CN109046407A - 一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用 - Google Patents

一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用 Download PDF

Info

Publication number
CN109046407A
CN109046407A CN201810928265.6A CN201810928265A CN109046407A CN 109046407 A CN109046407 A CN 109046407A CN 201810928265 A CN201810928265 A CN 201810928265A CN 109046407 A CN109046407 A CN 109046407A
Authority
CN
China
Prior art keywords
tio
ore
crystal phase
preparation
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810928265.6A
Other languages
English (en)
Other versions
CN109046407B (zh
Inventor
刘世权
张力元
陈�峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810928265.6A priority Critical patent/CN109046407B/zh
Publication of CN109046407A publication Critical patent/CN109046407A/zh
Application granted granted Critical
Publication of CN109046407B publication Critical patent/CN109046407B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0292Phosphates of compounds other than those provided for in B01J20/048
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用,该多孔材料由0‑30mol%MgO,23‑45mol%CuO,15‑30mol%TiO2和17~30mol%P2O5制成,制备时,先将各原料熔融,然后经急冷成型或水淬、热处理、酸蚀等步骤得到。该方法原料价格便宜,操作简单、易于控制、流程短,适合工业化应用推广和大规模生产,为多孔TiO2材料制备技术提供了全新的思路。所得多孔材料含有锐钛矿型TiO2晶相,比表面积高、尺寸可调、与P25相比比重大,易于使用且使用后便于回收,同时具有吸附、离子交换和光催化多重功能,可以应用于多种领域。

Description

一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品 和应用
技术领域
本发明涉及一种含锐钛矿型TiO2晶相(anatase TiO2)的多孔材料的制备方法及所得产品和应用,属于多孔材料技术领域。
背景技术
锐钛矿型二氧化钛具有优异的光催化能力,可用做光解水产氢、有机废水处理等的催化材料。多孔锐钛矿型TiO2材料可提高TiO2的催化效率,其合成方法从成孔机理上分为溶胶-凝胶法、模板法、醇解法、水热法等,这些方法实现大规模生产均存在一定难度。
最著名的光催化剂是德国产的P25,其平均粒径约为25nm左右,含有70~90%的锐钛矿型TiO2晶相,其余为金红石相,该催化剂虽然光催化效果强,但是为纳米级,很容易团聚,使用回收不便。用于制备锐钛矿型二氧化钛光催化剂或多孔TiO2的原料的主要原料包括TiCl4、钛酸四丁酯、异丙醇钛等。此外,制备过程中常使用有机溶剂和模板剂,这些原料成本都较高,且上述钛源且在空气中易水解,储存和使用控制困难。著名的P25就是用TiCl4与空气及氢气混合,然后在1000~2400oC高温下燃烧合成的纳米粉末,表面积约为50m2/g。由于工艺及原料成本的原因,TiO2光催化剂的价格较高。因此,已有一些探讨使用工业硫酸氧钛或偏钛酸为原料制备TiO2光催化剂的报道。
发明内容
针对目前二氧化钛光催化剂难以规模化生产、生产控制困难及成本高的缺陷,本发明提供了一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品,该方法基于多相固体经选择性酸腐蚀合并原位化学反应原理,制得了含锐钛矿型TiO2晶相的多孔材料,原料廉价易得,操作简单易控,便于规模化生产,所得材料具有较高的比表面积,比重大,使用方便。
本发明具体技术方案如下:
一种含锐钛矿型TiO2晶相的多孔材料的制备方法,该方法包括以下步骤:
(1)按照MgO 0~30mol%、CuO 23~45mol%、TiO2 15~30mol%、P2O517~30mol%的组分含量称取各原料;
(2)将各原料混合均匀,得混合料,将混合料升温至熔融,所得熔融液在模具上急冷成型或水淬;
(3)将急冷成型的样品冷却,或将水淬的样品干燥,备用;
(4)将步骤(3)的样品先在520-570℃下保温,再在665-704℃下保温;
(5)将步骤(4)的样品浸在盐酸中进行腐蚀,得到含锐钛矿型TiO2晶相的多孔材料。
进一步的,步骤(1)中,提供MgO、CuO、TiO2 组分的原料为各氧化物,即氧化镁、氧化铜、二氧化钛,提供P2O5组分的原料可以直接是氧化物P2O5,也可以是磷酸溶液。配方中,各组分的总摩尔量为100%。
进一步的,步骤(2)中,当采用磷酸溶液引入P2O5时,先将其他固体粉状原料混合均匀,再加入磷酸溶液和水混合均匀,混合均匀后加热处理,然后粉碎,得混合料;当采用P2O5粉料引入P2O5时,直接将各原料混合均匀即可得混合料。其中,加热处理时,在180-250℃处理20-25小时。
进一步的,步骤(2)中,混合料按照一定的升温程序进行升温熔融,升温程序为:先以5-10℃/min的升温速率从室温升到700℃,然后以3-5℃/min的升温速率从700℃升到1200-1350℃,并在1200-1350℃保温1-2h使混合料完全熔融。
进一步的,步骤(3)中,将急冷成型的样品冷却至520-570℃,直接在此温度下进行第一段保温处理,或者将急冷成型的样品直接冷却至室温,然后再升至520-570℃进行第一段保温处理。
进一步的,步骤(4)中,样品在520-570℃下保温1-2小时,再在665-704℃下保温2-3小时。
进一步的,步骤(5)中,盐酸的浓度为0.5-1.5mol/L;盐酸腐蚀时优选在高温下进行,腐蚀温度为70-90℃,一般腐蚀时间为24-72小时。
本发明含锐钛矿型TiO2晶相的多孔材料形成机理为:首先,各原料组分在高温熔融状态下充分反应,经急冷成型或水淬固化为轻微结晶或无定型态的不透明黑色块体或颗粒;该块体或颗粒进行两段式保温热处理,以促进材料的成核和晶体生长,从而再结晶析出磷酸钛铜、焦磷酸铜、磷酸铜、氧化铜、磷酸铜镁等晶相;含这些晶相的块体或颗粒在热盐酸溶液中处理,晶相受腐蚀速度和受腐蚀程度不同,在腐蚀的同时还发生有复杂的原位化学反应,最终形成含有钛氢磷酸盐、锐钛矿等晶相的多孔材料。
进一步的,本发明所得多孔材料为块状或颗粒状,其中采用急冷成型的产品形貌为块状,水淬产品的形貌为颗粒状。SEM测试表明,微观上该多孔材料内部由纳米片构成,纳米片厚度约为13~70nm,XRD分析结果显示该多孔材料具有锐钛矿型TiO2晶相,或者还具有其它晶相,例如钛氢磷酸盐晶相和少量的未被腐蚀掉的磷酸钛铜(CuTi2(PO4)3);根据组分配比的不同,锐钛矿型TiO2晶相有时是主晶相,有时是非主晶相,这可以从各晶相衍射峰的相对强弱加已判断。
进一步的,本发明多孔材料的多孔来源主要有两部分:纳米片间空隙构成的孔以及在纳米片上存在的孔。这些孔是在酸蚀时晶相发生选择性溶出、并重新生成新物相的同时产生的。
本发明多孔材料制备简单、原料易得,具有较高的比表面积,孔径在介孔至大孔范围分布,具有吸附、离子交换和光催化多重功能,比重大、尺寸可调、易于分离和回收,所用原料都为常用工业原料,成本低。因此,上述方法制得的含锐钛相TiO2的多孔材料也在本发明保护范围之内。
进一步的,本发明还提供了上述含锐钛矿型TiO2晶相的多孔材料作为吸附剂及光催化剂的应用。
本发明先通过熔融、热处理、酸蚀等步骤制得含锐钛矿型TiO2晶相的多孔材料,该方法原料价格便宜,操作简单、易于控制、流程短,适合工业化应用推广和大规模生产,为多孔TiO2材料制备技术提供了全新的思路。所得多孔材料具有锐钛矿型TiO2晶相,比表面积高、尺寸可调、与P25相比比重大,易于使用且使用后便于回收,同时具有吸附、离子交换和光催化多重功能,可以应用于多种领域。
附图说明
图1为实施例1-4所得样品的XRD衍射图谱。
图2 为实施例1所得样品的SEM图片。
图3为实施例2所得样品的N2吸附等温曲线。
图4为实施例2所得样品的BJH孔径分布曲线。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明,下述说明仅是示例性的,并不对其内容进行限制。
采用氮气等温吸附仪 (Autosorb iQ-C) 测定样品N2等温吸附曲线,根据BET模型计算比表面积,根据BJH模型得孔径分布曲线,并由曲线峰值点数据确定孔径,孔容由N2吸附曲线相对压力最大处的吸附量确定。
实施例1
1、按照CuO40%、TiO230%、P2O530%的摩尔组成选择原料,CuO、TiO2的原料为氧化物本身,P2O5的原料为磷酸溶液(85wt%)。
2、将氧化铜和氧化钛粉状原料混合均匀,再加入磷酸溶液和适量水,混合均匀,在200℃下加热24小时,粉碎备用,得混合料。
3、将步骤2的混合料放入坩埚中,以10℃/min的升温速率从室温升到700℃,然后以5℃/min的升温速率从700℃升到1250℃,并在1250℃保温1h,使混合料完全熔融,将熔融态的样品倒出到模具上急冷成型得块状样品,块状样品冷却至室温备用。
4、将块状样品以5℃/min的升温速率升至540℃,并保温1h,然后以5℃/min的升温速率由540℃升至682℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡24h,取出,所得产品即为含锐钛矿型TiO2晶相的多孔材料。
对所得产品进行XRD分析,如图1所示,从图中可以得出:产品中含有锐钛矿型TiO2晶相和钛氢磷酸盐相Ti2O3(H2PO4)2·2H2O,还有少量未溶的磷酸钛铜(CuTi2(PO4)3)相。
对产品进行SEM分析,如图2所示,从图中可以得出:产品由部分有孔的纳米片构成,片层之间存在大孔。
对产品进行N2等温吸附分析,产品的BET表面积为42m2/g,孔容为0.08cm3/g,N2吸附测得的主孔径为2.3nm和5.6nm。
实施例2
1、按照CuO45%、TiO225%、P2O530%的摩尔组成选择原料,CuO、TiO2的原料为氧化物本身,P2O5的原料为磷酸溶液(85wt%)。
2、同实施例1。
3、同实施例1。
4、将样品以5℃/min的升温速率升至532℃,并保温1h,然后以5℃/min的升温速率由530℃升至665℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡24h,取出,得到含锐钛矿型TiO2晶相的多孔材料。
经XRD分析,主晶相为钛氢磷酸盐相Ti2O3(H2PO4)2·2H2O和锐钛矿型TiO2晶相,还有少量未溶的磷酸钛铜(CuTi2(PO4)3)相。
产品的N2吸附等温曲线和BJH孔径分布曲线如图3和4所示,所得产品的BET表面积为69m2/g,孔容为0.17cm3/g,主孔径为2.3nm和6.6nm。
实施例3
1、按照MgO15%、CuO40%、TiO215%、P2O530%的摩尔组成选择原料,MgO、CuO、TiO2的原料为氧化物本身,P2O5的原料为磷酸溶液(85wt%)。
2、将氧化镁、氧化铜和氧化钛粉状原料混合均匀,再加入磷酸溶液和适量水,混合均匀,在200℃下加热24小时,粉碎备用,得混合料。
3、同实施例1。
4、将样品以5℃/min的升温速率升至530℃,并保温1h,然后以5℃/min的升温速率由530℃升至677℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡24h,取出,得到含锐钛矿型TiO2晶相的多孔材料。
经XRD分析,产品主晶相为钛氢磷酸盐相Ti2O3(H2PO4)2·2H2O,次晶相为锐钛矿型TiO2晶相,还有少量未溶的磷酸钛铜(CuTi2(PO4)3)相;经N2等温吸附分析,产品的BET表面积为98m2/g,孔容为0.55cm3/g,N2吸附测得的主孔径为2.3nm和30.3nm。
实施例5
1、按照MgO29.4%、CuO23.5%、TiO229.4%、P2O517.7%的摩尔组成选择原料,MgO、CuO、TiO2、P2O5的原料均为氧化物本身。
2、将上述各原料混合均匀,得混合料,备用。
3、将配合料放入坩埚中,以10℃/min的升温速率从室温升到700℃,然后以5℃/min的升温速率从700℃升到1250℃,并在1250℃保温1h,使混合料完全熔融,然后将熔融态的样品倒入水中水淬。
4、将水淬的样品干燥,然后以5℃/min的升温速率升至540℃,并保温1h,然后以5℃/min的升温速率由540℃升至685℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡72h,取出,得到含锐钛矿型TiO2晶相的多孔材料。
所得产品形貌为颗粒状。经XRD分析,所得产品含锐钛矿型TiO2晶相,还含有钛氢磷酸盐相Ti2O3(H2PO4)2·2H2O和非锐钛矿型TiO2晶相,还有未溶的磷酸钛铜(CuTi2(PO4)3)相;经N2等温吸附分析,样品的表面积为12.4m2/g,孔容为0.05cm3/g,孔径在2~30nm范围内分布较宽,测得的主孔径为5nm。
对比例1
1、按照CuO60%、TiO210%、P2O530%的摩尔组成选择原料,CuO、TiO2的原料为氧化物本身,P2O5的原料为磷酸溶液(85wt%)。
2、同实施例1。
3、同实施例1。
4、将样品以5℃/min的升温速率升至464℃,并保温1h,然后以5℃/min的升温速率由510℃升至663℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡24h,取出,得到多孔材料。
经XRD分析,所得产品仅有少量晶相为钛氢磷酸盐相Ti2O3(H2PO4)2·2H2O和α-Ti(HPO4)2·H2O,不含锐钛矿型TiO2晶相。由此可以看出,原料的含量对锐钛矿型TiO2晶相的形成有较大影响。
对比例2
1、按照CuO50%、TiO220%、P2O530%的摩尔组成选择原料,CuO、TiO2的原料为氧化物本身,P2O5的原料为磷酸溶液(85wt%)。
2、同实施例1。
3、同实施例1。
4、将样品以5℃/min的升温速率升至525℃,并保温1h,然后以5℃/min的升温速率由520℃升至648℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡6-24h或室温下1mol/L的盐酸中处理24h,结果所得产品中均不含锐钛矿型TiO2晶相。
对比例3
按照ZnO15%、CuO40%、TiO215%、P2O530%的摩尔组成选择原料,ZnO、CuO、TiO2的原料为氧化物本身,P2O5的原料为磷酸溶液(85wt%)。
2、同实施例1。
3、同实施例1。
4、将样品以5℃/min的升温速率升至470℃,并保温1h,然后以5℃/min的升温速率由518℃升至646℃,保温2h。保温结束后样品随炉冷却至室温。
5、将步骤4得到的样品在80℃的1mol/L的盐酸中浸泡24h,取出,得到多孔材料。
经XRD分析,产品主晶相为钛氢磷酸盐相Ti2O3(H2PO4)2·2H2O,不含锐钛矿型TiO2晶相。由此可以看出,原料的组成对锐钛矿型TiO2晶相的形成有较大影响。
应用例
为了验证本发明所得含锐钛矿型TiO2晶相的多孔材料的性能,进行以下吸附及光催化实验:
采用分光光度计在波长665 nm处测定多孔材料吸附或光催化亚甲基蓝前后溶液中亚甲基蓝的吸光度,根据标准曲线计算溶液中亚甲基蓝的浓度。
静态实验:
取50mg实施例2和对比例1制备的产品,分别将其置于100ml浓度为5mg/L的亚甲基蓝溶液中,以产品加入时的时间为0h计,先在黑暗条件下、不搅拌吸附9h,然后在紫外灯(8W)照射条件下、不搅拌进行光催化10小时降解溶液中的亚甲基蓝。样品对亚甲基蓝溶液中亚甲基蓝的光催化降解效率按公式D=(Ce−Cf)/Ce×100% 计算。式中,D为光催化降解效率,Ce为溶液黑暗条件下吸附9h时的浓度,Cf为溶液光催化10h时的浓度。
结果显示,在静止情况下,实施例2的样品在紫外光下光催化10小时的光催化降解效率为6.5%,而对比例1的样品无光催化降解反应。
动态实验:
取50mg实施例2制备的产品和市售p25,分别将其置于100ml浓度为5mg/L的亚甲基蓝溶液中,以产品加入时的时间为0h计,先在黑暗条件下、搅拌吸附2h,然后在紫外灯(8W)照射条件下、搅拌进行光催化3小时降解溶液中的亚甲基蓝。样品对亚甲基蓝溶液中亚甲基蓝的吸附效率,按公式At=(C0−Ct)/C0×100%计算。式中,At为在时间为t时的吸附效率,C0为原始溶液的浓度,Ct为溶液在时间为t时的浓度。样品对亚甲基蓝溶液中亚甲基蓝的光催化降解效率按公式D=(Ce−Cf)/Ce×100% 计算。式中,D为光催化降解效率,Ce为溶液黑暗条件下吸附2h时的浓度,Cf为溶液光催化3h时的浓度。吸附及光催化的总效率按公式Σ=((C0−Cf)/C0×100%计算。
结果显示,在搅拌情况下,实施例2的样品2小时吸附率达44%,在紫外光下光催化3小时的光催化降解效率为40%;吸附及光催化的总效率为67%。而同等条件下,P25的吸附率为33%,光催化降解效率为58%,吸附及光催化的总效率为73%,略高于实施例2的样品。

Claims (9)

1.一种含锐钛矿型TiO2晶相的多孔材料的制备方法,其特征是包括以下步骤:
(1)按照MgO 0~30mol%、CuO 23~45mol%、TiO2 15~30mol%、P2O517~30mol%的组分含量称取各原料;
(2)将各原料混合均匀,得混合料,将混合料升温至熔融,所得熔融液在模具上急冷成型或水淬;
(3)将急冷成型的样品冷却,或将水淬的样品干燥,备用;
(4)将步骤(3)的样品先在530-570℃下进行第一段保温,再在665-704℃下进行第二段保温;
(5)将步骤(4)的样品浸在盐酸中进行腐蚀,得到含锐钛矿型TiO2晶相的多孔材料。
2.根据权利要求1所述的制备方法,其特征是:MgO、CuO、TiO2 组分由各自的氧化物引入,P2O5组分由其氧化物P2O5或磷酸溶液引入。
3.根据权利要求2所述的制备方法,其特征是:步骤(2)中,当采用磷酸溶液引入P2O5时,先将其他固体粉状原料混合均匀,再加入磷酸溶液和水混合均匀,混合均匀后加热处理,然后粉碎,得混合料;当采用P2O5粉料引入P2O5时,直接将各原料混合均匀即可得混合料;优选的,加热处理时,在180-250℃处理20-25小时。
4.根据权利要求1所述的制备方法,其特征是:步骤(2)中,熔融时,先以5-10℃/min的升温速率从室温升到700℃,然后以3-5℃/min的升温速率从700℃升到1200-1350℃,并在1200-1350℃保温1-2小时使混合料完全熔融。
5.根据权利要求1所述的制备方法,其特征是:步骤(3)中,将急冷成型的样品冷却至530-570℃,直接在此温度下进行第一段保温处理,或者将急冷成型的样品直接冷却至室温,然后再升至530-570℃进行第一段保温处理。
6.根据权利要求1所述的制备方法,其特征是:步骤(4)中,样品在530-570℃下保温1-2小时,在665-704℃下保温2-3小时。
7.根据权利要求1所述的制备方法,其特征是:步骤(5)中,盐酸的浓度为0.5-1.5mol/L,腐蚀时的温度为70-90℃,腐蚀时间为24-72小时。
8.按照权利要求1-7中任一项所述的含锐钛矿型TiO2晶相的多孔材料的制备方法制得的含锐钛矿型TiO2晶相的多孔材料,其特征是:所述含锐钛矿型TiO2晶相的多孔材料为块状或颗粒状,由纳米片构成,具有介孔和大孔。
9.权利要求8所述的含锐钛矿型TiO2晶相的多孔材料作为吸附剂或光催化剂的应用。
CN201810928265.6A 2018-08-15 2018-08-15 一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用 Expired - Fee Related CN109046407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810928265.6A CN109046407B (zh) 2018-08-15 2018-08-15 一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810928265.6A CN109046407B (zh) 2018-08-15 2018-08-15 一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用

Publications (2)

Publication Number Publication Date
CN109046407A true CN109046407A (zh) 2018-12-21
CN109046407B CN109046407B (zh) 2021-06-08

Family

ID=64686130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810928265.6A Expired - Fee Related CN109046407B (zh) 2018-08-15 2018-08-15 一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用

Country Status (1)

Country Link
CN (1) CN109046407B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586027A (zh) * 2019-09-10 2019-12-20 济南大学 一种含光催化功能晶相的多孔微晶玻璃的制备方法及所得产品
CN111099691A (zh) * 2020-01-07 2020-05-05 济南大学 一种含二水磷酸二氢氧钛和锐钛矿晶相的多孔微晶玻璃的制备方法及所得产品
CN113800556A (zh) * 2021-08-12 2021-12-17 西安理工大学 一种高比表面积的大尺寸块体多孔TiO2制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402035A (zh) * 2008-11-28 2009-04-08 河北理工大学 利用高钛高炉渣直接制备光催化组装材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402035A (zh) * 2008-11-28 2009-04-08 河北理工大学 利用高钛高炉渣直接制备光催化组装材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEIRU XU等: "Preparation, characterization and photocatalytic properties of Cu,P-codoped TiO2 nanoparticles", 《ADVANCED MATERIALS RESEARCH》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586027A (zh) * 2019-09-10 2019-12-20 济南大学 一种含光催化功能晶相的多孔微晶玻璃的制备方法及所得产品
CN111099691A (zh) * 2020-01-07 2020-05-05 济南大学 一种含二水磷酸二氢氧钛和锐钛矿晶相的多孔微晶玻璃的制备方法及所得产品
CN113800556A (zh) * 2021-08-12 2021-12-17 西安理工大学 一种高比表面积的大尺寸块体多孔TiO2制备方法

Also Published As

Publication number Publication date
CN109046407B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
Nandiyanto et al. Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles
Chen et al. Synthesis and characterization of Bi4Si3O12, Bi2SiO5, and Bi12SiO20 by controlled hydrothermal method and their photocatalytic activity
Sun et al. Bismuth vanadate hollow spheres: Bubble template synthesis and enhanced photocatalytic properties for photodegradation
Grabstanowicz et al. Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity
Xu et al. Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity
Jiang et al. Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol
Xie et al. Synthesis of nanocrystalline anatase TiO2 by one-pot two-phase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B
CN103785859B (zh) 一种纳米介孔材料的制备方法
CN104722302B (zh) 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用
Hasan et al. Catalytic decoloration of commercial azo dyes by copper-carbon composites derived from metal organic frameworks
CN109046407A (zh) 一种含锐钛矿型TiO2晶相的多孔材料的制备方法及所得产品和应用
Mera et al. Solvothermal synthesis of BiOI microspheres: Effect of the reaction time on the morphology and photocatalytic activity
Lin et al. Controllable synthesis and photocatalytic activity of spherical, flower-like and nanofibrous bismuth tungstates
Wang et al. One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity
CN105800686B (zh) 一种制备Bi5O7I的方法
Dong et al. Controlled synthesis of T-shaped BiVO4 and enhanced visible light responsive photocatalytic activity
Chine et al. Solvothermal synthesis of V4O9 flake-like morphology and its photocatalytic application in the degradation of methylene blue
CN105439152B (zh) 纯化SiCl4和/或SiHCl3的粗品的液固相光催化净化方法
CN106179316B (zh) 一种钛酸盐纳米管阵列的制备方法及应用
Zhou et al. TiO2/Bi2 (BDC) 3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity
Wen et al. Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity: Enhanced photo induced carriers separation efficiency and mechanism insight
CN105197981A (zh) 高活性纳米氧化锌的制备
Mehranpour et al. Study on the Phase Transformation Kinetics of Sol‐Gel DrivedTiO2 Nanoparticles
Kim et al. Effects of ion exchange and calcinations on the structure and photocatalytic activity of hydrothermally prepared titanate nanotubes
CN101507921B (zh) 碳掺杂五氧化二铌纳米结构可见光光催化剂及其非水体系低温制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210608