别,具体步骤如下:
将待异常识别的、未知控制图模式的生产特性数据样本作为原始数据,进行标准化和编码化的预处理,得到预处理后的生产特性数据x,将预处理后生产特性数据x代入训练好的BP神经网络传递函数中得到输出层的六个输出值yk(,其中k=1.2.3…6,再分别计算与六种控制图模式的误差值δn(n=1.2.3…6),具体计算公式为:
其中,计算得到的最小误差值δn即为对应的控制图模式,最后输出识别结果。
本发明为了进一步验证所设计的BP神经网络模型,使用企业生产中实际测得的一组已知控制图模式的质量特性数据对网络进行验证;在生产过程中对质量数据控制图模式的识别采用窗口平移法,即窗口大小固定,每次添加一个新数据,窗口向新数据方向移动一位,窗口内的数据作为神经网络的原始输入。而在本设计中,网络输入层节点数为15,因此,首先识别第1到15个数据点,然后识别第2到16个数据点,依次类推。本发明的测试结果和识别精度如图8所示。本发明的异常分析方法中采集到的数据不直接进行判异,而是需要对数据进行一定的预处理,预处理的目的是去除噪声,简化数据复杂度,同时尽可能保留数据的内在特征,使得数据更容易聚类,提高BP神经网络的收敛性和识别率。此外传统BP神经网络存在收敛速度慢、识别速度低和容易陷入局部最优等缺点,本发明为了改善这一缺点,对传递函数进行改进,在不影响精度的前提下,引入可调参数和动态阈值;根据BP神经网络的误差函数,采用梯度下降算法求出可调参数的表达式和动态阈值的迭代公式。本发明先采用8条控制图判异准则发现是否有不正常数据,如果有及时处理后可继续生产;如果没有则可继续进行BP神经网络的判异来进行六种基本控制图模式的识别;一方面利用8条控制图判异准则快速精准地定位异常,加速识别速度;另一方面通过BP神经网络过滤数据波动,立足整体判断控制图变化趋势,获得了良好的控制图异常识别效果。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (6)

1.一种灌装生产线远程数据采集分析系统,其特征在于:包括用于实时在线采集生产特性数据的数据采集端、用于传输和存储生产特性数据的数据中心服务器和用于处理生产特性数据的数据采集分析系统远程客户端,该数据采集分析系统远程客户端从数据中心服务器中读取生产特性数据并对其进行分析;所述数据采集分析系统远程客户端包括用户登录与管理模块、设备参数实时监测模块、在线数据分析模块、专家会议模块、灌装现场视频监控模块和生产查询模块。
2.根据权利要求1所述的灌装生产线远程数据采集分析系统,其特征在于:所述数据采集端包括基于Cortex-M3内核的32位ARM微处理器、信号转换模块、温度检测模块、充气气压检测模块、充气时间检测模块、灌液流量检测模块、原料液面高度检测模块、产品重量检测模块、气缸位置检测模块、产品数量检测模块和人机交互模块。
3.根据权利要求2所述的灌装生产线远程数据采集分析系统,其特征在于:所述ARM微处理器,包括3个12位模拟转换器,2通道12位D/A转换器,11个定时器,13个通信接口,112个快速I/O端口;所述信号转换电路采用2组4通道的光耦芯片TLP521-4来实现,可完成8路PLC信号的输入与转换;所述温度检测模块包括水浴温度检测模块、电机温度检测模块和产线车间温度检测模块,采用热敏电阻至数字输出转换器MAX31865来测温;所述产品重量检测采用AD转换器芯片HX711;所述人机交互模块采用3.5寸串口触摸显示屏,该显示屏自带GPU字库,支持多种组态控件。
4.根据权利要求1所述的灌装生产线远程数据采集分析系统,其特征在于:所述数据中心服务器包括数据存储模块和消息中转模块,该消息中转模块上传数据时采用webservice技术,让用户选择是否备份数据到数据中心服务器,上传过程发生异常时可用数据库复制的方法同步数据。
5.根据权利要求1所述的灌装生产线远程数据采集分析系统,其特征在于:所述用户登录与管理模块用于用户管理和进行权限设置,先根据系统功能进行划分建立系统角色,并给角色分配相应的权限,最后给用户定义系统角色,其中一个系统用户可以同时拥有多种系统角色;
所述设备参数实时监测模块,用于实时显示灌装生产线上相关设备的运行状况和工作参数,包括压缩机的实时工作气压、各个气缸的运动位置、传送带的运动状态和电机和检漏池的温度;
所述在线数据分析模块用于对灌装产品的生产特性数据进行分析,根据生产特性数据计算过程能力指数和绘制控制图,采用数学模型建立回归分析并生成数据分析报告;灌装现场根据数据分析报告预估当前的产量和合格率,调整灌装生产线上的各工作参数;灌装现场根据控制图的判异结果进行报警;
所述专家会议模块用于灌装生产商与技术人员之间的在线交流,包括多人实时视频、多人实时语音、多人电子白板共享和远程桌面控制;
所述灌装现场视频监控模块用于用户对灌装生产线现场的生产情况进行远程监控和实时查看生产车间的状况,包括视频实时监控、视频录像回放和摄像头云控制;
所述生产查询模块用于对产品质量进行追溯和根据产品的基本生产信息进行生产计划与调度。
6.一种根据权利要求1至5所述的灌装生产线远程数据采集分析系统的异常分析方法,其特征在于:包括如下步骤:
(1)、数据采集终端实时在线采集生产特性数据,所述生产特性数据包括产品重量、产品数量、气缸的位置、水浴的温度、电机的温度、产线车间的温度、充气的时间、充气的气压、灌液的流量和原料液面的高度;
(2)、将生产特性数据存储在数据中心服务器中;
(3)、向数据中心服务器请求生产特性数据,并对生产特性数据进行提取与处理剔除异常数据;
(4)、根据处理后的生产特性数据计算统计指标,所述统计指标包括生产特性数据的均值、极差、标准差、中位数、单值、移动极差、不合格品数、不合格品率、缺陷数和单位缺陷数中的一种或多种;
(5)、根据统计指标绘制控制图,所述控制图包括均值-极差控制图、均值-标准差控制图、中位数-极差控制图、单值-移动极差控制图、不合格品数控制图、不合格品率控制图、缺陷数控制图和单位缺陷数控制图中的一种或多种;
(6)、所述控制图的异常类型包括有数据超出控制限的第一类异常和数据在界限内呈异常排列规则的第二类异常;采用八条控制图判异准则对具有第一类异常的控制图进行异常识别,若存在异常则进行异常处理,否则继续生产;
(7)、采用BP神经网络对第二类异常的控制图进行异常识别,该异常识别的具体步骤包括如下步骤:
(7.1)、利用实际灌装生产过程中已知六种控制图模式的样本数据进行BP神经网络的训练,以得到BP神经网络的所需参数,六种控制图模式分别为正常模式、上升趋势模式、下降趋势模式、向上阶跃模式、向下阶跃模式和周期模式;具有训练步骤:
(7.1.1)、首先将已知六种控制图模式的样本数据进行标准化和编码化的预处理,标准化后样本数据z(t)的计算公式见下式:
其中,x(t)表示实际灌装生产过程中已知六种控制图模式的样本数据,t为样本序列,表示实际灌装生产过程中已知六种控制图模式的样本数据的均值,σ表示实际灌装生产过程中已知六种控制图模式的样本数据的标准差;经过标准化处理后,已知六种控制图模式的样本数据正常时z(t)服从标准正态分布,即z(t)~N(0,1),且-3≤z(t)≤3,N(0,1)为标准正态;
将z(t)在[-4,4]上划分为80个子区域进行编码化处理得到编码后数据x,编码规则如下:
其中,m=1,2…80;
(7.1.2)、将编码后数据x代入BP神经网络传递函数中进行计算得到输出层节点数据,具体计算包括如下步骤:
首先设置BP神经网络中输入层节点数为15,隐含层节点数为25,输出层节点数为6,输入层第i个节点到隐含层第j个节点的权值为ωij,隐含层第j个节点到输出层第k个节点的权值为ω′jk,其中i=1,2…15,j=1,2…25,k=1,2…6,权值ωij和权值ω′jk在[0,1]范围内被随机赋初值,在传统的神经网络基础上引入可调参数和动态阈值;计算隐含层第.j个节点输入具体公式为:
其中,xi表示输入层第i个节点的输入的编码后数据,θj表示隐含层第j个节点的动态阈值,fj表示节点状态,其中fj=1,xi>0,表示节点兴奋状态;fj=0,xi≤0,表示节点抑制状态;
再将隐含层第j个节点输入代入BP神经网络的隐含层传递函数中得到隐含层传递函数的输出值aj,具体公式为:
其中,f1为隐含层传递函数,λj表示隐含层第j个节点的可调参数,e为欧拉数;隐含层传递函数的输出值aj存放在隐藏层中作为隐藏层到输出层的输入,得到输出层的第j个节点输入为具体公式为:
再将输出层第j个节点输入代入BP神经网络的输出层传递函数中得到输出层传递函数的输出值为yk,具体公式为:
f2为输出层传递函数,α表示隐含层的映射系数;
输出层的预设输出值为Yk,Yk为1或-1中的任一值;根据控制图模式选取预设输出值Yk,其中正常模式的6个输出层节点数据分别为1,-1,-1,-1,-1,-1;上升趋势模式的6个输出层节点数据分别为-1,1,-1,-1,-1,-1;下降趋势模式的6个输出层节点数据分别为-1,-1,1,-1,-1,-1;向上阶跃模式的6个输出层节点数据分别为-1,-1,-1,1,-1,-1;向下阶跃模式的6个输出层节点数据分别为-1,-1,-1,-1,1,-1;周期模式的6个输出层节点数据分别为-1,-1,-1,-1,-1,1;
根据所有样本数据的输出层传递函数的输出值yk和输出层的预设输出值Yk,计算BP神经网络的误差函数δ,具体计算公式为:
若误差函数δ的误差值小于0.001时,则BP神经网络训练结束,当前权值ωij、当前权值ω′jk、当前可调参数λj和当前动态阈值θj即为BP神经网络所需参数;
若误差函数δ的误差值不小于0.001时,则更新迭代权值ωij、权值ω′jk、可调参数λj和动态阈值θj
(7.1.3)、更新迭代权值ωij、权值ω′jk、可调参数λj和动态阈值θj,具体计算包括如下步骤:
采用梯度下降算法求出权值ωij、权值ω′jk、可调参数λj和动态阈值θj,其迭代公式分别为:
ω′jk=ω′jk-η·δjk·aj
ωij=ωij-η·δij·xi
其中,r表示迭代次数,q表示训练样本总数,α表示动量因子,α取0.95,η表示学习率,η取0.01;
更新迭代后的权值ωij、权值ω′jk、可调参数λj和动态阈值θj,并将其代入步骤(7.1.2)中重新计算得到误差函数δ的误差值,直至最终误差函数δ的误差值小于0.001,BP神经网络训练结束,当前权值ωij、当前权值ω′jk、当前可调参数λj和当前动态阈值θj即为BP神经网络所需参数;
(7.2)、利用训练好的BP神经网络对未知控制图模式的生产特性数据样本进行异常识别,具体步骤如下:
将待异常识别的、未知控制图模式的生产特性数据样本作为原始数据,进行标准化和编码化的预处理,得到预处理后的生产特性数据x,将预处理后生产特性数据x代入训练好的BP神经网络传递函数中得到输出层的六个输出值yk(,其中k=1.2.3…6,再分别计算与六种控制图模式的误差值δn(n=1.2.3…6),具体计算公式为:
其中,计算得到的最小误差值δn即为对应的控制图模式,最后输出识别结果。
CN201810868396.XA 2018-08-02 2018-08-02 灌装生产线远程数据采集分析系统及其异常分析方法 Active CN109086999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810868396.XA CN109086999B (zh) 2018-08-02 2018-08-02 灌装生产线远程数据采集分析系统及其异常分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810868396.XA CN109086999B (zh) 2018-08-02 2018-08-02 灌装生产线远程数据采集分析系统及其异常分析方法

Publications (2)

Publication Number Publication Date
CN109086999A true CN109086999A (zh) 2018-12-25
CN109086999B CN109086999B (zh) 2021-11-23

Family

ID=64833646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810868396.XA Active CN109086999B (zh) 2018-08-02 2018-08-02 灌装生产线远程数据采集分析系统及其异常分析方法

Country Status (1)

Country Link
CN (1) CN109086999B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109919130A (zh) * 2019-03-21 2019-06-21 西安交通大学 一种基于改进遗传算法优化的质量控制图模式识别方法
CN109976291A (zh) * 2019-04-25 2019-07-05 伟创力电子设备(深圳)有限公司 生产监控方法及装置
CN110275470A (zh) * 2019-07-12 2019-09-24 东南大学 一种适用多种工况的可配置远程数据采集系统
