CN109079318A - 一种硅光子晶体波导器件的飞秒激光制备系统及方法 - Google Patents

一种硅光子晶体波导器件的飞秒激光制备系统及方法 Download PDF

Info

Publication number
CN109079318A
CN109079318A CN201810959059.1A CN201810959059A CN109079318A CN 109079318 A CN109079318 A CN 109079318A CN 201810959059 A CN201810959059 A CN 201810959059A CN 109079318 A CN109079318 A CN 109079318A
Authority
CN
China
Prior art keywords
reflecting mirror
lens
mirror
spatial light
light modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810959059.1A
Other languages
English (en)
Other versions
CN109079318B (zh
Inventor
陶青
陈克楠
刘顿
陈列
娄德元
杨奇彪
翟中生
郑重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201810959059.1A priority Critical patent/CN109079318B/zh
Publication of CN109079318A publication Critical patent/CN109079318A/zh
Application granted granted Critical
Publication of CN109079318B publication Critical patent/CN109079318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Abstract

本发明公开了一种硅光子晶体波导器件的飞秒激光制备系统及方法,系统包括飞秒激光器、多级半波片、偏振分光棱镜、第一反射镜、空间光调制器、第一透镜、第二反射镜、第三反射镜、第二透镜、电动翻转镜、第四反射镜、高倍物镜、三维加工平台、第三透镜、CCD相机、计算机;由飞秒激光器输出的激光通过多级半波片和偏振分光棱镜,经过反射镜射入空间光调制器;用计算机将加工方案生成全息图,加载到空间光调制器;光束经调制后通过第一透镜、第二反射镜、第三反射镜、第二透镜、第四反射镜,再经过高倍物镜聚焦到硅基片上,通过输入到计算机内的程序控制三维加工平台移动,完成加工任务。本发明加工步骤简易,加工精度高,加工速度快,加工成本低。

Description

一种硅光子晶体波导器件的飞秒激光制备系统及方法
技术领域
本发明属于激光微加工领域,涉及一种硅光子晶体波导器件的飞秒激光制备系统及方法,尤其涉及一种基于空间光调制器的硅光子晶体波导器件的飞秒激光制备系统及方法。
背景技术
传统介质光波导的导光机制是应用光的全反射原理,对光的束缚能力很弱,即使在波导只有5°弯曲的情况下,一般光场就有超过50%的辐射损耗,因此,弯曲损耗是传统介质光波导发展所面临的一个相当严重的问题,已经成为其发展瓶颈;光子晶体是由不同介电常数的物质在空间周期性排列而形成的人工微结构,光子晶体波导是在光子晶体中引入线缺陷,使光只能在线缺陷中传播,其采用的原理是不同方向缺陷模共振匹配,因此,光子晶体波导不受转角限制,有着极小的弯曲损耗;另外光子晶体波导结构尺寸可以达到波长量级,随着光通信技术的发展,光子晶体波导不仅将在光通信中领域起到越来越重要的作用,而且在未来大规模光电集成、光子集成中也将具有极其重要的地位。目前,在制备光子晶体波导时,常采用机械钻孔法、电化学腐蚀法、电子束刻蚀等方法,加工速度较慢,精度较低,甚至有化学污染的危险。
随着飞秒激光微加工技术的飞速发展,制备光子晶体波导技术也日益成熟,用飞秒激光进行微结构的加工具有加工精度高、加工速度快等优点,可以解决传统方法加工光子晶体波导过程中遇到的问题,因此,采用飞秒激光微加工技术对制备光子晶体波导的发展具有深远的意义。
发明内容
为克服上述传统方法在加工光子晶体波导过程中存在的精度低,速度慢等问题,本发明提供了一种基于空间光调制器的硅光子晶体波导的飞秒激光制备系统及方法,能够有效提高加工速度和加工精度。
本发明的系统所采用的技术方案是:一种硅光子晶体波导器件的飞秒激光制备系统,其特征在于:包括飞秒激光器、多级半波片、偏振分光棱镜、第一反射镜、空间光调制器、第一透镜、第二反射镜、第三反射镜、第二透镜、电动翻转镜、第四反射镜、高倍物镜、三维加工平台、第三透镜、CCD相机、计算机;
所述飞秒激光器发出的飞秒脉冲激光光束依次经过所述多级半波片、偏振分光棱镜第一反射镜、空间光调制器、第一透镜、第二反射镜、第三反射镜后射入所述第二透镜;
所述电动翻转镜可升降地设置在为所述第二透镜、第四反射镜之间;当所述电动翻转镜升起在所述第二透镜、第四反射镜之间后,从所述第二透镜射出的光经所述电动翻转镜反射后经过所述第三透镜聚焦到所述CCD相机;当所述电动翻转镜降下后,从所述第二透镜射出的光经过所述第四反射镜,射入所述高倍物镜,经过所述高倍物镜聚焦到放置在所述三维加工平台上的硅基片上,完成孔加工任务;
所述计算机依次与所述飞秒激光器、空间光调制器、三维加工平台、CCD相机连接;用于控制所述飞秒激光器、发出飞秒脉冲激光;用于调整多光束间距,阵列图案,生成对应全息图并加载到所述空间光调制器中;用于控制所述三维加工平台运动;用于观察光束的数量及分布。
本发明的方法所采用的技术方案是:一种硅光子晶体波导器件的飞秒激光制备方法,其特征在于,包括以下步骤:
步骤1:利用计算机控制飞秒激光器发出飞秒脉冲激光,通过多级半波片和偏振分光棱镜,经过反射镜射入空间光调制器;
步骤2:利用计算机将加工方案生成全息图,加载到空间光调制器中;
步骤3:光束经空间光调制器调制后通过第一透镜、第二反射镜、第三反射镜、第二透镜、第四反射镜,再经过高倍物镜聚焦到放置在三维加工平台上的硅基片上,通过计算机控制三维加工平台移动,完成加工任务。
与现有技术相比,本发明的有益效果为:
(1)激光光源的前端加入多级半波片及偏振分光棱镜,控制光源的能量大小及其偏振性;
(2)空间光调制器可以实现多光束并行加工,提高加工效率;
(3)空间光调制器可以将光束调制为贝塞尔光,用于获得更深的焦深,利于孔的加工;
(4)计算机可以对不同的加工方案生成对应的全息图,可用一套设备制备不同规格的光子晶体波导;
(5)三维加工平台与计算机连接,可以实现高精度加工;
(6)CCD相机可以观察光束的数量及分布,确保加工的准确性;
(7)利用飞秒激光直接刻蚀,加工步骤少,对环境因素要求低,有效的降低了制备成本。
附图说明
图1为本发明实施例的系统结构图;
图2为本发明实施例中采用飞秒激光制备系统加工硅光子晶体直线波导得到的结构示意图;
图3为本发明实施例中采用飞秒激光制备系统加工硅光子晶体弯曲波导得到的结构示意图;
图4为本发明实施例中采用飞秒激光制备系统加工硅光子晶体1X3光分路器得到的结构示意图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
请见图1,本发明提供的一种硅光子晶体波导器件的飞秒激光制备系统,包括飞秒激光器1、多级半波片2、偏振分光棱镜3、第一反射镜4、空间光调制器5、第一透镜6、第二反射镜7、第三反射镜8、第二透镜9、电动翻转镜10、第四反射镜11、高倍物镜12、三维加工平台13、第三透镜14、CCD相机15、计算机16;
飞秒激光器1发出的飞秒脉冲激光光束依次经过多级半波片2、偏振分光棱镜3第一反射镜4、空间光调制器5、第一透镜6、第二反射镜7、第三反射镜8后射入第二透镜9;
电动翻转镜10可升降地设置在为第二透镜9、第四反射镜11之间;当电动翻转镜10升起在第二透镜9、第四反射镜11之间后,从第二透镜9射出的光经电动翻转镜10反射后经过第三透镜14聚焦到CCD相机15;当电动翻转镜10降下后,从第二透镜9射出的光经过第四反射镜11,射入高倍物镜12,经过高倍物镜12聚焦到放置在三维加工平台13上的硅基片上,完成孔加工任务;
计算机16依次与飞秒激光器1、空间光调制器5、三维加工平台13、CCD相机15连接;用于控制飞秒激光器1、发出飞秒脉冲激光;用于调整多光束间距,阵列图案,生成对应全息图并加载到空间光调制器5中;用于控制三维加工平台13运动;用于观察光束的数量及分布。
本实施例的飞秒激光器1,用于发出飞秒脉冲激光光束;本实施例的多级半波片2,用于调节光功率的大小;本实施例的偏振分光棱镜3,用于将光束的水平偏振和垂直偏振分开;本实施例的第一反射镜4,第二反射镜7,第三反射镜8,第四反射镜11均为45°镜,用于改变光束传播方向;本实施例的空间光调制器5,用于调制光波,将光束调制为贝塞尔光及实现多光束并行加工;本实施例的第一透镜6和第二透镜9组成4f光学系统,用于成像、滤波;本实施例的电动翻转镜10为45°镜,可以升起或降下,用于控制光束传播方向;本实施例的高倍物镜12,用于将光束聚焦到待加工基片上;本实施例的三维加工平台13,用于放置待加工硅基片,聚焦后的飞秒脉冲激光光束在三维加工平台13的运动作用下,对所述待加工材料进行加工;本实施例的CCD相机,用于观察光束数量及分布。
请见图2,本发明提供了一种采用飞秒激光制备系统加工硅光子晶体直线波导的方法,具体加工方法包括以下步骤:
步骤1:打开飞秒激光器1,产生重复频率10KHZ,激光脉冲100fs,波长为800nm,平均功率为300mW的飞秒激光,使其经过多级半波片2,偏振分光棱镜3,反射镜4,射入空间光调制器5;
步骤2:本实施例要加工出硅光子晶体直线波导,硅基片17总厚度为10μm,其结构示意图如图2,SU8胶介质柱18直径0.1μm,间距0.21μm,直线缺陷19为不加工部分;通过计算机16将要加工的光子晶体直线波导图案生成对应的全息图并加载到空间光调制器5中,空间光调制器5根据全息图将单光束调制为贝塞尔光及对应的多光束;
步骤3:让经空间光调制器5处理过的光束穿过第一透镜6、第二反射镜7、第三反射镜8、第二透镜9,再使用电动翻转镜10将多光束经过第三透镜14聚焦到CCD相机14,在计算机16显示窗口观察多光束的数量以及分布情况,检查是否有错误,如有误,在计算机16内进行修改,如无误,进行下一步骤;
步骤4:升起电动翻转镜10,让多光束经过第四反射镜11,然后射入放大倍数为20X的高倍物镜12,使多光束聚焦到固定在三维加工平台13的硅基片17上;
步骤5:用计算机16控制软件控制三维加工平台13,不断调整加工平台的位置,使多光束始终聚焦在硅基片17表面,从而刻蚀出相应孔的阵列图案;
步骤6:将加工出孔及硅基片放入真空操作箱中,真空操作箱中还放置了一个匀胶机和一个可调厚度控制平台以及紫外固化灯;将上述真空操作箱抽真空。另外,真空操作箱底部具有一个加热器;在真空操作环境中,将SU8胶注入孔中;开启匀胶机将SU8胶均匀旋涂,再将硅基片从匀胶机中取出,将多余的SU8胶去除,使SU8胶能够将孔充满;开启紫外固化灯,进行15~30分钟的固化照射,进行初步定型;开启加热器,设置烤温度为110℃,加热4小时后,SU8胶彻底凝固定型。
硅光子晶体直线波导结构示意图如图2所示,在硅基片17上加工出空气孔并在其中注入SU8胶介质柱18,并引入直线缺陷19。
请见图3,本发明提供了一种采用飞秒激光制备系统加工硅光子晶体弯曲波导的方法,具体加工方法包括以下步骤:
步骤1:打开飞秒激光器1,产生重复频率10KHZ,激光脉冲100fs,平均功率为300mW的飞秒激光,使其经过多级半波片2,偏振分光棱镜3,反射镜4,射入空间光调制器5;
步骤2:本实施例要加工出硅光子晶体弯曲波导,硅基片20总厚度为10μm,其结构示意图如图3,SU8胶介质柱21直径0.1μm,间距0.21μm,弯曲缺陷22为不加工部分;通过计算机16将要加工的光子晶体弯曲波导图案生成对应的全息图并加载到空间光调制器5中,空间光调制器5根据全息图将单光束调制为贝塞尔光及对应的多光束;
步骤3:让经空间光调制器5处理过的多光束穿过第一透镜6、第二反射镜7、第三反射镜8、第二透镜9,再使用电动翻转镜10将多光束经过第三透镜14聚焦到CCD相机,在计算机16显示窗口观察多光束的数量以及分布情况,检查是否有错误,如有误,在计算机16内进行修改,如无误,进行下一步骤;
步骤4:升起电动翻转镜10,让多光束经过第四反射镜11,然后射入放大倍数为20X的高倍物镜12,使多光束聚焦到固定在三维加工平台13的硅基片20上;
步骤5:用计算机16控制软件控制三维加工平台13,不断调整加工平台的位置,使多光束始终聚焦在硅基片20表面,从而刻蚀出相应孔的阵列图案;
步骤6:将加工出孔及硅基片放入真空操作箱中,真空操作箱中还放置了一个匀胶机和一个可调厚度控制平台以及紫外固化灯;将上述真空操作箱抽真空。另外,真空操作箱底部具有一个加热器;在真空操作环境中,将SU8胶注入孔中;开启匀胶机将SU8胶均匀旋涂,再将硅基片从匀胶机中取出,将多余的SU8胶去除,使SU8胶能够将孔充满;开启紫外固化灯,进行15~30分钟的固化照射,进行初步定型;开启加热器,设置烤温度为110℃,加热4小时后,SU8胶彻底凝固定型。
硅光子晶体弯曲波导结构示意图如图3所示,在硅基片20上加工出空气孔并在其中注入SU8胶介质柱21,并引入弯曲缺陷22。
请见图4,本发明提供了一种采用飞秒激光制备系统加工硅光子晶体1X3光分路器的方法,具体加工方法包括以下步骤:
步骤1:打开飞秒激光器1,产生重复频率10KHZ,激光脉冲100fs,平均功率为300mW的飞秒激光,使其经过多级半波片2,偏振分光棱镜3,反射镜4,射入空间光调制器5;
步骤2:本实施例要加工出硅光子晶体1X3光分路器,硅基片23厚度为10μm,其结构示意图如图4,SU8胶介质柱24直径0.1μm,孔间距0.21μm,缺陷25为不加工部分;通过计算机16将要加工的光子晶体1X3光分路器图案生成对应的全息图并加载到空间光调制器5中,空间光调制器5根据全息图将单光束调制为贝塞尔光及对应的多光束;
步骤3:让经空间光调制器处理过的多光束穿过第一透镜6、第二反射镜7、第三反射镜8、第二透镜9,再使用电动翻转镜10将多光束经过第三透镜14聚焦到CCD相机15,在计算机16显示窗口观察多光束的数量以及分布情况,检查是否有错误,如有误,在计算机16内进行修改,如无误,进行下一步骤;
步骤4:升起电动翻转镜10,让多光束经过第四反射镜11,然后射入放大倍数为20X的高倍物镜12,使多光束聚焦到固定在三维加工平台13的硅基片23上;
步骤5:用计算机16控制软件控制三维加工平台13,不断调整加工平台的位置,使多光束始终聚焦在硅基片23表面,从而刻蚀出相应孔的阵列图案;
步骤6:将加工出孔及硅基片放入真空操作箱中,真空操作箱中还放置了一个匀胶机和一个可调厚度控制平台以及紫外固化灯;将上述真空操作箱抽真空。另外,真空操作箱底部具有一个加热器;在真空操作环境中,将SU8胶注入孔中;开启匀胶机将SU8胶均匀旋涂,再将硅基片从匀胶机中取出,将多余的SU8胶去除,使SU8胶能够将孔充满;开启紫外固化灯,进行15~30分钟的固化照射,进行初步定型;开启加热器,设置烤温度为110℃,加热4小时后,SU8胶彻底凝固定型。
硅光子晶体光1X3分路器结构示意图如图4所示,在硅基片23上加工出空气孔并注入SU8胶介质柱24,并引入缺陷25。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (5)

1.一种硅光子晶体波导器件的飞秒激光制备系统,其特征在于:包括飞秒激光器(1)、多级半波片(2)、偏振分光棱镜(3)、第一反射镜(4)、空间光调制器(5)、第一透镜(6)、第二反射镜(7)、第三反射镜(8)、第二透镜(9)、电动翻转镜(10)、第四反射镜(11)、高倍物镜(12)、三维加工平台(13)、第三透镜(14)、CCD相机(15)、计算机(16);
所述飞秒激光器(1)发出的飞秒脉冲激光光束依次经过所述多级半波片(2)、偏振分光棱镜(3)第一反射镜(4)、空间光调制器(5)、第一透镜(6)、第二反射镜(7)、第三反射镜(8)后射入所述第二透镜(9);
所述电动翻转镜(10)可升降地设置在为所述第二透镜(9)、第四反射镜(11)之间;当所述电动翻转镜(10)升起在所述第二透镜(9)、第四反射镜(11)之间后,从所述第二透镜(9)射出的光经所述电动翻转镜(10)反射后经过所述第三透镜(14)聚焦到所述CCD相机(15);
当所述电动翻转镜(10)降下后,从所述第二透镜(9)射出的光经过所述第四反射镜(11),射入所述高倍物镜(12),经过所述高倍物镜(12)聚焦到放置在所述三维加工平台(13)上的硅基片上,完成孔加工任务;
所述计算机(16)依次与所述飞秒激光器(1)、空间光调制器(5)、三维加工平台(13)、CCD相机(15)连接;用于控制所述飞秒激光器(1)、发出飞秒脉冲激光;用于调整多光束间距,阵列图案,生成对应全息图并加载到所述空间光调制器(5)中;用于控制所述三维加工平台(13)运动;用于观察光束的数量及分布。
2.根据权利要求1所述的硅光子晶体波导器件的飞秒激光制备系统,其特征在于:所述第一反射镜(4)、第二反射镜(7)、第三反射镜(8)、电动翻转镜(10)、第四反射镜(11)均为45°镜,用于改变光束传播方向。
3.一种硅光子晶体波导器件的飞秒激光制备方法,其特征在于,包括以下步骤:
步骤1:利用计算机(16)控制飞秒激光器(1)发出飞秒脉冲激光,通过多级半波片(2)和偏振分光棱镜(3),经过反射镜(4)射入空间光调制器(5);
步骤2:利用计算机(16)将加工方案生成全息图,加载到空间光调制器(5)中;
步骤3:光束经空间光调制器(5)调制后通过第一透镜(6)、第二反射镜(7)、第三反射镜(8)、第二透镜(9)、第四反射镜(11),再经过高倍物镜(12)聚焦到放置在三维加工平台(13)上的硅基片上,通过计算机(16)控制三维加工平台(13)移动,完成加工任务。
4.根据权利要求3所述的硅光子晶体波导器件的飞秒激光制备方法,其特征在于:步骤3中,光束经空间光调制器(5)调制后通过第一透镜(6)、第二反射镜(7)、第三反射镜(8)、第二透镜(9),再使用电动翻转镜(10)将多光束经过第三透镜(14)聚焦到CCD相机(15),在计算机(16)中观察多光束的数量以及分布情况,检查是否有错误,如有误,则在计算机(16)内进行修改,如无误,则进行后续操作。
5.根据权利要求3或4所述的硅光子晶体波导器件的飞秒激光制备方法,其特征在于:步骤3中,将加工出孔及硅基片放入真空操作箱中,真空操作箱中还放置有一个匀胶机、一个可调厚度控制平台和紫外固化灯,真空操作箱底部设置有一个加热器;在真空操作环境中,将SU8胶注入孔中;开启匀胶机将SU8胶均匀旋涂,再将硅基片从匀胶机中取出,将多余的SU8胶去除,使SU8胶能够将孔充满;开启紫外固化灯,进行固化照射,进行初步定型;开启加热器加热,使SU8胶彻底凝固定型。
CN201810959059.1A 2018-08-22 2018-08-22 一种硅光子晶体波导器件的飞秒激光制备系统及方法 Active CN109079318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810959059.1A CN109079318B (zh) 2018-08-22 2018-08-22 一种硅光子晶体波导器件的飞秒激光制备系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810959059.1A CN109079318B (zh) 2018-08-22 2018-08-22 一种硅光子晶体波导器件的飞秒激光制备系统及方法

Publications (2)

Publication Number Publication Date
CN109079318A true CN109079318A (zh) 2018-12-25
CN109079318B CN109079318B (zh) 2020-04-24

Family

ID=64794207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810959059.1A Active CN109079318B (zh) 2018-08-22 2018-08-22 一种硅光子晶体波导器件的飞秒激光制备系统及方法

Country Status (1)

Country Link
CN (1) CN109079318B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848547A (zh) * 2019-04-08 2019-06-07 北京理工大学 飞秒激光高效稳定改性透明材料均匀成丝方法
CN109867610A (zh) * 2019-03-06 2019-06-11 北京理工大学 一种时域整形飞秒激光制备针状对乙酰氨基酚晶体的方法
CN111884019A (zh) * 2020-08-17 2020-11-03 武汉金顿激光科技有限公司 一种三维多光束激光参数调控方法及系统
CN111900597A (zh) * 2020-08-17 2020-11-06 武汉金顿激光科技有限公司 一种平面多光束激光参数调控方法及系统
CN112045302A (zh) * 2020-09-01 2020-12-08 湖北工业大学 一种激光多焦点和焦线组合加工系统及加工方法
CN112596254A (zh) * 2020-12-07 2021-04-02 宁波大学 基于光子晶体的紧凑型偏振分束器
CN113399823A (zh) * 2021-05-28 2021-09-17 西北工业大学 一种镜片阵列镜面的制备装置及制备方法
CN115182045A (zh) * 2022-07-27 2022-10-14 山东铂锐激光科技有限公司 一种倍半氧化物单晶光纤包层的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646782A (en) * 1994-11-30 1997-07-08 Texas Instruments Incorporated Optical guide for increasing printer image width
CN101576711A (zh) * 2008-12-31 2009-11-11 南开大学 利用飞秒激光在透明固体材料中制作光波导的装置及方法
CN104216047A (zh) * 2014-09-26 2014-12-17 南京先进激光技术研究院 基于自聚焦成丝的超短脉冲激光制备光波导器件的方法
CN104777534A (zh) * 2014-12-25 2015-07-15 西南科技大学 一种飞秒激光刻蚀波导光栅的制备装置及方法
CN105081565A (zh) * 2015-08-10 2015-11-25 武汉华工激光工程有限责任公司 一种用整形光束进行材料加工的系统及方法
CN105108342A (zh) * 2015-09-18 2015-12-02 南开大学 大面积二维金属光子晶体结构的飞秒激光直写制备方法
CN106312303A (zh) * 2016-09-12 2017-01-11 中国科学院上海光学精密机械研究所 缩小基于飞秒激光直写透明材料光波导出射模场直径的装置和方法
CN108362394A (zh) * 2018-02-12 2018-08-03 南开大学 基于飞秒激光写入的晶体光波导散斑温度测量方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646782A (en) * 1994-11-30 1997-07-08 Texas Instruments Incorporated Optical guide for increasing printer image width
CN101576711A (zh) * 2008-12-31 2009-11-11 南开大学 利用飞秒激光在透明固体材料中制作光波导的装置及方法
CN104216047A (zh) * 2014-09-26 2014-12-17 南京先进激光技术研究院 基于自聚焦成丝的超短脉冲激光制备光波导器件的方法
CN104777534A (zh) * 2014-12-25 2015-07-15 西南科技大学 一种飞秒激光刻蚀波导光栅的制备装置及方法
CN105081565A (zh) * 2015-08-10 2015-11-25 武汉华工激光工程有限责任公司 一种用整形光束进行材料加工的系统及方法
CN105108342A (zh) * 2015-09-18 2015-12-02 南开大学 大面积二维金属光子晶体结构的飞秒激光直写制备方法
CN106312303A (zh) * 2016-09-12 2017-01-11 中国科学院上海光学精密机械研究所 缩小基于飞秒激光直写透明材料光波导出射模场直径的装置和方法
CN108362394A (zh) * 2018-02-12 2018-08-03 南开大学 基于飞秒激光写入的晶体光波导散斑温度测量方法及系统
CN108362394B (zh) * 2018-02-12 2019-08-23 南开大学 基于飞秒激光写入的晶体光波导散斑温度测量方法及系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867610A (zh) * 2019-03-06 2019-06-11 北京理工大学 一种时域整形飞秒激光制备针状对乙酰氨基酚晶体的方法
CN109848547A (zh) * 2019-04-08 2019-06-07 北京理工大学 飞秒激光高效稳定改性透明材料均匀成丝方法
CN111884019A (zh) * 2020-08-17 2020-11-03 武汉金顿激光科技有限公司 一种三维多光束激光参数调控方法及系统
CN111900597A (zh) * 2020-08-17 2020-11-06 武汉金顿激光科技有限公司 一种平面多光束激光参数调控方法及系统
CN111884019B (zh) * 2020-08-17 2021-03-30 武汉金顿激光科技有限公司 一种三维多光束激光参数调控方法及系统
CN111900597B (zh) * 2020-08-17 2021-03-30 武汉金顿激光科技有限公司 一种平面多光束激光参数调控方法及系统
CN112045302A (zh) * 2020-09-01 2020-12-08 湖北工业大学 一种激光多焦点和焦线组合加工系统及加工方法
CN112045302B (zh) * 2020-09-01 2022-06-07 湖北工业大学 一种激光多焦点和焦线组合加工系统及加工方法
CN112596254A (zh) * 2020-12-07 2021-04-02 宁波大学 基于光子晶体的紧凑型偏振分束器
CN112596254B (zh) * 2020-12-07 2022-05-20 宁波大学 基于光子晶体的紧凑型偏振分束器
CN113399823A (zh) * 2021-05-28 2021-09-17 西北工业大学 一种镜片阵列镜面的制备装置及制备方法
CN115182045A (zh) * 2022-07-27 2022-10-14 山东铂锐激光科技有限公司 一种倍半氧化物单晶光纤包层的制备方法

Also Published As

Publication number Publication date
CN109079318B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN109079318A (zh) 一种硅光子晶体波导器件的飞秒激光制备系统及方法
CN109997081B (zh) 在非二维初始结构上光刻生成目标结构的方法和装置
Wang et al. Toward near-perfect diffractive optical elements via nanoscale 3D printing
CN104029394B (zh) 一种提高激光扫描成像光固化快速成型效率的方法
CN103862171A (zh) 双波长飞秒激光制备二维周期金属颗粒阵列结构的方法
Lindenmann Photonic wire bonding as a novel technology for photonic chip interfaces
CN103995394A (zh) 一种基于激光直写的微纳区域液晶定向的方法及其系统
Gandhi et al. 3D microfabrication using bulk lithography
Chkalov et al. Development and application possibilities of multifunctional femtosecond laser complex for precision processing
Dyakonov et al. Low-loss single-mode integrated waveguides in soda-lime glass
CN108941901A (zh) 一种激光打标装置及方法
JP3670534B2 (ja) 光素子の製造方法および製造装置
Ksouri et al. Optical micro-assembling of non-spherical particles
Ribeiro et al. New theoretical and experimental methods for the design of fiber optic tweezers
CN202230299U (zh) 一种基于导模干涉的超分辨直写光刻机
CN102707379A (zh) 一种在光子晶体中引入缺陷的方法
Stender et al. Industrial-Scale Fabrication of Optical Components Using High-Precision 3D Printing: Aspects-Applications-Perspectives
Onanuga Process modeling of two-photon and grayscale laser direct-write lithography
CN113470847B (zh) 一种波导型光镊芯片及其制备方法
Jukna et al. Analysis of higher order vector Bessel-Gauss beam applicability to transparent material processing
Sharma Improved system for fabrication and characterization of nanophotonic devices by multi-photon lithography
Suzuki et al. Waveguide fabrication with femtosecond laser pulse shaped by computer-generated hologram
Suzuki et al. Optical device fabrication using femtosecond laser processing with glass-hologram
Diaz Development and Optimisation of an Optofluidic Evanescent Field Nano Tweezer System for Trapping Nanometre Crystals for Synchrotron X-Ray Diffraction Experiments
Ostendorf et al. Assembling and Manipulating with Light: Optical micro‐machining tool for manufacturing and manipulation of arbitrary particles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant