CN109034898A - A kind of BP neural network used car price evaluation algorithm based on improvement ant colony - Google Patents
A kind of BP neural network used car price evaluation algorithm based on improvement ant colony Download PDFInfo
- Publication number
- CN109034898A CN109034898A CN201810825158.0A CN201810825158A CN109034898A CN 109034898 A CN109034898 A CN 109034898A CN 201810825158 A CN201810825158 A CN 201810825158A CN 109034898 A CN109034898 A CN 109034898A
- Authority
- CN
- China
- Prior art keywords
- neural network
- weight
- formula
- value
- algorithm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 72
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 50
- 238000011156 evaluation Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 25
- 238000005457 optimization Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 4
- 238000013210 evaluation model Methods 0.000 claims abstract description 4
- 239000003016 pheromone Substances 0.000 claims description 36
- 210000002569 neuron Anatomy 0.000 claims description 23
- 238000012549 training Methods 0.000 claims description 13
- 241000257303 Hymenoptera Species 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000010606 normalization Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 5
- 238000013480 data collection Methods 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract description 3
- 238000007781 pre-processing Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0278—Product appraisal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/061—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- Strategic Management (AREA)
- Neurology (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Marketing (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于蚁群算法优化的BP神经网络二手车价格评估算法,选取三层BP神经网络为原型,采用改进的蚁群算法对BP神经网络的权值初始化过程进行优化,建立二手车价格评估模型,具体步骤如下步骤1:数据采集并预处理;步骤2:确定网络拓扑结构;步骤3:采用改进的蚁群算法对BP神经网络的权值初始化过程进行优化;步骤4:进一步训练优化后的BP神经网络对二手车价格进行预测。本发明提供一种基于蚁群优化的BP神经网络二手车价格评估算法,相比于传统算法,可以改善BP神经网络中易于陷入局部最优、收敛速度慢、引起振荡效应等缺陷,从而建立起一套具有实用价值的在线车辆价格评估系统。
The invention discloses a BP neural network second-hand car price evaluation algorithm based on an ant colony algorithm optimization. A three-layer BP neural network is selected as a prototype, and an improved ant colony algorithm is used to optimize the weight initialization process of the BP neural network. Car price evaluation model, the specific steps are as follows Step 1: Data collection and preprocessing; Step 2: Determine the network topology; Step 3: Use the improved ant colony algorithm to optimize the weight initialization process of the BP neural network; Step 4: Further The optimized BP neural network is trained to predict the price of used cars. The invention provides a BP neural network second-hand car price evaluation algorithm based on ant colony optimization. Compared with the traditional algorithm, it can improve the defects of BP neural network, such as easy to fall into local optimum, slow convergence speed, and oscillation effect, so as to establish A set of online vehicle price evaluation system with practical value.
Description
技术领域technical field
本发明涉及一种基于改进蚁群的BP神经网络二手车价格评估算法,属于计算机应用领域。The invention relates to a second-hand car price evaluation algorithm based on an improved ant colony BP neural network, which belongs to the field of computer applications.
背景技术Background technique
在网络营销和互联网大数据理论日益发展的背景下,结合国人对私家车日益增长的需求,基于神经网络的大型二手车交易平台得以迅速推广并应用。在这样的平台交易系统下,通过分析和调整二手车交易市场需要考虑的各个参数,建立合适的神经网络模型,可以使整个二手车交易价格评估的精度提高。而随着大数据相关技术广泛应用于机器学习和认知科学等领域,BP神经网络算法作为一种主要用于对函数进行估计和近似的计算模型,联结大量的神经元进行计算,能实现一种有效可观的预测模型。Against the background of the increasing development of network marketing and Internet big data theory, combined with the growing demand of Chinese people for private cars, large-scale used car trading platforms based on neural networks have been rapidly promoted and applied. Under such a platform trading system, by analyzing and adjusting various parameters that need to be considered in the used car trading market, and establishing a suitable neural network model, the accuracy of the entire used car trading price evaluation can be improved. As big data-related technologies are widely used in the fields of machine learning and cognitive science, the BP neural network algorithm, as a calculation model mainly used to estimate and approximate functions, connects a large number of neurons for calculation, and can realize a An effective predictive model.
二手车作为一种有形资产,在交易中比较常用的价格评估方法有重置成本法、收益现值法、现行市价法和清算价格法。现有的这些估价算法大多过于经验化,没有太多理论基础,且不主动公开算法细节,存在着算法透明度低、估价效率低、计算精度不高等缺陷,且没有将交易数据的激增以及交易市场的动态变化反映到计算过程中去,而这些都是决定二手车价格的关键因素。As a tangible asset, second-hand cars are commonly used in price evaluation methods in transactions, including replacement cost method, income present value method, current market price method and liquidation price method. Most of these existing valuation algorithms are too empirical, do not have much theoretical basis, and do not actively disclose the details of the algorithms. There are defects such as low algorithm transparency, low valuation efficiency, and low calculation accuracy. The dynamic changes of the data are reflected in the calculation process, and these are key factors in determining the price of a used car.
发明内容Contents of the invention
为了克服现有技术的缺陷,本发明提出公开了一种基于改进蚁群的BP神经网络二手车价格评估算法,利用蚁群算法的全局搜索特性大致搜索出一定的权值范围,以此时的权值作为BP神经网络的初始权值,再利用BP算法对网络权值作进一步优化,可以改善BP神经网络中易于陷入局部最优、收敛速度慢、引起振荡效应等缺陷,从而建立起一套具有实用价值的在线车辆价格评估系统。In order to overcome the defects of the prior art, the present invention proposes and discloses a second-hand car price evaluation algorithm based on an improved ant colony BP neural network, and utilizes the global search characteristic of the ant colony algorithm to roughly search for a certain weight range. The weight value is used as the initial weight value of the BP neural network, and then the BP algorithm is used to further optimize the network weight value, which can improve the defects in the BP neural network that are easy to fall into local optimum, slow convergence speed, and cause oscillation effects, thus establishing a set of An online vehicle price evaluation system with practical value.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
一种基于蚁群算法改进的BP神经网络二手车价格评估算法,选取三层BP神经网络为原型,采用改进的蚁群算法对BP神经网络的权值初始化过程进行优化,建立二手车价格评估模型,具体步骤如下:An improved BP neural network second-hand car price evaluation algorithm based on ant colony algorithm. The three-layer BP neural network is selected as the prototype, and the improved ant colony algorithm is used to optimize the weight initialization process of the BP neural network, and a second-hand car price evaluation model is established. ,Specific steps are as follows:
步骤1:数据采集并预处理;Step 1: Data collection and preprocessing;
步骤2:确定网络拓扑结构;Step 2: Determine the network topology;
步骤3:采用改进的蚁群算法对BP神经网络的权值初始化过程进行优化;Step 3: Use the improved ant colony algorithm to optimize the weight initialization process of the BP neural network;
步骤4:进一步训练优化后的BP神经网络对二手车价格进行预测。Step 4: Further train the optimized BP neural network to predict the price of used cars.
优选地,所述步骤(1)采集的数据为二手车辆数据及其交易数据作为样本数据,包括车辆编号、生产年份、售卖年月份、城市、排量、新车价格、里程、车辆用途、磨损程度和个人指导价;所述步骤(1)中对采集的样本数据进行预处理:将采集的样本数据进行归一化处理,具体归一化到[0,1]区间内,归一化公式如下:Preferably, the data collected in the step (1) is second-hand vehicle data and its transaction data as sample data, including vehicle serial number, production year, year and month of sale, city, displacement, new car price, mileage, vehicle usage, degree of wear and tear and personal guide price; in the step (1), the collected sample data is preprocessed: the collected sample data is normalized, specifically normalized to the interval [0,1], and the normalization formula is as follows :
X0=(X-Xmin)/(Xmax-Xmin) (1)X 0 =(XX min )/(X max -X min ) (1)
式(1)中,X0为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和最小值。In formula (1), X 0 is the normalized data, X is the original data, X max and X min are the maximum and minimum values of the original data set, respectively.
优选地,所述步骤(2)中网络拓扑结构为三层BP神经网络结构,包括输入层、隐藏层、输出层,其中,Preferably, the network topology in the step (2) is a three-layer BP neural network structure, including an input layer, a hidden layer, and an output layer, wherein,
输入层:输入预处理过的样本数据,每个输入节点都被映射成一个车辆相关属性,具体为车辆编号、生产年份、售卖年月份、城市、排量、新车价格、里程、车辆用途、磨损程度和个人指导价共10个神经元;Input layer: Input preprocessed sample data, each input node is mapped to a vehicle-related attribute, specifically vehicle number, production year, sales year and month, city, displacement, new car price, mileage, vehicle use, wear and tear A total of 10 neurons for degree and individual guide valence;
隐藏层:根据经验公式(2)估算最佳隐含层神经元个数,Hidden layer: Estimate the number of neurons in the optimal hidden layer according to the empirical formula (2),
式(2)中,H为隐含层神经元个数,I为输入层神经元个数,O为输出层神经元个数,a为[1,10]内的常数;In formula (2), H is the number of neurons in the hidden layer, I is the number of neurons in the input layer, O is the number of neurons in the output layer, and a is a constant in [1,10];
输出层:输出二手车实际交易价格结果,实时反馈供用户参考。Output layer: output the actual transaction price results of used cars, and provide real-time feedback for user reference.
优选地,所述步骤(3)中的权值初始化的优化过程如下:Preferably, the optimization process of the weight initialization in the step (3) is as follows:
(3a)参数设置,将BP神经网络的权值区间[-5,5]均匀划分为100等分,为每一个权值参数建立一张信息素表,记ws为第s个需要优化的权值参数,s的取值范围为[1,N],N表示为权值的总个数,i为划分刻度值,每两个划分相邻刻度值构成一个子区域;τ(i)为i所对应的信息素值,其中,权值区间[-5,5]均匀划分为100等分,则划分刻度值共有101个;(3a) Parameter setting, divide the weight interval [-5,5] of BP neural network into 100 equal parts, create a pheromone table for each weight parameter, record w s as the sth one that needs to be optimized Weight parameter, the value range of s is [1,N], N is the total number of weights, i is the division scale value, and every two division adjacent scale values form a sub-region; τ(i) is The pheromone value corresponding to i, where the weight interval [-5,5] is evenly divided into 100 equal parts, then there are 101 divided scale values;
所述权值的总个数N由输入层神经元个数I、隐藏层神经元个数H和输出层神经元个数O决定,其计算公式如下所示:The total number N of the weight is determined by the number I of input layer neurons, the number H of hidden layer neurons and the number O of output layer neurons, and its calculation formula is as follows:
N=H*(I+O+1)+O (3);N=H*(I+O+1)+O (3);
同时,设置信息素初值为τ(i)=C,C≠0,信息素挥发系数ρ,信息素增量强度Q,ACO的最大迭代次数countmax和ACO优化结束条件εACO;Simultaneously, the initial value of setting pheromone is τ (i)=C, C ≠ 0, pheromone volatilization coefficient ρ, pheromone incremental strength Q, maximum number of iterations countmax of ACO and ACO optimization end condition ε ACO ;
(3b)释放m只蚂蚁,对于任意权值参数ws,第n只蚂蚁根据如下概率公式(4)从一点移动到下一点:(3b) Release m ants. For any weight parameter w s , the nth ant moves from one point to the next according to the following probability formula (4):
式(4)中,i表示权值参数ws的第i个划分刻度值,i的取值范围为[1,101],表示权值参数ws中所有蚂蚁的信息素之和,j代表第j只蚂蚁,蚂蚁在神经网络的每一次迭代中,会根据误差更新自己的信息素值,这里的信息素值即为上述的101个划分刻度值中的某一个值。In formula (4), i represents the i-th division scale value of the weight parameter w s , and the value range of i is [1,101], Indicates the sum of the pheromones of all ants in the weight parameter w s , and j represents the jth ant. In each iteration of the neural network, the ant will update its own pheromone value according to the error. The pheromone value here is the above One of the 101 division scale values.
第n只蚂蚁从权值参数ws的划分刻度值经过且仅经过一次,记录相应点的划分刻度值,这些点的划分刻度值组合构成了神经网络权值参数ws的一组权值参数;The nth ant passes through the division scale value of the weight parameter w s and only once, and records the division scale value of the corresponding point. The combination of the division scale values of these points constitutes a set of weight parameters of the neural network weight parameter w s ;
(3c)将二手车交易数据及其车辆数据作为输入训练样本,使用步骤(3b)得到的权值组合作为神经网络的参数,BP神经网络的输入层到隐藏层、隐藏层到输出层均采用Sigmoid S型激励函数进行神经网络的输出计算,如公式(5)所示:(3c) Use the second-hand car transaction data and its vehicle data as input training samples, use the weight combination obtained in step (3b) as the parameters of the neural network, and use The Sigmoid S-type activation function performs the output calculation of the neural network, as shown in formula (5):
式(5)中,net表示是隐藏层和输出层、输入层和隐藏层,层与层之间的函数关系,本发明中神经网络激励函数属于常规技术手段故而未加详述;In formula (5), net representation is hidden layer and output layer, input layer and hidden layer, the functional relation between layer and layer, and neural network activation function belongs to conventional technical means in the present invention so does not add detailed description;
SH得到神经网络的输出后,计算均方误差,并取均方误差的最大值,如公式(6)所示:After SH gets the output of the neural network, it calculates the mean square error and takes the maximum value of the mean square error, as shown in formula (6):
式(6)中,SampleNum为样本数目,y为期望输出值即训练样本的真实值,o为神经网络的实际输出值,o由公式(5)决定,属于神经网络的基本技术范畴;In formula (6), SampleNum is the number of samples, y is the expected output value, that is, the real value of the training sample, o is the actual output value of the neural network, and o is determined by formula (5), which belongs to the basic technical category of neural network;
(3d)所有蚂蚁构造解以后记录E最小的一组权值,比较最小误差Emin与εACO的大小,如果Emin<εACO,则直接完成初始化过程并退出,否则转步骤(3e);(3d) After all ants construct the solution, record a set of weights with the smallest E, compare the minimum error E min with ε ACO , if E min <ε ACO , then directly complete the initialization process and exit, otherwise go to step (3e);
(3e)信息素更新:权值ws的第i个划分刻度值的信息素更新策略如公式(7)所示:(3e) Pheromone update: The pheromone update strategy of the i-th division scale value of the weight w s is shown in formula (7):
式(7)中,为权值ws的第i个划分刻度值对应第t代蚁群中的第n只蚂蚁经过后更新的信息素值,μ的取值范围为[10,100];In formula (7), The i-th division scale value of the weight w s corresponds to the pheromone value updated after the n-th ant in the t-generation ant colony passes through, and the value range of μ is [10,100];
(3f)重复步骤(3b)-(3d),直到满足最大迭代次数countmax,完成初始化过程。(3f) Steps (3b)-(3d) are repeated until the maximum number of iteration countmax is satisfied, and the initialization process is completed.
优选地,所述步骤(4)中进一步训练优化后的BP神经网络的过程为:根据蚁群算法由步骤3(d)找到的E最小的一组权值和偏差(即为权值参数ws)作为BP算法的初始权值和偏差,计算网络输出和实际输出之间的误差,并将误差由输出层反向传播到输入层,进一步调整权值和偏差,重复以上过程,直到满足训练退出条件。Preferably, the process of further training the optimized BP neural network in the step (4) is: according to the ant colony algorithm, a group of weights and deviations (being the weight parameter w) that are found by the E minimum in step 3 (d) s ) as the initial weight and deviation of the BP algorithm, calculate the error between the network output and the actual output, and propagate the error back from the output layer to the input layer, further adjust the weight and deviation, and repeat the above process until the training exit condition.
本发明中步骤(4)中进一步训练优化后的BP神经网络的过程属于常规技术手段,故而未加详述。The process of further training the optimized BP neural network in step (4) of the present invention belongs to conventional technical means, so it is not described in detail.
有益效果:本发明提供一种基于蚁群算法改进的BP神经网络二手车价格评估算法,在蚁群算法中引入提高了算法的全局搜索能力。与现有技术相比,本发明具有如下优点:Beneficial effects: the present invention provides an improved BP neural network second-hand car price evaluation algorithm based on the ant colony algorithm, which is introduced into the ant colony algorithm The global search ability of the algorithm is improved. Compared with prior art, the present invention has following advantage:
(1)相比于传统机械式的评估算法(车辆评估值=重置成本*成新率*调整系数),基于改进蚁群的BP神经网络二手车价格评估算法预测的精度更高;(1) Compared with the traditional mechanical evaluation algorithm (vehicle evaluation value = replacement cost * newness rate * adjustment coefficient), the BP neural network based on improved ant colony used car price evaluation algorithm has a higher prediction accuracy;
(2)本发明在原有BP神经网络的基础上采取改进的蚁群算法优化BP神经网络的权值初始化过程,改善BP神经网络中易于陷入局部最优、收敛速度慢、引起振荡效应等缺陷,从而建立起一套具有实用价值的在线车辆价格评估系统。(2) The present invention adopts the improved ant colony algorithm to optimize the weight initialization process of the BP neural network on the basis of the original BP neural network, and improves the defects such as being easy to fall into local optimum, slow convergence speed, and oscillation effects in the BP neural network, Thus, a set of online vehicle price evaluation system with practical value is established.
(3)用户完成交易后,新的交易数据被投入训练以维持模型的高准确率,使之更持久地为用户提供服务。(3) After the user completes the transaction, the new transaction data is put into training to maintain the high accuracy of the model, so that it can provide services to users more permanently.
附图说明Description of drawings
图1为本发明的数据参数表。Fig. 1 is the data parameter table of the present invention.
图2为本发明的具体实例的神经网络结构图。Fig. 2 is a neural network structure diagram of a specific example of the present invention.
图3为本发明的基于改进蚁群的BP神经网络算法流程图。Fig. 3 is the flow chart of the BP neural network algorithm based on the improved ant colony of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请中的技术方案,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the technical solutions in the application, the technical solutions in the embodiments of the application are clearly and completely described below. Obviously, the described embodiments are only part of the embodiments of the application, and Not all examples. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.
一种基于蚁群算法改进的BP神经网络二手车价格评估算法,选取三层BP神经网络为原型,采用改进的蚁群算法对BP神经网络的权值初始化过程进行优化,建立二手车价格评估模型,具体步骤如下:An improved BP neural network second-hand car price evaluation algorithm based on ant colony algorithm. The three-layer BP neural network is selected as the prototype, and the improved ant colony algorithm is used to optimize the weight initialization process of the BP neural network, and a second-hand car price evaluation model is established. ,Specific steps are as follows:
步骤1:数据采集并预处理;Step 1: Data collection and preprocessing;
步骤2:确定网络拓扑结构;Step 2: Determine the network topology;
步骤3:采用改进的蚁群算法对BP神经网络的权值初始化过程进行优化;Step 3: Use the improved ant colony algorithm to optimize the weight initialization process of the BP neural network;
步骤4:进一步训练优化后的BP神经网络对二手车价格进行预测。Step 4: Further train the optimized BP neural network to predict the price of used cars.
优选地,所述步骤(1)采集的数据为二手车辆数据及其交易数据作为样本数据,包括车辆编号、生产年份、售卖年月份、城市、排量、新车价格、里程、车辆用途、磨损程度和个人指导价;所述步骤(1)中对采集的样本数据进行预处理:将采集的样本数据进行归一化处理,具体归一化到[0,1]区间内,归一化公式如下:Preferably, the data collected in the step (1) is second-hand vehicle data and its transaction data as sample data, including vehicle serial number, production year, year and month of sale, city, displacement, new car price, mileage, vehicle usage, degree of wear and tear and personal guide price; in the step (1), the collected sample data is preprocessed: the collected sample data is normalized, specifically normalized to the interval [0,1], and the normalization formula is as follows :
X0=(X-Xmin)/(Xmax-Xmin) (1)X 0 =(XX min )/(X max -X min ) (1)
式(1)中,X0为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和最小值。In formula (1), X 0 is the normalized data, X is the original data, X max and X min are the maximum and minimum values of the original data set, respectively.
优选地,所述步骤(2)中网络拓扑结构为三层BP神经网络结构,包括输入层、隐藏层、输出层,其中,Preferably, the network topology in the step (2) is a three-layer BP neural network structure, including an input layer, a hidden layer, and an output layer, wherein,
输入层:输入预处理过的样本数据,每个输入节点都被映射成一个车辆相关属性,具体为车辆编号、生产年份、售卖年月份、城市、排量、新车价格、里程、车辆用途、磨损程度和个人指导价共10个神经元;Input layer: Input preprocessed sample data, each input node is mapped to a vehicle-related attribute, specifically vehicle number, production year, sales year and month, city, displacement, new car price, mileage, vehicle use, wear and tear A total of 10 neurons for degree and individual guide valence;
隐藏层:根据经验公式(2)估算最佳隐含层神经元个数,Hidden layer: Estimate the number of neurons in the optimal hidden layer according to the empirical formula (2),
式(2)中,H为隐含层神经元个数,I为输入层神经元个数,O为输出层神经元个数,a为[1,10]内的常数;In formula (2), H is the number of neurons in the hidden layer, I is the number of neurons in the input layer, O is the number of neurons in the output layer, and a is a constant in [1,10];
输出层:输出二手车实际交易价格结果,实时反馈供用户参考。Output layer: output the actual transaction price results of used cars, and provide real-time feedback for user reference.
优选地,所述步骤(3)中的权值初始化的优化过程如下:Preferably, the optimization process of the weight initialization in the step (3) is as follows:
(3a)参数设置,将BP神经网络的权值区间[-5,5]均匀划分为100等分,为每一个权值参数建立一张信息素表,如表一所示,(3a) Parameter setting, divide the weight interval [-5, 5] of BP neural network into 100 equal parts, and establish a pheromone table for each weight parameter, as shown in Table 1,
表一参数信息表Table 1 parameter information table
记ws为第s个需要优化的权值参数,s的取值范围为[1,N],N表示为权值的总个数,Ai为划分刻度值,被看作一个点,每两个划分相邻刻度值构成一个子区域;τ(i)为Ai所对应的信息素值,其中,权值区间[-5,5]均匀划分为100等分,则划分刻度值共有101个;Note that w s is the sth weight parameter that needs to be optimized. The value range of s is [1,N]. divided adjacent scale values constitute a sub-region; τ(i) is the pheromone value corresponding to Ai, where the weight interval [-5, 5] is evenly divided into 100 equal parts, then there are 101 divided scale values;
所述权值的总个数N由输入层神经元个数I、隐藏层神经元个数H和输出层神经元个数O决定,其计算公式如下所示:The total number N of the weight is determined by the number I of input layer neurons, the number H of hidden layer neurons and the number O of output layer neurons, and its calculation formula is as follows:
N=H*(I+O+1)+O (3);N=H*(I+O+1)+O (3);
同时,设置信息素初值为τ0,信息素挥发系数ρ,信息素增量强度Q,ACO的最大迭代次数countmax和ACO优化结束条件εACO;At the same time, set the initial value of the pheromone to τ 0 , the pheromone volatilization coefficient ρ, the pheromone incremental strength Q, the maximum iteration countmax of ACO and the ACO optimization end condition ε ACO ;
(3b)释放m只蚂蚁,对于任意权值参数ws,第n只蚂蚁根据如下概率公式(4)从一点移动到下一点:(3b) Release m ants. For any weight parameter w s , the nth ant moves from one point to the next according to the following probability formula (4):
式(4)中,i表示权值参数ws的第i个划分刻度值,i的取值范围为[1,101],表示权值参数ws中所有蚂蚁的信息素之和,j代表第j只蚂蚁,蚂蚁在神经网络的每一次迭代中,会根据误差更新自己的信息素值,本发明中的信息素值即为上述的101个划分刻度值中的某一个值.;In formula (4), i represents the i-th division scale value of the weight parameter w s , and the value range of i is [1,101], Indicates the sum of the pheromones of all ants in the weight parameter w s , j represents the jth ant, and the ant will update its own pheromone value according to the error in each iteration of the neural network, and the pheromone value in the present invention is One of the above 101 division scale values.;
第n只蚂蚁从权值参数ws的划分刻度值经过且仅经过一次,记录相应点的划分刻度值,这些点的组合构成了神经网络的一组权值参数;The nth ant passes through the division scale value of the weight parameter w s only once, and records the division scale value of the corresponding point. The combination of these points constitutes a set of weight parameters of the neural network;
(3c)将二手车交易数据及其车辆数据作为输入训练样本,使用步骤(3b)得到的权值组合作为神经网络的参数,BP神经网络的输入层到隐藏层、隐藏层到输出层均采用Sigmoid S型激励函数进行神经网络的输出计算,如公式(5)所示:(3c) Use the second-hand car transaction data and its vehicle data as input training samples, use the weight combination obtained in step (3b) as the parameters of the neural network, and use The Sigmoid S-type activation function performs the output calculation of the neural network, as shown in formula (5):
得到神经网络的输出后,计算均方误差,并取均方误差的最大值,如公式(6)所示:After obtaining the output of the neural network, calculate the mean square error, and take the maximum value of the mean square error, as shown in formula (6):
式(6)中,SampleNum为样本数目,y和o为分别为期望输出值以及神经网络的实际输出值;In formula (6), SampleNum is the number of samples, y and o are respectively the expected output value and the actual output value of the neural network;
(3d)所有蚂蚁构造解以后记录E最小的一组权值,比较最小误差Emin与εACO的大小,如果Emin<εACO,则直接完成初始化过程并退出,否则转步骤(3e);(3d) After all ants construct the solution, record a set of weights with the smallest E, compare the minimum error E min with ε ACO , if E min <ε ACO , then directly complete the initialization process and exit, otherwise go to step (3e);
(3e)信息素更新:权值ws的第i个点(划分刻度值)的信息素更新策略如公式(7)所示:(3e) Pheromone update: The pheromone update strategy of the i-th point (division scale value) of the weight w s is shown in formula (7):
式中,为权值ws的第i个点对应第t代蚁群中的第n只蚂蚁经过后更新的信息素值,μ的取值范围为[10,100];In the formula, The i-th point of weight w s corresponds to the updated pheromone value of the n-th ant in the t-th generation ant colony, and the range of μ is [10,100];
(3f)重复步骤(3b)-(3d),直到满足最大迭代次数countmax,完成初始化过程。(3f) Steps (3b)-(3d) are repeated until the maximum number of iteration countmax is satisfied, and the initialization process is completed.
优选地,所述步骤(4)中进一步训练优化后的BP神经网络的过程为:将蚁群算法找到的一组Emin最小的权值参数作为BP算法的初始权值和偏差,计算网络输出和实际输出之间的误差,并将误差由输出层反向传播到输入层,进一步调整权值和偏差,重复以上过程,直到满足训练退出条件。Preferably, the process of further training the optimized BP neural network in the step (4) is: a group of E min minimum weight parameters found by the ant colony algorithm are used as the initial weight and deviation of the BP algorithm, and the network output is calculated and the actual output, and backpropagate the error from the output layer to the input layer, further adjust the weights and biases, and repeat the above process until the training exit condition is met.
传统的ACO信息素更新策略中,后代蚂蚁根据前代蚂蚁搜索后更新的信息素表来进行概率性选择路径的,由于信息素挥发系数ρ为一固定值,那些从未被搜索到的路径上的信息素会逐渐消失,导致这些路径被选择的概率减小,而信息素增加的非最优路径的概率却增大,进而使算法陷入局部最优。因此要提高算法的全局搜索能力,使算法尽量找到最优解,就必须适当减少已选择路径上的信息素数量,即适当减弱后代蚂蚁的信息素贡献能力,引入调整因子其中μ的取值一般在[10,100]范围内。在本实施例中,μ取10。In the traditional ACO pheromone update strategy, the offspring ants select the path probabilistically according to the pheromone table updated by the previous generation ants. Since the pheromone volatilization coefficient ρ is a fixed value, those paths that have never been searched The pheromones will gradually disappear, resulting in a decrease in the probability of these paths being selected, while the probability of non-optimal paths with increased pheromones will increase, and then the algorithm will fall into a local optimum. Therefore, in order to improve the global search ability of the algorithm and make the algorithm find the optimal solution as much as possible, it is necessary to appropriately reduce the number of pheromones on the selected path, that is, to appropriately weaken the pheromone contribution ability of offspring ants, and introduce an adjustment factor The value of μ is generally in the range of [10,100]. In this embodiment, μ takes 10.
本实施例中BP神经网络中隐含层的传递函数和输出层的激活函数均为Sigmoid S型正切曲线激励函数。In this embodiment, both the transfer function of the hidden layer and the activation function of the output layer in the BP neural network are Sigmoid S-type tangent curve activation functions.
本发明中所涉及的BP神经网络训练过程为本领域技术人员所掌握的常规技术手段,故而未加详述。The BP neural network training process involved in the present invention is a conventional technical means mastered by those skilled in the art, so it is not described in detail.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的两种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Both modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810825158.0A CN109034898A (en) | 2018-07-25 | 2018-07-25 | A kind of BP neural network used car price evaluation algorithm based on improvement ant colony |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810825158.0A CN109034898A (en) | 2018-07-25 | 2018-07-25 | A kind of BP neural network used car price evaluation algorithm based on improvement ant colony |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109034898A true CN109034898A (en) | 2018-12-18 |
Family
ID=64645947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810825158.0A Pending CN109034898A (en) | 2018-07-25 | 2018-07-25 | A kind of BP neural network used car price evaluation algorithm based on improvement ant colony |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109034898A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110322297A (en) * | 2019-07-16 | 2019-10-11 | 山东科技大学 | Medium-and-large-sized stamping die quotation prediction technique based on BP neural network |
CN110544135A (en) * | 2019-09-10 | 2019-12-06 | 金瓜子科技发展(北京)有限公司 | Data processing method and device |
CN110909670A (en) * | 2019-11-21 | 2020-03-24 | 江苏理工学院 | An Unstructured Road Recognition Method |
CN111523916A (en) * | 2019-02-01 | 2020-08-11 | 上汽通用汽车有限公司 | Vehicle price evaluation system and method |
CN111598620A (en) * | 2020-05-20 | 2020-08-28 | 上海贤合汽车信息咨询服务有限公司 | Remote accurate pricing system for second-hand vehicles |
CN111724189A (en) * | 2019-06-27 | 2020-09-29 | 上海妃鱼网络科技有限公司 | A second-hand commodity valuation method based on big data |
CN112631890A (en) * | 2020-12-31 | 2021-04-09 | 西安理工大学 | Method for predicting cloud server resource performance based on LSTM-ACO model |
CN112949813A (en) * | 2019-11-26 | 2021-06-11 | 张汉威 | Artificial intelligence training parameter iteration method |
CN113283161A (en) * | 2021-04-28 | 2021-08-20 | 江西核工业测绘院集团有限公司 | Landslide deformation displacement prediction method for improving BP neural network |
CN115619030A (en) * | 2022-10-28 | 2023-01-17 | 清华大学 | A method, device and electronic equipment for collaborative optimization of urban sewage system plant network |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103955743A (en) * | 2014-04-22 | 2014-07-30 | 江苏大学 | Ultrahigh-pressure water jet road mark line cleaning effect forecasting method and device |
CN106934451A (en) * | 2015-12-29 | 2017-07-07 | 扬州大学 | A kind of BP neural network WSN forest fire crime prevention systems based on ant group optimization |
CN107369043A (en) * | 2017-07-19 | 2017-11-21 | 河海大学常州校区 | A kind of used car price evaluation optimized algorithm based on BP neural network |
-
2018
- 2018-07-25 CN CN201810825158.0A patent/CN109034898A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103955743A (en) * | 2014-04-22 | 2014-07-30 | 江苏大学 | Ultrahigh-pressure water jet road mark line cleaning effect forecasting method and device |
CN106934451A (en) * | 2015-12-29 | 2017-07-07 | 扬州大学 | A kind of BP neural network WSN forest fire crime prevention systems based on ant group optimization |
CN107369043A (en) * | 2017-07-19 | 2017-11-21 | 河海大学常州校区 | A kind of used car price evaluation optimized algorithm based on BP neural network |
Non-Patent Citations (1)
Title |
---|
张艳蕊: "基于改进蚁群算法的BP神经网络优化的研究与应用", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111523916A (en) * | 2019-02-01 | 2020-08-11 | 上汽通用汽车有限公司 | Vehicle price evaluation system and method |
CN111724189A (en) * | 2019-06-27 | 2020-09-29 | 上海妃鱼网络科技有限公司 | A second-hand commodity valuation method based on big data |
CN110322297A (en) * | 2019-07-16 | 2019-10-11 | 山东科技大学 | Medium-and-large-sized stamping die quotation prediction technique based on BP neural network |
CN110544135A (en) * | 2019-09-10 | 2019-12-06 | 金瓜子科技发展(北京)有限公司 | Data processing method and device |
CN110909670A (en) * | 2019-11-21 | 2020-03-24 | 江苏理工学院 | An Unstructured Road Recognition Method |
CN112949813A (en) * | 2019-11-26 | 2021-06-11 | 张汉威 | Artificial intelligence training parameter iteration method |
CN111598620A (en) * | 2020-05-20 | 2020-08-28 | 上海贤合汽车信息咨询服务有限公司 | Remote accurate pricing system for second-hand vehicles |
CN112631890A (en) * | 2020-12-31 | 2021-04-09 | 西安理工大学 | Method for predicting cloud server resource performance based on LSTM-ACO model |
CN112631890B (en) * | 2020-12-31 | 2025-01-10 | 憨猴科技集团有限公司 | Method for predicting cloud server resource performance based on LSTM-ACO model |
CN113283161A (en) * | 2021-04-28 | 2021-08-20 | 江西核工业测绘院集团有限公司 | Landslide deformation displacement prediction method for improving BP neural network |
CN115619030A (en) * | 2022-10-28 | 2023-01-17 | 清华大学 | A method, device and electronic equipment for collaborative optimization of urban sewage system plant network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109034898A (en) | A kind of BP neural network used car price evaluation algorithm based on improvement ant colony | |
Li et al. | Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index | |
CN111428147A (en) | Social recommendation method of heterogeneous graph volume network combining social and interest information | |
CN108596335B (en) | Self-adaptive crowdsourcing method based on deep reinforcement learning | |
Jiang et al. | Data-driven generative design for mass customization: A case study | |
Jin et al. | A style-specific music composition neural network | |
CN109670121A (en) | Project level and feature level depth Collaborative Filtering Recommendation Algorithm based on attention mechanism | |
CN103136337A (en) | Distributed knowledge data mining device and mining method used for complex network | |
CN106408343A (en) | Modeling method and device for user behavior analysis and prediction based on BP neural network | |
CN107392399A (en) | A kind of SVM Sensory Quality of Cigarette Forecasting Methodologies based on improved adaptive GA-IAGA | |
Yin et al. | The improved genetic and BP hybrid algorithm and neural network economic early warning system | |
CN107481135A (en) | A kind of personal credit evaluation method and system based on BP neural network | |
CN108229750A (en) | A kind of stock yield Forecasting Methodology | |
CN115099450A (en) | Household carbon emission monitoring and accounting platform based on fusion model | |
CN117764227A (en) | Customer loss prediction device for gas station | |
Ghosh et al. | Scalable bid landscape forecasting in real-time bidding | |
Liu et al. | Wheel hub customization with an interactive artificial immune algorithm | |
CN117235331A (en) | A fair federated learning method for cross-domain social network node classification tasks | |
CN109993354A (en) | A method for forecasting energy consumption | |
Cheong et al. | Unveiling the relationship between economic growth and equality for developing countries | |
Xu et al. | MMusic: a hierarchical multi-information fusion method for deep music recommendation | |
Jošić et al. | A machine learning approach to forecast international trade: The case of Croatia | |
Qiao et al. | SRS-DNN: A deep neural network with strengthening response sparsity | |
She et al. | Research on advertising click-through rate prediction based on CNN-FM hybrid model | |
CN113326976A (en) | Port freight volume online prediction method and system based on time-space correlation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181218 |
|
RJ01 | Rejection of invention patent application after publication |