CN110490226A (zh) * 2019-07-09 2019-11-22 联想(北京)有限公司 一种识别方法及设备
CN110704508A (zh) * 2019-09-30 2020-01-17 佛山科学技术学院 一种智能生产线异常数据的处理方法及装置
CN110750084A (zh) * 2019-11-27 2020-02-04 航天科技控股集团股份有限公司 通过实时上传数据确定生产线设备运行状态的方法
CN110852617A (zh) * 2019-11-11 2020-02-28 中电工业互联网有限公司 基于实时数据采集的smt产线分析方法及系统
CN110929666A (zh) * 2019-11-29 2020-03-27 联想(北京)有限公司 生产线监控方法、装置、系统及计算机设备
CN111080121A (zh) * 2019-12-11 2020-04-28 北京工业大学 一种用于不同链长的控制图模式识别方法
CN111222762A (zh) * 2019-12-27 2020-06-02 江苏南高智能装备创新中心有限公司 太阳能电池板镀膜工艺状态监控及质量控制系统
CN111275260A (zh) * 2020-01-20 2020-06-12 长春融成智能设备制造股份有限公司 一种远程生产过程协同优化系统以及方法
CN112015153A (zh) * 2020-09-09 2020-12-01 江南大学 一种无菌灌装生产线异常检测系统和方法
CN112925202A (zh) * 2021-01-19 2021-06-08 北京工业大学 基于动态特征提取的发酵过程阶段划分方法
CN113242280A (zh) * 2021-04-25 2021-08-10 华南理工大学 一种led荧光粉涂覆远程监控系统及涂覆效果预测方法
CN113489955A (zh) * 2021-07-21 2021-10-08 四川环龙技术织物有限公司 一种物联网远程定制式造纸网毯技术服务管理系统及方法
CN114169694A (zh) * 2021-11-16 2022-03-11 北京科技大学设计研究院有限公司 一种基于大数据平台的过程能力分析方法及装置
CN114200894A (zh) * 2020-09-17 2022-03-18 上海骞行信息科技有限公司 一种基于网络流量分析的plc生产线全息监控系统
CN114326489A (zh) * 2021-12-15 2022-04-12 太仓北新建材有限公司 一种语音播报系统
CN114615134A (zh) * 2022-05-10 2022-06-10 北京华创方舟科技集团有限公司 一种it智能运维监控系统及运维方法
CN114779730A (zh) * 2022-06-16 2022-07-22 深圳市信润富联数字科技有限公司 检测控制系统
CN116187867A (zh) * 2023-04-27 2023-05-30 苏州上舜精密工业科技有限公司 一种智能化的传动模组生产管理方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732276A (zh) * 2015-03-18 2015-06-24 国家电网公司 一种计量生产设施故障在线诊断方法
CN106707898A (zh) * 2017-03-06 2017-05-24 东南大学 一种灌装生产线的远程数据采集与实时分析系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732276A (zh) * 2015-03-18 2015-06-24 国家电网公司 一种计量生产设施故障在线诊断方法
CN106707898A (zh) * 2017-03-06 2017-05-24 东南大学 一种灌装生产线的远程数据采集与实时分析系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张祥敢等: "基于改进BP 神经网络的控制图模式识别系统", 《组合机床与自动化加工技术》 *
王义朝: "大型半导体封装企业SPC系统的研究与开发", 《中国硕士学位论文全文数据库》 *
马良: "《创业实训资源手册》", 31 August 2008, 中国时代经济出版社 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109919130A (zh) * 2019-03-21 2019-06-21 西安交通大学 一种基于改进遗传算法优化的质量控制图模式识别方法
CN109976291A (zh) * 2019-04-25 2019-07-05 伟创力电子设备(深圳)有限公司 生产监控方法及装置
CN110490226A (zh) * 2019-07-09 2019-11-22 联想(北京)有限公司 一种识别方法及设备
CN110275470A (zh) * 2019-07-12 2019-09-24 东南大学 一种适用多种工况的可配置远程数据采集系统
CN110704508A (zh) * 2019-09-30 2020-01-17 佛山科学技术学院 一种智能生产线异常数据的处理方法及装置
CN110704508B (zh) * 2019-09-30 2023-04-07 佛山科学技术学院 一种智能生产线异常数据的处理方法及装置
CN110852617B (zh) * 2019-11-11 2022-09-09 中电工业互联网有限公司 基于实时数据采集的smt产线分析方法及系统
CN110852617A (zh) * 2019-11-11 2020-02-28 中电工业互联网有限公司 基于实时数据采集的smt产线分析方法及系统
CN110750084A (zh) * 2019-11-27 2020-02-04 航天科技控股集团股份有限公司 通过实时上传数据确定生产线设备运行状态的方法
CN110929666A (zh) * 2019-11-29 2020-03-27 联想(北京)有限公司 生产线监控方法、装置、系统及计算机设备
CN110929666B (zh) * 2019-11-29 2023-10-31 联想(北京)有限公司 生产线监控方法、装置、系统及计算机设备
CN111080121B (zh) * 2019-12-11 2023-01-03 北京工业大学 一种用于不同链长的控制图模式识别方法
CN111080121A (zh) * 2019-12-11 2020-04-28 北京工业大学 一种用于不同链长的控制图模式识别方法
CN111222762A (zh) * 2019-12-27 2020-06-02 江苏南高智能装备创新中心有限公司 太阳能电池板镀膜工艺状态监控及质量控制系统
CN111275260B (zh) * 2020-01-20 2023-04-28 长春融成智能设备制造股份有限公司 一种远程生产过程协同优化系统以及方法
CN111275260A (zh) * 2020-01-20 2020-06-12 长春融成智能设备制造股份有限公司 一种远程生产过程协同优化系统以及方法
CN112015153A (zh) * 2020-09-09 2020-12-01 江南大学 一种无菌灌装生产线异常检测系统和方法
CN112015153B (zh) * 2020-09-09 2021-06-22 江南大学 一种无菌灌装生产线异常检测系统和方法
WO2022052510A1 (zh) * 2020-09-09 2022-03-17 江南大学 一种无菌灌装生产线异常检测系统和方法
CN114200894A (zh) * 2020-09-17 2022-03-18 上海骞行信息科技有限公司 一种基于网络流量分析的plc生产线全息监控系统
CN114200894B (zh) * 2020-09-17 2024-05-28 上海骞行信息科技有限公司 一种基于网络流量分析的plc生产线全息监控系统
CN112925202A (zh) * 2021-01-19 2021-06-08 北京工业大学 基于动态特征提取的发酵过程阶段划分方法
CN113242280A (zh) * 2021-04-25 2021-08-10 华南理工大学 一种led荧光粉涂覆远程监控系统及涂覆效果预测方法
CN113489955A (zh) * 2021-07-21 2021-10-08 四川环龙技术织物有限公司 一种物联网远程定制式造纸网毯技术服务管理系统及方法
CN114169694A (zh) * 2021-11-16 2022-03-11 北京科技大学设计研究院有限公司 一种基于大数据平台的过程能力分析方法及装置
CN114326489B (zh) * 2021-12-15 2024-02-02 北新建材(苏州)有限公司 一种语音播报系统
CN114326489A (zh) * 2021-12-15 2022-04-12 太仓北新建材有限公司 一种语音播报系统
CN114615134B (zh) * 2022-05-10 2022-08-05 北京华创方舟科技集团有限公司 一种it智能运维监控系统及运维方法
CN114615134A (zh) * 2022-05-10 2022-06-10 北京华创方舟科技集团有限公司 一种it智能运维监控系统及运维方法
CN114779730A (zh) * 2022-06-16 2022-07-22 深圳市信润富联数字科技有限公司 检测控制系统
CN116187867B (zh) * 2023-04-27 2023-06-27 苏州上舜精密工业科技有限公司 一种智能化的传动模组生产管理方法及系统
CN116187867A (zh) * 2023-04-27 2023-05-30 苏州上舜精密工业科技有限公司 一种智能化的传动模组生产管理方法及系统

Also Published As

Publication number Publication date
CN109086999B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN109086999A (zh) 灌装生产线远程数据采集分析系统及其异常分析方法
US20220058525A1 (en) Model integration apparatus, model integration method, computer-readable storage medium storing a model integration program, inference system, inspection system, and control system
CN110443969A (zh) 一种火点检测方法、装置、电子设备及存储介质
WO2022089031A1 (zh) 一种基于大数据和人工智能的网络优化方法
CN105574593B (zh) 基于云计算和大数据的轨道状态静态检控系统及方法
CN106447210B (zh) 一种计及可信度评价的配网设备健康度动态诊断方法
CN106104398A (zh) 过程控制系统中的分布式大数据
CN110929918A (zh) 一种基于CNN和LightGBM的10kV馈线故障预测方法
CN108306756A (zh) 一种基于电力数据网全息评估系统及其故障定位方法
CN106598741B (zh) 个性化推荐系统的分布式a/b测试方法、系统及视频推荐系统
CN111444169A (zh) 一种变电站电气设备状态监测与诊断系统及方法
CN107515842B (zh) 一种城市人口密度动态预测方法及系统
CN109063885A (zh) 一种变电站异常量测数据预测方法
CN113033110B (zh) 一种基于交通流模型的重点区域人员应急疏散系统及方法
CN115511367B (zh) 生产线的质量智能管理系统
CN117008557B (zh) 共混型互穿网络热塑性弹性体的生产控制方法及系统
CN115438726A (zh) 一种基于数字孪生技术的设备寿命与故障类型预测方法及系统
CN113988573A (zh) 基于电力系统巡检无人机的风险判断方法、系统和介质
CN112183906A (zh) 一种基于多模型组合模型的机房环境预测方法及系统
CN103942251A (zh) 基于多种质控方法的高空气象资料入库方法和入库系统
CN111898673A (zh) 一种基于emd与lstm的溶解氧含量预测方法
CN107357941A (zh) 一种可实时对水雨情数据进行检验的系统和方法
CN113593605B (zh) 一种基于深度神经网络的工业音频故障监测系统和方法
CN106202668B (zh) 基于质量问题数据和反向传导神经网络的复杂装备质量风险评估方法
CN110320802B (zh) 基于数据可视化的复杂系统信号时序识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant