CN109045042A - Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用 - Google Patents

Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用 Download PDF

Info

Publication number
CN109045042A
CN109045042A CN201811112613.9A CN201811112613A CN109045042A CN 109045042 A CN109045042 A CN 109045042A CN 201811112613 A CN201811112613 A CN 201811112613A CN 109045042 A CN109045042 A CN 109045042A
Authority
CN
China
Prior art keywords
drug
inhibitor
lymphatic leukemia
cell
acute lymphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811112613.9A
Other languages
English (en)
Inventor
段才闻
陈亚莉
张梦怡
唐超
周斌兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine
Original Assignee
Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine filed Critical Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine
Priority to CN201811112613.9A priority Critical patent/CN109045042A/zh
Publication of CN109045042A publication Critical patent/CN109045042A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

ATM抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用,它涉及一种分子调控剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用。本发明以ATM抑制剂作为制备抑制急性淋巴细胞性白血病复发药物中的活性成分。本发明根据急性淋巴细胞性白血病治疗后耐药复发的分子机制,建立了全新体系的治疗药物,可实现靶向给药,对降低儿童急性淋巴细胞性白血病化疗后患儿的复发率具有重大意义。

Description

ATM抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中 的应用
技术领域
本发明涉及一种分子调控剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用。
背景技术
急性淋巴细胞性白血病(ALL)是严重危害人类身体健康的重大疾病,是儿童及青少年最常发生的肿瘤。儿童ALL的治疗和愈后健康状况已有显著改善,但仍有15%~20%的患儿会复发,复发后的治愈率不足40%。
发明内容
本发明针对儿童ALL化疗后患儿复发率高、复发患儿治愈率低的问题,提供了一种ATM抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用。
本发明以ATM抑制剂作为制备抑制急性淋巴细胞性白血病复发药物中的活性成分。
ALL细胞移植后浸润并破坏正常的骨髓微环境结构,目前临床上治疗ALL的化疗药物多为抗代谢类药物,包括阿糖胞苷(Ara-C)和嘌呤(如6-MP和6-TG),其作用机制主要是抑制DNA合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷的合成途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,进而导致肿瘤细胞的死亡。这些抗代谢类化疗药抑制DNA的合成,诱使细胞发生DNA损伤反应(DDR)并分泌细胞因子。化疗后ALL细胞分泌的细胞因子(CCL3、CCL4和GDF15)招募正常的骨髓细胞来重建动态演化微环境(NSM-niche),借此保护残留的ALL细胞,从而导致儿童ALL化疗后仍有15%~20%的患儿复发,并产生耐药性。
本发明经过实验验证化疗诱导白血病细胞分泌细胞因子是通过ATM介导的DDR信号途径来调节的,并且阻断DDR途径可有效地提高急淋细胞对化疗的敏感性。本发明采用不同于现有抗代谢类药物的ATM抑制剂作为制备抑制急性淋巴细胞性白血病复发药物中的活性成分,根据急性淋巴细胞性白血病治疗后耐药复发的分子机制,建立了全新体系的治疗药物,可实现靶向给药,对降低儿童急性淋巴细胞性白血病化疗后患儿的复发率具有重大意义。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式以ATM抑制剂作为制备抑制急性淋巴细胞性白血病复发药物中的活性成分;特别是制备抑制儿童急性淋巴细胞性白血病化疗后复发药物中的活性成分。
具体实施方式二:本实施方式以ATM抑制剂作为制备抑制急性淋巴细胞性白血病复发药物中的活性成分;所述ATM抑制剂为抑制剂Ku60019、抑制剂KU-55933、抑制剂CP-466722、抑制剂AZD6738或抑制剂ETP46464。
本实施方式中ATM抑制剂Ku60019、KU-55933、CP-466722、AZD6738、ETP46464均购自MCE公司。
实施例1
1、急淋细胞化疗后上调表达细胞因子
采用不同的化疗药物(Ara-C、6MP、MTX、VCR、DNR、CTX和DXMS)处理两种急性淋巴细胞性白血病细胞系(Nalm-6和Reh),利用RT-PCR等技术检测细胞因子(CCL3,CCL4和GDF-15)的表达水平,发现除DXMS以外,其余的药物都使细胞中CCL3,CCL4和GDF-15的mRNA水平明显上升。
2、确认细胞因子上调是通过ATM介导的DDR信号途径完成的
临床常用化疗药物阿糖胞苷(Ara-C)和嘌呤(6-MP和6-TG)作用机制主要是抑制DNA合成途径,诱使细胞发生DNA损伤反应(DDR)进而导致肿瘤细胞的死亡。本实施例采用不同浓度的Ara-C处理ALL细胞系(Nalm-6和Reh),提取细胞总蛋白用WesternBlot检测与DDR途径相关的一些蛋白的表达情况,发现这些蛋白的磷酸化水平随着Ara-C浓度的增加而升高。本实施例还利用免疫荧光(IF)检测到在原代ALL细胞中DDR途径相关蛋白的表达也明显上升。数据表明化疗药物处理细胞可以诱导DDR信号通路激活。
采用ShRNA慢病毒包装技术,用Nalm-6和Reh分别构建ATM knockdown(ATM-KD敲除ATM基因的急性淋巴细胞性白血病细胞株)、ATR knockdown(ATR-KD敲除ATR基因的急性淋巴细胞性白血病细胞株)及对照共6种稳定的细胞株,然后用Ara-C处理,用RT-PCR技术来检测CCL3、CCL4和GDF-15的mRNA表达水平,发现在ATM-KD细胞中Ara-C处理后细胞因子的高表达水平有一定程度的逆转,而在ATR-KD细胞中却没有此现象,说明化疗药物处理细胞使DDR信号途径激活,高表达保护性细胞因子是通过ATM介导DDR途径,而不是通过ATR介导DDR途径。
ATM:ataxia telangiectasia-mutated gene(共济失调毛细血管扩张突变基因)。
ATR:ATM-and Rad3-related gene。
3、体外实验
采用ShRNA慢病毒包装技术构建Nalm6-ATM-KD、Nalm6-Ctr(转入空载的Nalm-6细胞)细胞,用的Ara-C(20ng/ml)处理细胞48h,检测细胞的凋亡情况,发现经药物处理后Nalm6-ATM-KD,Nalm6-Ctr细胞的凋亡并没有显著差异。同时采用含抑制剂Ku60019(10uM)的Ara-C(20ng/ml)处理细胞,Nalm6-ATM-KD细胞和Nalm6-Ctr细胞,细胞的凋亡也没有显著差异。表明在体外抑制细胞因子的分泌并没有提高ALL细胞对药物的敏感性。
4、体内实验
实验组A:建立了Nalm6-ATM-KD-GFP异种移植小鼠模型,且移植细胞已经渗透到颅骨的全部血管中,用化疗药物Ara-C(50mg/kg)处理;实验组B:建立Nalm6-Ctr-GFP异种移植小鼠模型,且移植细胞已经渗透到颅骨的全部血管中,用含抑制剂Ku60019(70mg/kg)的化疗药物Ara-C(50mg/kg)处理;实验组C:建立Nalm6-Ctr-GFP异种移植小鼠模型,且移植细胞已经渗透到颅骨的全部血管中,用化疗药物Ara-C(50mg/kg)处理。
治疗后检测发现,A组小鼠和B组小鼠中残留的GFP+ALL细胞比C组小鼠显著的降低;同时检测化疗后小鼠骨髓中残留的GFP+ALL细胞,发现在C组小鼠中GFP+ALL细胞大约有16.4%,而A组小鼠中只有7.2%,B组小鼠中只有5.9%。实验结果表明,阻断了ATM介导的DDR途径小鼠体内ALL细胞提高了对化疗药物Ara-C的敏感性。
GFP:绿色荧光蛋白。

Claims (3)

1.ATM抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用,其特征在于以ATM抑制剂作为制备抑制急性淋巴细胞性白血病复发药物中的活性成分。
2.根据权利要求1所述的应用,其特征在于所述急性淋巴细胞性白血病为儿童急性淋巴细胞性白血病。
3.根据权利要求1所述的应用,其特征在于所述ATM抑制剂为抑制剂Ku60019、抑制剂KU-55933、抑制剂CP-466722、抑制剂AZD6738或抑制剂ETP46464。
CN201811112613.9A 2018-09-21 2018-09-21 Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用 Pending CN109045042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811112613.9A CN109045042A (zh) 2018-09-21 2018-09-21 Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811112613.9A CN109045042A (zh) 2018-09-21 2018-09-21 Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用

Publications (1)

Publication Number Publication Date
CN109045042A true CN109045042A (zh) 2018-12-21

Family

ID=64763549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811112613.9A Pending CN109045042A (zh) 2018-09-21 2018-09-21 Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用

Country Status (1)

Country Link
CN (1) CN109045042A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151775A (zh) * 2019-07-01 2019-08-23 中国医科大学附属盛京医院 Hsp90抑制剂17-DMAG在制备抑制儿童急性淋巴细胞白血病药物中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867566A (zh) * 2003-08-13 2006-11-22 库多斯药物有限公司 氨基吡喃酮和它们作为atm抑制剂的用途
WO2017117182A1 (en) * 2015-12-29 2017-07-06 Board Of Regents, The University Of Texas System Inhibition of p38 mapk for the treatment of cancer
CN107889488A (zh) * 2015-04-02 2018-04-06 默克专利股份公司 咪唑酮基喹啉和其作为atm激酶抑制剂的用途
CN108834414A (zh) * 2016-04-07 2018-11-16 阿斯利康(瑞典)有限公司 N,n-二甲基-3-[[5-(3-甲基-2-氧代-1-四氢吡喃-4-基-咪唑并[4,5-c]喹啉-8-基)-2-吡啶基]氧基]丙烷-1-胺氧化物作为atm(共济失调毛细血管扩张症突变的)激酶调节剂用于治疗癌症

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867566A (zh) * 2003-08-13 2006-11-22 库多斯药物有限公司 氨基吡喃酮和它们作为atm抑制剂的用途
CN107889488A (zh) * 2015-04-02 2018-04-06 默克专利股份公司 咪唑酮基喹啉和其作为atm激酶抑制剂的用途
WO2017117182A1 (en) * 2015-12-29 2017-07-06 Board Of Regents, The University Of Texas System Inhibition of p38 mapk for the treatment of cancer
CN108834414A (zh) * 2016-04-07 2018-11-16 阿斯利康(瑞典)有限公司 N,n-二甲基-3-[[5-(3-甲基-2-氧代-1-四氢吡喃-4-基-咪唑并[4,5-c]喹啉-8-基)-2-吡啶基]氧基]丙烷-1-胺氧化物作为atm(共济失调毛细血管扩张症突变的)激酶调节剂用于治疗癌症

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A THOMAS ET AL.: "The dual-acting chemotherapeutic agent Alchemix induces", 《ONCOGENE》 *
ANIKA MARIA WEBER ET AL.: "ATM and ATR as therapeutic targets in cancer", 《PHARMACOLOGY & THERAPEUTICS》 *
M MEIER ET AL.: "Relation between genetic variants of the ataxia telangiectasia-mutated (ATM) gene, drug resistance, clinical outcome and predisposition to childhood T-lineage acute lymphoblastic leukaemia", 《LEUKEMIA》 *
MEI HUA JIN ET AL.: "ATM in DNA repair in cancer", 《PHARMACOLOGY & THERAPEUTICS》 *
YA-LI CHEN ET AL.: "Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia", 《LEUKEMIA》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151775A (zh) * 2019-07-01 2019-08-23 中国医科大学附属盛京医院 Hsp90抑制剂17-DMAG在制备抑制儿童急性淋巴细胞白血病药物中的应用
CN110151775B (zh) * 2019-07-01 2022-06-03 中国医科大学附属盛京医院 17-dmag在制备抑制儿童急性淋巴细胞白血病药物中的应用

Similar Documents

Publication Publication Date Title
Mounier et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
Young et al. An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition
Jones et al. Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade
Morinaga et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice
Kärre et al. Low natural in vivo resistance to syngeneic leukaemias in natural killer-deficient mice
Ren Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia
Guo et al. Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation
Weichelt et al. Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine
Arana Yi et al. Efficacy and safety of ruxolitinib in the treatment of patients with myelofibrosis
Rinkenbaugh et al. IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance
Abouantoun et al. Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells
Buechler et al. Cutting edge: direct sensing of TLR7 ligands and type I IFN by the common myeloid progenitor promotes mTOR/PI3K-dependent emergency myelopoiesis
Sanosaka et al. Salt‐inducible kinase 3 deficiency exacerbates lipopolysaccharide‐induced endotoxin shock accompanied by increased levels of pro‐inflammatory molecules in mice
Zhang et al. oHSV2 can target murine colon carcinoma by altering the immune status of the tumor microenvironment and inducing antitumor immunity
Goswami et al. PP2A is a therapeutically targetable driver of cell fate decisions via a c-Myc/p21 axis in human and murine acute myeloid leukemia
CN109045042A (zh) Atm抑制剂在制备抑制急性淋巴细胞性白血病复发的药物中的应用
Ko et al. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment
Wang et al. Cancer-associated fibroblasts as accomplices to confer therapeutic resistance in cancer
Balendran et al. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis
Wei et al. IL‐38 attenuates myocardial ischemia–reperfusion injury by inhibiting macrophage inflammation
Warren et al. The effect of vincristine on methotrexate uptake and inhibition of DNA synthesis by human lymphoblastoid cells
Koch et al. Perturbing DDR signaling enhances cytotoxic effects of local oncolytic virotherapy and modulates the immune environment in glioma
Yan et al. Inhibitory effects of inonotus obliquus polysaccharide on inflammatory response in Toxoplasma gondii-Infected RAW264. 7 macrophages
Pap et al. Sensitivity of human malignant melanoma cell lines to Newcastle disease virus
Kaleta et al. Sildenafil, a phosphodiesterase type 5 inhibitor, downregulates osteopontin in human peripheral blood mononuclear cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181221