CN109085238A - 扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法 - Google Patents

扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法 Download PDF

Info

Publication number
CN109085238A
CN109085238A CN201810772531.0A CN201810772531A CN109085238A CN 109085238 A CN109085238 A CN 109085238A CN 201810772531 A CN201810772531 A CN 201810772531A CN 109085238 A CN109085238 A CN 109085238A
Authority
CN
China
Prior art keywords
guided wave
clip
weld seam
reflection signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810772531.0A
Other languages
English (en)
Other versions
CN109085238B (zh
Inventor
郭文鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyao Qixing (Nanjing) Technology Co.,Ltd.
Original Assignee
Guizhou Luyuan Tianxin System Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Luyuan Tianxin System Technology Co Ltd filed Critical Guizhou Luyuan Tianxin System Technology Co Ltd
Priority to CN201810772531.0A priority Critical patent/CN109085238B/zh
Publication of CN109085238A publication Critical patent/CN109085238A/zh
Application granted granted Critical
Publication of CN109085238B publication Critical patent/CN109085238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法,利用扭转模态导波对管道进行缺陷检测时,导波遇到管线上的固有焊缝和后安装的卡箍时均会产生反射信号。在对检测信号进行识别时,需要对焊缝和卡箍反射信号进行标记。本发明提出利用多频扭转模态导波在焊缝和卡箍处具有不同反射特性的原理,区分焊缝和卡箍反射信号:焊缝反射信号幅值随检测导波频率增加呈先增后减趋势,卡箍反射信号幅值随检测导波频率增加呈单调递减趋势。

Description

扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法
技术领域
扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法,属于超声导波无损检测技术领域,其作用在于对管道导波检测结果中的焊缝和卡箍反射信号进行有效区分。
背景技术
扭转模态导波管道检测技术可实现长距离内缺陷的定位检测。在实际检测时,导波遇到管线上的固有焊缝和后安装的卡箍时均会产生反射信号。在对检测信号进行识别时,需要对焊缝和卡箍反射信号进行标记。但目前还没有很好的方法对这两种结构的反射信号进行区分。针对该问题,本发明提出了扭转模态导波在焊缝与卡箍处反射信号的识别方法,具体为:采用不同频率的扭转模态导波对管道进行检测,随着检测频率的增加,焊缝与卡箍处的反射信号幅值呈现不同的变化规律,通过该规律的判读,对焊缝和卡箍反射信号进行识别。
发明内容
本发明的目的是提出一种检测及信号识别方法,对管道中焊缝和卡箍处的扭转模态导波反射信号进行区分。
为实现上述目的,本发明采取如下技术方案:
扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法,该方法是一种在管道(1)中焊缝(2)与卡箍(3)处扭转模态导波反射信号的识别方法,该方法利用固定安装于管道(1)上的传感器(4)先后激发多个频率的扭转模态导波对管道进行检测,多个频率分别为16kHz、32kHz、64kHz、128kHz和256kHz,由此获得反射信号随导波激发频率的变化规律:对于焊缝(2)的反射信号,信号幅值随导波激发频率增加而呈先增后减趋势,卡箍(3)的反射信号幅值随检测导波频率增加呈单调递减趋势。即对管道(1)中焊缝(2)与卡箍(3)处扭转模态导波反射信号进行有效识别。
本发明可以获得如下收益:
可有效区分管道中焊缝和卡箍处扭转模态导波反射信号,利于扭转模态导波管道检测信号的识别。
附图说明
图1管道检测装置示意图。
图2不同导波激发频率时的焊缝与卡箍反射信号。
图3焊缝与卡箍反射信号幅值随导波激发频率的变化规律。
图中:1-管道 2-焊缝 3-卡箍 4-传感器。
具体实施方式
根据以上发明内容,结合附图对焊缝与卡箍反射信号的识别方法提供以下实施方式:
在图1所示,在管道(1)的某位置安装传感器(4),激发扭转模态超声导波对管道(1)进行检测,导波遇到管道(1)中的焊缝、卡箍等结构时,将产生反射回波,各回波的传播路径如图1所示。
当激发频率分别为32kHz、64kHz和128kHz时,检测到的典型信号如图2所示。通过对比不同频率的检测信号,可以发现:回波T4来自卡箍反射信号,其随着激发导波频率的增加,反射信号的幅值呈单调下降趋势;回波T5来自焊缝反射信号,其随着激发导波频率的增加,反射信号幅值先增后减。
实际焊缝和卡箍处的扭转模态导波反射信号幅值随激发导波频率的变化规律如图3所示。利用图3所示的变化规律,结合图2所示的多频导波检测信号,即可对焊缝和卡箍处的反射信号进行区分。
利用扭转模态导波对管道进行缺陷检测时,导波遇到管线上的固有焊缝和后安装的卡箍时均会产生反射信号。在对检测信号进行识别时,需要对焊缝和卡箍反射信号进行标记。本发明提出利用多频扭转模态导波在焊缝和卡箍处具有不同反射特性的原理,区分焊缝和卡箍反射信号:焊缝反射信号幅值随检测导波频率增加呈先增后减趋势,卡箍反射信号幅值随检测导波频率增加呈单调递减趋势。

Claims (1)

1.扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法,该方法是一种在管道(1)中焊缝(2)与卡箍(3)处扭转模态导波反射信号的识别方法,其特征在于:该方法利用固定安装于管道(1)上的传感器(4)先后激发多个频率的扭转模态导波对管道进行检测,多个频率分别为16kHz、32kHz、64kHz、128kHz和256kHz,由此获得反射信号随导波激发频率的变化规律:对于焊缝(2)的反射信号,信号幅值随导波激发频率增加而呈先增后减趋势,卡箍(3)的反射信号幅值随检测导波频率增加呈单调递减趋势;即对管道(1)中焊缝(2)与卡箍(3)处扭转模态导波反射信号进行有效识别。
CN201810772531.0A 2018-07-13 2018-07-13 扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法 Active CN109085238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810772531.0A CN109085238B (zh) 2018-07-13 2018-07-13 扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810772531.0A CN109085238B (zh) 2018-07-13 2018-07-13 扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法

Publications (2)

Publication Number Publication Date
CN109085238A true CN109085238A (zh) 2018-12-25
CN109085238B CN109085238B (zh) 2021-10-26

Family

ID=64837929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810772531.0A Active CN109085238B (zh) 2018-07-13 2018-07-13 扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法

Country Status (1)

Country Link
CN (1) CN109085238B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305085A (zh) * 2020-10-27 2021-02-02 厦门大学 一种基于扭转导波的钢管周向损伤监测方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302453A (en) * 1963-04-15 1967-02-07 American Mach & Foundry Method of inspection utilizing ultrasonic energy
US5383365A (en) * 1992-09-17 1995-01-24 The Babcock & Wilcox Company Crack orientation determination and detection using horizontally polarized shear waves
US20020058871A1 (en) * 2000-11-13 2002-05-16 Sonoscan, Inc. Frequency domain processing of scanning acoustic imaging signals
US20020100326A1 (en) * 2000-12-04 2002-08-01 Imadent Ltd. Method and apparatus for measuring ultrasonic properties of an object
US6658939B2 (en) * 2000-01-28 2003-12-09 The Boeing Company Fixture for automated ultrasonic scanning of radii in aerospace structure
CN101762633A (zh) * 2008-12-25 2010-06-30 中国石油天然气股份有限公司 一种管道本体缺陷快速检测方法
US20120119732A1 (en) * 2010-11-17 2012-05-17 Fbs, Inc. Magnetostrictive sensor array for active or synthetic phased-array focusing of guided waves
JP2012149980A (ja) * 2011-01-19 2012-08-09 Hitachi Engineering & Services Co Ltd ガイド波検査方法及び装置
CN104359979A (zh) * 2014-11-14 2015-02-18 西安交通大学 一种碳钢/铝爆炸复合管层间横向裂纹检测方法
CN104500136A (zh) * 2015-01-06 2015-04-08 中国矿业大学 一种局部地应力分布特征精细化探测方法
CN204422482U (zh) * 2014-10-15 2015-06-24 南方电网科学研究院有限责任公司 复合绝缘子的超声波自动旋转探伤装置
CN105004795A (zh) * 2015-08-03 2015-10-28 中国人民解放军海军工程大学 伪缺陷信号识别及利用其提高管道无损检测精度的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302453A (en) * 1963-04-15 1967-02-07 American Mach & Foundry Method of inspection utilizing ultrasonic energy
US5383365A (en) * 1992-09-17 1995-01-24 The Babcock & Wilcox Company Crack orientation determination and detection using horizontally polarized shear waves
US6658939B2 (en) * 2000-01-28 2003-12-09 The Boeing Company Fixture for automated ultrasonic scanning of radii in aerospace structure
US20020058871A1 (en) * 2000-11-13 2002-05-16 Sonoscan, Inc. Frequency domain processing of scanning acoustic imaging signals
US20020100326A1 (en) * 2000-12-04 2002-08-01 Imadent Ltd. Method and apparatus for measuring ultrasonic properties of an object
CN101762633A (zh) * 2008-12-25 2010-06-30 中国石油天然气股份有限公司 一种管道本体缺陷快速检测方法
US20120119732A1 (en) * 2010-11-17 2012-05-17 Fbs, Inc. Magnetostrictive sensor array for active or synthetic phased-array focusing of guided waves
JP2012149980A (ja) * 2011-01-19 2012-08-09 Hitachi Engineering & Services Co Ltd ガイド波検査方法及び装置
CN204422482U (zh) * 2014-10-15 2015-06-24 南方电网科学研究院有限责任公司 复合绝缘子的超声波自动旋转探伤装置
CN104359979A (zh) * 2014-11-14 2015-02-18 西安交通大学 一种碳钢/铝爆炸复合管层间横向裂纹检测方法
CN104359979B (zh) * 2014-11-14 2016-10-12 西安交通大学 一种碳钢/铝爆炸复合管层间横向裂纹检测方法
CN104500136A (zh) * 2015-01-06 2015-04-08 中国矿业大学 一种局部地应力分布特征精细化探测方法
CN105004795A (zh) * 2015-08-03 2015-10-28 中国人民解放军海军工程大学 伪缺陷信号识别及利用其提高管道无损检测精度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏纪真: "《工业无损技术 超声检测》", 31 January 2017, 中山大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305085A (zh) * 2020-10-27 2021-02-02 厦门大学 一种基于扭转导波的钢管周向损伤监测方法

Also Published As

Publication number Publication date
CN109085238B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN108872378B (zh) 一种用于金属圆管微损伤评价的非线性扭转模态超声导波方法
KR100883446B1 (ko) 음향방출신호를 이용한 결함진단시스템 및 결함진단방법
CN110762398B (zh) 基于激励响应的油气管道泄漏检测方法及系统
US9915632B2 (en) Long-range magnetostrictive ultrasonic guided wave scanner system and method
CN102537669B (zh) 一种基于超声导波聚焦的管道缺陷检测方法和系统
CN1865980B (zh) 近表面缺陷的超声检测方法
JPH11504110A (ja) ガスパイプライン壁厚さ及び欠陥検出
CN101398410A (zh) 一种电磁超声技术钢轨缺陷检测方法及其装置
CN105954358B (zh) 一种TR与Duffing系统相结合的超声导波小缺陷定位检测方法
CN109538943A (zh) 基于超声导波的管道结垢检测与识别方法
CN102182933A (zh) 脉冲漏磁缺陷与应力的无损检测系统及无损检测方法
CN102980942B (zh) 一种金属管道检测方法
CN104049038A (zh) 一种复合材料的超声-声发射检测方法
CN103235046A (zh) 一种单向发射电磁超声表面波换能器及采用该换能器检测金属表面缺陷方法
CN112154324B (zh) 使用多模声学信号来检测、监控和确定金属结构中变化的位置
CN109085238A (zh) 扭转模态导波管道检测中焊缝与卡箍反射信号的识别方法
CN114184682A (zh) 弱超声导波信号的双混沌系统检测方法
CN109187740A (zh) 一种管道缺陷的多频多点超声导波检测方法
CN202152923U (zh) 一种基于超声导波聚焦的管道缺陷检测系统
CN105004795B (zh) 伪缺陷信号识别及利用其提高管道无损检测精度的方法
CN104990984B (zh) 一种提高磁致伸缩导波检测灵敏度的装置及方法
CN106442719A (zh) 一种基于螺旋梳式换能器的管道弯曲导波检测方法及系统
CN102565193B (zh) 基于导波聚焦扫描的远距离管道成像方法和系统
KR101826917B1 (ko) 다중 채널 초음파를 이용한 장거리 배관 진단 방법
Kwun et al. Improving guided wave testing of pipelines with mechanical attachments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 211161 No. 135, Suqing partner, 2nd floor, No. 1009, East Tianyuan Road, Jiangning District, Nanjing, Jiangsu Province (Jiangning Gaoxin Park)

Patentee after: Zhongyao Qixing (Nanjing) Technology Co.,Ltd.

Address before: 550088 room B205, Chuangye building, Jinyang science and Technology Industrial Park, Guiyang National High tech Industrial Development Zone, Guiyang City, Guizhou Province

Patentee before: GUIZHOU LVYUAN TIANXIN SYSTEM TECHNOLOGY Co.,Ltd.