CN109062030A - Thermal power unit plant load prediction PID control method based on laguerre function model - Google Patents
Thermal power unit plant load prediction PID control method based on laguerre function model Download PDFInfo
- Publication number
- CN109062030A CN109062030A CN201810843019.0A CN201810843019A CN109062030A CN 109062030 A CN109062030 A CN 109062030A CN 201810843019 A CN201810843019 A CN 201810843019A CN 109062030 A CN109062030 A CN 109062030A
- Authority
- CN
- China
- Prior art keywords
- model
- output
- control
- thermal power
- power unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 22
- 238000012937 correction Methods 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 20
- 238000013178 mathematical model Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000012905 input function Methods 0.000 abstract 1
- 238000011217 control strategy Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公布了一种基于拉盖尔函数模型的火电单元机组负荷预测PID控制方法,火电单元机组负荷系统包括控制系统和受控系统,具体操作步骤如下:S1,将控制系统的控制输出U(k)输 入受控系统,得到受控输出Y(k);S2,利用Y(k)进行拉盖尔函数预测模型参数辨识;S3,将控制输出U(k)作为模型输入传输到拉盖尔函数预测模型,得到模型预测输出Y M (k+1);S4,利用Y(k)对模型预测输出Y M (k+1)进行反馈矫正,得到补偿模型预测输出Y P (k+1);S5,利用PID控制算法滚动优化补偿模型输出,得到新的控制输出U(k+ 1);S6,重复步骤S1‑S5,实现火电单元机组负荷系统的稳定运行。本发明方法具有跟踪速度较快、抗干扰能力强、稳态误差小、计算时间短等优点,具有较强的自适应能力。
The present invention discloses a thermal power unit load forecasting PID control method based on the Laguerre function model. The thermal power unit load system includes a control system and a controlled system. The specific operation steps are as follows: S1, the control output of the control system U( k) Input the controlled system to obtain the controlled output Y(k) ; S2, use Y(k) to identify the parameters of the Laguerre function prediction model; S3, transmit the control output U(k) to the Laguerre as the model input function prediction model to obtain the model prediction output Y M (k+1) ; S4, use Y(k) to perform feedback correction on the model prediction output Y M (k+1) , and obtain the compensation model prediction output Y P (k+1 ) ; S5, utilize the PID control algorithm to scroll and optimize the compensation model output to obtain a new control output U(k+ 1) ; S6, repeat steps S1‑S5 to realize the stable operation of the thermal power unit load system. The method of the invention has the advantages of fast tracking speed, strong anti-interference ability, small steady-state error, short calculation time, etc., and has strong self-adaptive ability.
Description
技术领域technical field
本发明属于火电单元机组负荷控制的技术领域,主要涉及到一种基于拉盖尔函数模型的火电单元机组负荷预测PID控制方法。The invention belongs to the technical field of thermal power unit load control, and mainly relates to a thermal power unit load forecasting PID control method based on a Laguerre function model.
背景技术Background technique
随着电网和单元机组容量的不断扩大,用户对用电质量的要求也不断提高,研究多变量控制策略在热工过程中的应用变得越来越重要。火电厂单元机组负荷控制是一个典型的复杂多变量系统,火电单元机组负荷控制的主要要求是使主蒸汽压力在规定的范围内,并使机组能较快的达到外界负荷需求。With the continuous expansion of the power grid and unit unit capacity, the user's requirements for the quality of power consumption are also increasing, and it is becoming more and more important to study the application of multivariable control strategies in thermal processes. Unit unit load control in thermal power plants is a typical complex and multivariable system. The main requirement for unit unit load control in thermal power plants is to keep the main steam pressure within a specified range and enable units to quickly meet external load requirements.
目前,针对火电厂单元机组负荷控制,专家们提出了一些先进的控制策略,如李益国等人提出了一种模糊控制,但这种控制计算复杂,模糊规则难以确定;吕剑虹等提出了一种神经网络控制,但这种控制方法,计算量大,耗时较长。At present, experts have proposed some advanced control strategies for unit unit load control in thermal power plants. Network control, but this control method requires a large amount of calculation and takes a long time.
模型预测控制(MPC)是二十世纪七十年代末发展起来的一类新型具有广阔应用前景的控制策略,由于具有较好的控制效果,因此成功的在实际工业控制中得到了应用。通过多数的实验表明,对于具有大惯性、大滞后特性的热工过程,MPC的性能明显优于传统的PID控制策略。但传统的MPC有一定的局限性,模型算法控制(MAC)、动态矩阵控制(DMC)等采用非参数化模型,所用数据多,计算量大,不便于实现自适应控制;广义预测控制(GPC)等采用的参数化模型,对于被控对象的时延和阶次较敏感。近年来,加拿大Dumont等研究了基于拉盖尔函数模型的自适应预测控制算法,研究发现将此算法应用于扩散炉系统可以得到较好的控制效果。拉盖尔函数模型具有非参数化模型对系统阶次和时延变化不敏感的特点,而且表示模型参数少于传统参数化模型,参数便于在线辨识,易于实现自适应控制策略。Model Predictive Control (MPC) is a new type of control strategy developed in the late 1970s with broad application prospects. Because of its good control effect, it has been successfully applied in actual industrial control. Most experiments show that for thermal processes with large inertia and large hysteresis, the performance of MPC is obviously better than that of traditional PID control strategy. However, the traditional MPC has certain limitations. Model algorithmic control (MAC) and dynamic matrix control (DMC) use non-parametric models, which use a lot of data and a large amount of calculation, which is not easy to realize adaptive control; generalized predictive control (GPC) ), etc., are sensitive to the time delay and order of the controlled object. In recent years, Canadian Dumont et al. have studied the adaptive predictive control algorithm based on the Laguerre function model, and found that applying this algorithm to the diffusion furnace system can obtain better control effects. The Laguerre function model has the characteristics that the non-parametric model is not sensitive to the system order and delay changes, and the representation model has fewer parameters than the traditional parametric model, the parameters are easy to identify online, and it is easy to implement an adaptive control strategy.
发明内容Contents of the invention
本发明提供了一种基于拉盖尔(Laguerre)函数模型的火电单元机组负荷预测PID控制方法,将基于Laguerre函数模型的自适应预测控制与PID控制策略结合,得到的新的控制方法。The invention provides a thermal power unit load forecasting PID control method based on a Laguerre function model, and combines the adaptive predictive control based on the Laguerre function model with a PID control strategy to obtain a new control method.
为解决上述技术问题,本发明采用了如下技术手段:In order to solve the problems of the technologies described above, the present invention adopts the following technical means:
基于Laguerre函数模型的火电单元机组负荷预测PID控制方法,火电单元机组负荷系统包括控制系统和受控系统,具体操作步骤如下:The thermal power unit load forecasting PID control method based on the Laguerre function model. The thermal power unit load system includes a control system and a controlled system. The specific operation steps are as follows:
S1,将控制系统的控制输出U(k)作为受控系统的输入,受控系统输出Y(k);S1, the control output U(k) of the control system is used as the input of the controlled system, and the controlled system outputs Y(k);
S2,利用受控系统的输出Y(k)进行Laguerre函数预测模型参数辨识;S2, using the output Y(k) of the controlled system to identify the parameters of the Laguerre function prediction model;
S3,将控制系统的控制输出U(k)作为模型输入传输到Laguerre函数预测模型中,通过Laguerre函数预测模型得到模型预测输出YM(k+1);S3, the control output U(k) of the control system is transmitted to the Laguerre function prediction model as a model input, and the model prediction output Y M (k+1) is obtained through the Laguerre function prediction model;
S4,利用受控系统的输出Y(k)对模型预测输出YM(k+1)进行反馈矫正,反馈矫正后得到补偿模型预测输出YP(k+1);S4, using the output Y(k) of the controlled system to perform feedback correction on the model prediction output Y M (k+1), and obtain the compensation model prediction output Y P (k+1) after feedback correction;
S5,利用PID控制算法滚动优化模型预测输出,得到新的控制输出U(k+1);S5, using the PID control algorithm to scroll and optimize the model prediction output to obtain a new control output U(k+1);
S6,重复步骤S1-S5,实现火电单元机组负荷系统的稳定运行。S6, steps S1-S5 are repeated to realize stable operation of the thermal power unit load system.
进一步的,所述的火电单元机组负荷系统满足数学模型:Further, the load system of thermal power units satisfies the mathematical model:
其中,yi是第i个系统输出,共有m个系统输出,uj是第j个系统输入,共有n个系统输入,Gij(z-1)是第i个输出对第j个输入的传输函数,i=1,…,m;j=1,…,n。Among them, y i is the output of the i-th system, there are m system outputs in total, u j is the input of the j-th system, there are n system inputs in total, G ij (z -1 ) is the relationship between the i-th output and the j-th input Transfer function, i=1,...,m; j=1,...,n.
进一步的,所述的控制系统控制输出U(k)满足公式:Further, the control system control output U(k) satisfies the formula:
其中,ΔU(k)为系统输入增量,K=diag(K1,…,Km)m×mM,Ki(i=1,...,m)=[1 0 …0]1×M,M是模型控制时域,是系统最优控制增量。Among them, ΔU(k) is the system input increment, K=diag(K 1 ,…,K m ) m×mM , K i(i=1,…,m) =[1 0 …0] 1× M , M is the model control time domain, is the optimal control increment of the system.
进一步的,所述的Laguerre函数预测模型参数是模型中的系数矩阵C,可以通过带遗忘因子的最小二乘法在线辨识:Further, the Laguerre function prediction model parameter is the coefficient matrix C in the model, which can be identified online by the least squares method with a forgetting factor:
其中,Δyi(k)是k时刻第i个系统输出的输出增量,ΔLi(k)是k时刻第i个系统输出的模型状态增量,λi为遗忘因子,取值范围为0.9~0.99,Ci(0)=[0.001,0.001,0.001],P(0)=10^8I,I为单位矩阵,i=1,…,m。Among them, Δy i (k) is the output increment of the i-th system output at time k, ΔL i (k) is the model state increment of the i-th system output at k time, λ i is the forgetting factor, and the value range is 0.9 ~0.99, C i (0)=[0.001,0.001,0.001], P(0)=10^8I, I is the identity matrix, i=1,...,m.
进一步的,所述的模型预测输出YM(k+1)满足公式:Further, the model prediction output Y M (k+1) satisfies the formula:
YM(k+1)=SHlΔL(k)+ΦYM(k)+SHuΔUM(k) (4)Y M (k+1)=SH l ΔL(k)+ΦY M (k)+SH u ΔU M (k) (4)
其中,ΔL(K)是模型状态增量,ΔUM(k)是模型输入状态增量,Among them, ΔL(K) is the model state increment, ΔU M (k) is the model input state increment,
S=diag(S1,…,Sm)Pm×Pm,S=diag(S 1 ,...,S m ) Pm×Pm ,
Φ=diag(Φ1,…,Φm)mP×m,Φ=diag(Φ 1 ,…,Φ m ) mP×m ,
Φi(i=1,…,m)=[1 1 …1]T P×1,Φ i(i=1,...,m) =[1 1 ...1] T P×1 ,
η=1-a2,η=1-a 2 ,
上式中a是Laguerre函数模型的极点,N是Laguerre函数模型的级数,C是Laguerre函数模型的系数矩阵,P是模型预测步长。In the above formula, a is the pole of the Laguerre function model, N is the series of the Laguerre function model, C is the coefficient matrix of the Laguerre function model, and P is the model prediction step size.
进一步的,所述的补偿模型预测输出YP(k+1)满足公式:Further, the compensation model prediction output Y P (k+1) satisfies the formula:
YP(k+1)=YM(k+1)+Hf[Y(k)-YM(k)] (5)Y P (k+1)=Y M (k+1)+H f [Y(k)-Y M (k)] (5)
其中,Hf是反馈增益矩阵,Hf=diag(hf1,…,hfm)Pm×m,hfi(i=1,…,m)=[1 1…1]T P×1。Wherein, H f is the feedback gain matrix, H f =diag(h f1 ,...,h fm ) Pm×m , h fi(i=1,...,m) =[1 1...1] T P×1 .
进一步的,所述的步骤S5利用PID控制算法滚动优化预测输出,具体公式是:Further, the step S5 utilizes the PID control algorithm to optimize the prediction output rolling, and the specific formula is:
J=KIE(k+1)TQE(k+1)+KpΔE(k+1)TQΔE(k+1)+ (6)J=K I E(k+1) T QE(k+1)+K p ΔE(k+1) T QΔE(k+1)+ (6)
KDΔ2E(k+1)TQΔ2E(k+1)+ΔUM(k)TRΔUM(k)K D Δ 2 E(k+1) T QΔ 2 E(k+1)+ΔU M (k) T RΔU M (k)
其中,E(k+1)=Yp(k+1)-Yr(k+1),Among them, E(k+1)= Yp (k+1) -Yr (k+1),
ΔE(k+1)=ΔD(k+1)+SHuΔ2UM(k),ΔE(k+1)=ΔD(k+1)+SH u Δ 2 U M (k),
Δ2E(k+1)=Δ2D(k+1)+SHuΔ3UM(k),Δ 2 E(k+1)=Δ 2 D(k+1)+SH u Δ 3 U M (k),
Δ2Um(k)=(1-q-1)ΔUm(k),Δ 2 U m (k) = (1-q -1 )Δ U m (k),
Δ3Um(k)=(1-q-1)2ΔUm(k),Δ 3 U m (k) = (1-q -1 ) 2 Δ U m (k),
ΔD(k+1)=(1-q-1)D(k+1),ΔD(k+1)=(1-q -1 )D(k+1),
Δ2D(k+1)=(1-q-1)2ΔD(k+1),Δ 2 D(k+1)=(1-q -1 ) 2 ΔD(k+1),
D(k+1)=SHlΔL(k)+ΦY(k)-Yr(k+1),D(k+1)=SH l ΔL(k)+ΦY(k)-Y r (k+1),
上式中Yr(k+1)是参考轨线,q-1是后移算子,Q为误差加权矩阵,R为控制加权矩阵,J是目标函数,KP、KI、KD分别为广义比例项系数、积分项系数和微分项系数。In the above formula, Y r (k+1) is the reference trajectory, q -1 is the backward shift operator, Q is the error weighting matrix, R is the control weighting matrix, J is the objective function, K P , K I , K D are generalized proportional term coefficients, integral term coefficients and differential term coefficients.
本发明方法将控制系统的控制量U(K)以可执行文件的形式加载到微处理器DSP的RAM中,DSP的CAP口捕获单元读取位置信号,经过基于Laguerre函数模型的预测PID控制算法的控制器后得到火电单元机组负荷系统的模型输出,将模型输出与受控系统的实际输出量反馈值进行比较得到偏差,通过其偏差反馈调整控制量,从而控制火电单元机组负荷系统的运行。The method of the present invention loads the control quantity U(K) of the control system into the RAM of the microprocessor DSP in the form of an executable file, and the CAP port capture unit of the DSP reads the position signal, and passes through the predictive PID control algorithm based on the Laguerre function model The model output of the thermal power unit load system is obtained after the controller, and the deviation is obtained by comparing the model output with the actual output feedback value of the controlled system, and the control value is adjusted through the deviation feedback to control the operation of the thermal power unit load system.
采用以上技术手段可以获得以下优势:The following advantages can be obtained by using the above technical means:
本发明将PID控制系统和基于Laguerre函数模型的预测控制相结合,得到一种可应用于多输入多输出系统的新型控制方法,并将该方法引入到火电厂单元机组负荷控制系统中代替原来的传统控制,提供一种新型的控制策略。本发明方法不仅有PID控制的稳态误差小、上升时间短的特性,同时相对于传统预测控制,本发明方法的控制精度高,跟踪速度较快,抗干扰能力强,对于系统的数学模型失配时及外界干扰有更强的适应能力,且具有较好的控制品质。The present invention combines the PID control system with the predictive control based on the Laguerre function model to obtain a new control method applicable to the multi-input multi-output system, and introduces the method into the unit load control system of thermal power plants to replace the original Traditional control provides a new type of control strategy. The method of the present invention not only has the characteristics of small steady-state error and short rise time of PID control, but also has high control precision, fast tracking speed and strong anti-interference ability compared with traditional predictive control. Timing and external interference have stronger adaptability, and have better control quality.
附图说明Description of drawings
图1是基于Laguerre函数模型的预测PID控制方法原理框图。Fig. 1 is a block diagram of the predictive PID control method based on the Laguerre function model.
图2是火电单元机组负荷系统的数学模型简化框图。Figure 2 is a simplified block diagram of the mathematical model of the thermal power unit unit load system.
图3是火电单元机组负荷系统响应曲线图。Figure 3 is the response curve of thermal power unit load system.
图4是扰动时火电单元机组负荷系统响应曲线图。Fig. 4 is the response curve of thermal power unit load system during disturbance.
图5是模型失配时火电单元机组负荷系统响应曲线图。Fig. 5 is the response curve of thermal power unit load system when the model is mismatched.
其中,DMC-PID是指基于动态矩阵控制-PID算法的控制系统,LMPC-PID是指基于Laguerre函数模型的预测PID算法的控制系统。Among them, DMC-PID refers to the control system based on the dynamic matrix control-PID algorithm, and LMPC-PID refers to the control system based on the predictive PID algorithm of the Laguerre function model.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案作进一步说明:Below in conjunction with accompanying drawing, technical scheme of the present invention will be further described:
本发明提出了一种基于Laguerre函数模型的火电单元机组负荷预测PID控制方法,如图1所示,基于Laguerre函数模型预测PID算法的控制系统的控制输出U(k)作用于受控系统,作为受控系统的输入,此外,U(k)还作为模型输入经过Laguerre函数模型得到模型预测输出YM(k+1),受控系统的输出值Y(k)分别用来进行模型参数辨识和模型输出反馈矫正,模型参数辨识和模型输出反馈矫正都是为了进一步优化控制系统,确保控制效果。经过矫正补偿得到新的模型输出值YP(k+1),引入PID控制算法,加入了参考轨线、比例系数、积分系数和微分系数,进行滚动优化,得到新的系统控制输出。本发明通过这样的循环调节,保证火电单元机组在要求范围内正常运作。The present invention proposes a thermal power unit load forecasting PID control method based on the Laguerre function model, as shown in Figure 1, the control output U(k) of the control system based on the Laguerre function model predicting PID algorithm acts on the controlled system, as The input of the controlled system, in addition, U(k) is also used as the model input to obtain the model prediction output Y M (k+1) through the Laguerre function model, and the output value Y(k) of the controlled system is used for model parameter identification and Model output feedback correction, model parameter identification and model output feedback correction are all to further optimize the control system and ensure the control effect. The new model output value Y P (k+1) is obtained through correction and compensation, and the PID control algorithm is introduced, and the reference trajectory, proportional coefficient, integral coefficient and differential coefficient are added, and rolling optimization is performed to obtain a new system control output. The present invention ensures the normal operation of thermal power units within the required range through such cycle regulation.
火电单元机组负荷系统包括控制系统和受控系统,满足数学模型:The thermal power unit load system includes a control system and a controlled system, which satisfy the mathematical model:
其中,yi是第i个系统输出,共有m个系统输出,uj是第j个系统输入,共有n个系统输入,Gij(z-1)是第i个输出对第j个输入的传输函数,i=1,…,m;j=1,…,n。Among them, y i is the output of the i-th system, there are m system outputs in total, u j is the input of the j-th system, there are n system inputs in total, G ij (z -1 ) is the relationship between the i-th output and the j-th input Transfer function, i=1,...,m; j=1,...,n.
下面假设火电单元机组负荷系统是一个m×m多变量系统,进行公示推导。In the following, it is assumed that the thermal power unit load system is an m×m multivariable system, and the public derivation is carried out.
火电单元机组负荷系统的传递函数矩阵为:The transfer function matrix of the thermal power unit load system is:
采用相同结构的Laguerre函数近似模型表示各个通道的传递函数Gij(z-1)(i=1,…,m;j=1,…,m),对于整个多变量系统Laguerre函数近似的增量状态空间模型为:The Laguerre function approximation model of the same structure is used to represent the transfer function G ij (z -1 ) (i=1,...,m; j=1,...,m) of each channel, and the increment of the Laguerre function approximation for the entire multivariable system The state space model is:
其中ΔL(k)是模型状态增量,ΔU(k)为系统输入增量,ΔYM(k)为模型输出增量,Where ΔL(k) is the model state increment, ΔU(k) is the system input increment, ΔY M (k) is the model output increment,
Ai(i=1,…m)=diag(A1,…,Am)mN×mN,A i(i=1,...m) = diag(A 1 ,...,A m ) mN×mN ,
C=[c1,c2,c3,...,cN]T,C=[c 1 ,c 2 ,c 3 ,...,c N ] T ,
η=1-a2,η=1-a 2 ,
上式中a是Laguerre函数模型的极点,N是Laguerre函数模型的级数,C是Laguerre函数模型的系数矩阵。In the above formula, a is the pole of the Laguerre function model, N is the series of the Laguerre function model, and C is the coefficient matrix of the Laguerre function model.
Laguerre函数模型的模型输出YM(k+1)满足以下公式:The model output Y M (k+1) of the Laguerre function model satisfies the following formula:
YM(k+1)=SHlΔL(k)+ΦYM(k)+SHuΔUM(k) (10)Y M (k+1)=SH l ΔL(k)+ΦY M (k)+SH u ΔU M (k) (10)
其中S=diag(S1,…,Sm)Pm×Pm,where S=diag(S 1 ,...,S m ) Pm×Pm ,
Φ=diag(Φ1,…,Φm)mP×m,Φ=diag(Φ 1 ,…,Φ m ) mP×m ,
Φi(i=1,…,m)=[1 1…1]T P×1,Φ i(i=1,...,m) =[1 1...1] T P×1 ,
上式中ΔUM(k)是模型输入状态增量,P是模型预测步长,M是模型控制时域。In the above formula, ΔU M (k) is the model input state increment, P is the model prediction step size, and M is the model control time domain.
利用受控系统的输出Y(k)反馈矫正模型预测输出,补偿后的Laguerre函数模型输出满足以下公式:Using the output Y(k) feedback correction model of the controlled system to predict the output, the output of the compensated Laguerre function model satisfies the following formula:
YP(k+1)=YM(k+1)+Hf[Y(k)-YM(k)] (11)Y P (k+1)=Y M (k+1)+H f [Y(k)-Y M (k)] (11)
其中,Hf是反馈增益矩阵,Hf=diag(hf1,…,hfm)Pm×m,hfi(i=1,…,m)=[1 1…1]T P×1。Wherein, H f is the feedback gain matrix, H f =diag(h f1 ,...,h fm ) Pm×m , h fi(i=1,...,m) =[1 1...1] T P×1 .
将式(11)整理化简后可得:After sorting and simplifying the formula (11), we can get:
YP(k+1)=SHlΔL(k)+ΦY(k)+SHuΔUM(k) (12)Y P (k+1)=SH l ΔL(k)+ΦY(k)+SH u ΔU M (k) (12)
在多变量控制系统中把PID控制和Laguerre函数模型预测控制结合起来,采用加入比例、积分,微分的新的公式:In the multivariable control system, PID control and Laguerre function model predictive control are combined, and a new formula with proportional, integral and differential is adopted:
J=KIE(k+1)TQE(k+1)+KpΔE(k+1)TQΔE(k+1)+ (13)KDΔ2E(k+1)TQΔ2E(k+1)+ΔUM(k)TRΔUM(k)J=K I E(k+1) T QE(k+1)+K p ΔE(k+1) T QΔE(k+1)+ (13)K D Δ 2 E(k+1) T QΔ 2 E(k+1)+ΔU M (k) T RΔU M (k)
其中,E(k+1)=Yp(k+1)-Yr(k+1),Yr(k+1)是参考轨线,Q为误差加权矩阵,R为控制加权矩阵,J是目标函数,KP、KI、KD分别为广义比例项系数、积分项系数和微分项系数。Among them, E(k+1)=Y p (k+1)-Y r (k+1), Y r (k+1) is the reference trajectory, Q is the error weighting matrix, R is the control weighting matrix, J is the objective function, K P , K I , K D are the coefficients of generalized proportional term, integral term and differential term respectively.
将E(k+1)整理化简可得:After finishing and simplifying E(k+1), we can get:
E(k+1)=YP(k+1)-Yr(k+1)E(k+1)=Y P (k+1)-Y r (k+1)
=SHlΔL(k)+ΦY(k)+SHuΔUM(k)-Yr(k+1) (14)=SH l ΔL(k)+ΦY(k)+SH u ΔU M (k)-Y r (k+1) (14)
=D(k+1)+SHuΔUM(k)=D(k+1)+SH u ΔU M (k)
其中,D(k+1)=SHlΔL(k)+ΦY(k)-Yr(k+1)。Wherein, D(k+1)=SH l ΔL(k)+ΦY(k)-Y r (k+1).
参考轨线满足以下公式:reference trajectory satisfy the following formula:
其中,i=(1,…,m),j=(1,…,P),αi为柔化因子,ri为设定值。Wherein, i=(1,...,m), j=(1,...,P), α i is a softening factor, and ri is a setting value.
根据递推原理,由式(14)可以得到:According to the principle of recursion, it can be obtained from formula (14):
ΔE(k+1)=ΔD(k+1)+SHuΔ2UM(k) (16)ΔE(k+1)=ΔD(k+1)+SH u Δ 2 U M (k) (16)
Δ2E(k+1)=Δ2D(k+1)+SHuΔ3UM(k) (17)Δ 2 E(k+1)=Δ 2 D(k+1)+SH u Δ 3 U M (k) (17)
引入后移算子q-1,则有:Introducing the backward shift operator q -1 , then:
Δ2Um(k)=(1-q-1)ΔUm(k) (18)Δ 2 U m (k) = (1-q -1 )Δ U m (k) (18)
Δ3Um(k)=(1-q-1)2ΔUm(k) (19)Δ 3 U m (k) = (1-q -1 ) 2 Δ U m (k) (19)
ΔD(k+1)=(1-q-1)D(k+1) (20)ΔD(k+1)=(1-q -1 )D(k+1) (20)
Δ2D(k+1)=(1-q-1)2ΔD(k+1) (21)Δ 2 D(k+1)=(1-q -1 ) 2 ΔD(k+1) (21)
令由式(13)可得:make From formula (13), we can get:
将公式(22)整理化简可得:Simplify formula (22) to get:
[KI+(1-q-1)KP+(1-q-1)2KD]·[Hu TSTQD(k+1)+Hu TSTQSHuΔUm(k)]+RΔUm(k)=0(23)[K I +(1-q -1 )K P +(1-q -1 ) 2 K D ]·[H u T S T QD(k+1)+H u T S T QSH u ΔU m (k )]+RΔU m (k)=0(23)
令W=KI+(1-q-1)Kp+(1-q-1)2KD,则系统最优控制量增量可表示为:Let W=K I +(1-q -1 )K p +(1-q -1 ) 2 K D , then the optimal control quantity increment of the system Can be expressed as:
ΔU* m(k)=-[WHu TSTQSHu+R]-1·WHu TSTQD(k+1) (24)ΔU * m (k)=-[WH u T S T QSH u +R] -1 WH u T S T QD(k+1) (24)
采用滚动优化手段,取ΔUm(k)的首元素作为系统的当前的控制增量,可以得到基于Laguerre函数模型的预测PID控制算法的控制输出U(k)满足以下公式:Using the rolling optimization method, taking the first element of ΔU m (k) as the current control increment of the system, the control output U(k) of the predictive PID control algorithm based on the Laguerre function model can be obtained to satisfy the following formula:
其中,K=diag(K1,…,Km)m×mM,Ki(i=1,...,m)=[1 0…0]1×M。Wherein, K=diag(K 1 ,...,K m ) m×mM , K i(i=1,...,m) =[1 0...0] 1×M .
为了验证本发明方法的控制效果,本实施例进行了仿真实验,并将本发明方法与动态矩阵控制-PID(以下简称DMC-PID)算法进行对比。需要指出,本仿真实验只是为了更好的解释本发明方法,并不限制本发明方法内容。In order to verify the control effect of the method of the present invention, a simulation experiment is carried out in this embodiment, and the method of the present invention is compared with the dynamic matrix control-PID (hereinafter referred to as DMC-PID) algorithm. It should be pointed out that this simulation experiment is only for better explaining the method of the present invention, and does not limit the content of the method of the present invention.
如图2所示的2×2火电单元机组负荷系统,包括锅炉、汽轮机、发电机、控制系统等若干个部分,数学模型如下:The 2×2 thermal power unit load system shown in Figure 2 includes several parts such as boilers, steam turbines, generators, and control systems. The mathematical model is as follows:
其中, u1是汽机调门指令,u2是锅炉燃烧指令,Ne是实发功率,Pt是主蒸汽压力,u1和u2是系统的两个输入,Ne和Pt是系统的两个输出。in, u 1 is the turbine door adjustment command, u 2 is the boiler combustion command, Ne is the actual power, P t is the main steam pressure, u 1 and u 2 are the two inputs of the system, Ne and P t are the two output.
Laguerre函数预测模型的级数N=3,极点a=0.8,采样时间T=10s,柔化因子αi=0.92,预测步长P=10,控制时域M=1,遗忘因子λi=0.99,设定值 仿真时长为8000s。Laguerre function prediction model series N=3, pole a=0.8, sampling time T=10s, softening factor α i =0.92, prediction step size P=10, control time domain M=1, forgetting factor λ i =0.99 , setting value The simulation time is 8000s.
如图3所示,两种控制算法的系统响应曲线都可以平稳达到设定值,功率和压力输出都没有出现震荡,也没有超调量,可见两种算法都满足控制系统的性能要求,但是基于Laguerre函数模型预测PID控制算法的火电单元机组负荷控制系数响应曲线的调节时间比基于DMC-PID算法的更短,说明本发明方法可以更快速的实现系统控制。As shown in Figure 3, the system response curves of the two control algorithms can reach the set value smoothly, and the output of power and pressure has no oscillation and no overshoot. It can be seen that both algorithms meet the performance requirements of the control system, but The adjustment time of the thermal power unit load control coefficient response curve based on the Laguerre function model prediction PID control algorithm is shorter than that based on the DMC-PID algorithm, indicating that the method of the present invention can realize system control more quickly.
为了进一步测试两种控制算法的控制效果,在仿真过程3000s时,突然改变了功率的设定值,此外,在6000s时,加入幅值为0.01的阶跃扰动。如图4所示,当功率输出的设定值改变时,基于Laguerre函数模型预测PID控制算法的火电单元机组负荷控制系数的功率输出曲线依然又快又稳的达到设定值,蒸汽压响应曲线没有出现较大的变化,说明本发明方法可以起到一定的解耦作用,具有优良的跟踪性能。加入扰动后,基于DMC-PID算法的控制系统出现了震荡,而基于Laguerre函数模型预测PID控制算法的系统在解决扰动时没有震荡,控制平稳,说明本发明方法具有较好的抗干扰能力。In order to further test the control effects of the two control algorithms, the set value of the power was suddenly changed at 3000s of the simulation process, and a step disturbance with an amplitude of 0.01 was added at 6000s. As shown in Figure 4, when the set value of power output is changed, the power output curve of the thermal power unit load control coefficient based on the Laguerre function model prediction PID control algorithm still reaches the set value quickly and steadily, and the steam pressure response curve There is no major change, which shows that the method of the present invention can play a certain role in decoupling and has excellent tracking performance. After the disturbance is added, the control system based on the DMC-PID algorithm oscillates, while the system based on the Laguerre function model prediction PID control algorithm does not oscillate when solving the disturbance, and the control is stable, indicating that the method of the present invention has better anti-interference ability.
当模型发生较大失配时,不改变其参数设置,比较模型失配前后的响应曲线,如图5所示,模型失配时,本发明方法的输出曲线只出现微小的超调量,依然有较好的控制效果,进一步验证本发明方法的有效性。When a large mismatch occurs in the model, its parameter settings are not changed, and the response curves before and after the model mismatch are compared, as shown in Figure 5, when the model is mismatched, only a slight overshoot occurs in the output curve of the method of the present invention, still Better control effect is arranged, and the validity of the method of the present invention is further verified.
上面结合附图对本发明的实施方式作了详细地说明,但是本发明并不局限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments, within the knowledge of those of ordinary skill in the art, you can also Make various changes.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810843019.0A CN109062030A (en) | 2018-07-27 | 2018-07-27 | Thermal power unit plant load prediction PID control method based on laguerre function model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810843019.0A CN109062030A (en) | 2018-07-27 | 2018-07-27 | Thermal power unit plant load prediction PID control method based on laguerre function model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109062030A true CN109062030A (en) | 2018-12-21 |
Family
ID=64836711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810843019.0A Pending CN109062030A (en) | 2018-07-27 | 2018-07-27 | Thermal power unit plant load prediction PID control method based on laguerre function model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109062030A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110488601A (en) * | 2019-09-26 | 2019-11-22 | 山东和信智能科技有限公司 | Fired power generating unit load control system optimization system and method based on Real-time Monitoring Data |
CN110515304A (en) * | 2019-09-25 | 2019-11-29 | 南京信息工程大学 | PID predictive control method for superheated steam temperature based on ARX-Laguerre function model |
CN111520701A (en) * | 2020-04-28 | 2020-08-11 | 南京信息工程大学 | A CFB Boiler Main Steam Pressure Control Method Based on Improved Predictive Control |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104154635A (en) * | 2014-08-14 | 2014-11-19 | 河海大学常州校区 | Variable air volume room temperature control method based on fuzzy PID and prediction control algorithm |
CN105700357A (en) * | 2016-02-25 | 2016-06-22 | 南京信息工程大学 | Boiler combustion system control method based on multivariable PID-PFC |
CN106483870A (en) * | 2016-09-30 | 2017-03-08 | 国电科学技术研究院 | A kind of control method for coordinating of the fired power generating unit with bounded control output |
CN107037842A (en) * | 2017-05-15 | 2017-08-11 | 济南大学 | A Method of Temperature Switching Control of Enthalpy Difference Laboratory Based on Fuzzy Control and PID Control |
JP2017153224A (en) * | 2016-02-24 | 2017-08-31 | 株式会社アドテックス | Motor control device and motor control method |
-
2018
- 2018-07-27 CN CN201810843019.0A patent/CN109062030A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104154635A (en) * | 2014-08-14 | 2014-11-19 | 河海大学常州校区 | Variable air volume room temperature control method based on fuzzy PID and prediction control algorithm |
JP2017153224A (en) * | 2016-02-24 | 2017-08-31 | 株式会社アドテックス | Motor control device and motor control method |
CN105700357A (en) * | 2016-02-25 | 2016-06-22 | 南京信息工程大学 | Boiler combustion system control method based on multivariable PID-PFC |
CN106483870A (en) * | 2016-09-30 | 2017-03-08 | 国电科学技术研究院 | A kind of control method for coordinating of the fired power generating unit with bounded control output |
CN107037842A (en) * | 2017-05-15 | 2017-08-11 | 济南大学 | A Method of Temperature Switching Control of Enthalpy Difference Laboratory Based on Fuzzy Control and PID Control |
Non-Patent Citations (5)
Title |
---|
乔东东: "基于Laguerre函数模型的改进型预测控制及应用研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
郭 伟,张鹏程,李 涛,乔东东: "多变量Laguerre函数分数阶PID预测控制及其在火电机组负荷控制中的应用", 《中国科技论文》 * |
郭伟,乔东东,李涛,李明家: "CFB 锅炉床温Laguerre 函数模型分数阶PID 预测控制", 《热力发电》 * |
雎 刚, 韦红旗, 陈绍炳, 徐治皋: "单元机组负荷多变量模型预测控制", 《中国电机工程学报》 * |
龚海涛,何健: "基于预测函数PID 控制的混凝投药控制系统", 《自动化与仪表》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110515304A (en) * | 2019-09-25 | 2019-11-29 | 南京信息工程大学 | PID predictive control method for superheated steam temperature based on ARX-Laguerre function model |
CN110488601A (en) * | 2019-09-26 | 2019-11-22 | 山东和信智能科技有限公司 | Fired power generating unit load control system optimization system and method based on Real-time Monitoring Data |
CN111520701A (en) * | 2020-04-28 | 2020-08-11 | 南京信息工程大学 | A CFB Boiler Main Steam Pressure Control Method Based on Improved Predictive Control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102494336B (en) | Combustion process multivariable control method for CFBB (circulating fluidized bed boiler) | |
CN115542739B (en) | Pre-estimated active disturbance rejection control system, design method thereof and parameter setting method | |
CN104102134B (en) | A kind of method realizing reheat steam temperature multivariate predictive coordinated control by performance indications | |
Ma et al. | Intelligent coordinated controller design for a 600 MW supercritical boiler unit based on expanded-structure neural network inverse models | |
CN110579968A (en) | Prediction control strategy for ultra-supercritical unit depth peak regulation coordination system | |
CN109062030A (en) | Thermal power unit plant load prediction PID control method based on laguerre function model | |
CN107908106B (en) | Self-decreasing order multi-loop centralized predictive control system for reheat steam temperature of double reheat unit | |
CN107270283B (en) | A Multivariable Constraint Predictive Control Method Based on Circulating Fluidized Bed Unit | |
CN105700357B (en) | Method of Boiler Combustion Control System based on multivariable PID-PFC | |
Ren et al. | Feedforward feedback pitch control for wind turbine based on feedback linearization with sliding mode and fuzzy PID algorithm | |
CN113282043A (en) | Multivariable state space model-based ultra-supercritical unit coordination control method | |
CN110515304A (en) | PID predictive control method for superheated steam temperature based on ARX-Laguerre function model | |
Lian | Main steam temperature control based on variable universe fuzzy dynamic matrix control | |
CN113835342B (en) | Disturbance rejection predictive control method for overheat steam temperature system | |
CN108803342B (en) | Unit unit load quick response prediction control method | |
CN106287659A (en) | Reheat steam temperature degree control method and device | |
CN216281315U (en) | Main steam temperature optimization control device of double-slag-chamber coal-fired unit | |
CN110631003B (en) | Reheated steam temperature adjusting method based on hierarchical scheduling multi-model predictive control | |
Xiao et al. | Superheated steam temperature control research of the improved implicit generalized predictive algorithm based on the soft coefficient matrix | |
CN212565736U (en) | A cascade control system for secondary reheat main steam temperature | |
Feng et al. | Improved linear active disturbance rejection control strategy based on RBF neural network for main steam temperature of thermal power boiler | |
Hlava et al. | Model predictive control of power plant superheater—Comparison of multi model and nonlinear approaches | |
CN107045287A (en) | Coordinated Control Systems and control method based on Prediction and Control Technology | |
Tu et al. | State variable-fuzzy prediction control strategy for superheated steam temperature of thermal power units | |
CN107065538B (en) | Fuzzy Tracking Control Method of Drum Boiler-Turbine Unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 210032 No. 219 Ning six road, Jiangbei new district, Nanjing, Jiangsu Applicant after: Nanjing University of Information Science and Technology Address before: 211500 Yuting Square, 59 Wangqiao Road, Liuhe District, Nanjing City, Jiangsu Province Applicant before: Nanjing University of Information Science and Technology |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181221 |