CN109030946B - 可设定频段的牵引供电系统频域阻抗测量方法 - Google Patents

可设定频段的牵引供电系统频域阻抗测量方法 Download PDF

Info

Publication number
CN109030946B
CN109030946B CN201810763207.2A CN201810763207A CN109030946B CN 109030946 B CN109030946 B CN 109030946B CN 201810763207 A CN201810763207 A CN 201810763207A CN 109030946 B CN109030946 B CN 109030946B
Authority
CN
China
Prior art keywords
down transformer
cycle
disturbance
secondary side
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810763207.2A
Other languages
English (en)
Other versions
CN109030946A (zh
Inventor
胡海涛
潘鹏宇
宋依桐
何正友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201810763207.2A priority Critical patent/CN109030946B/zh
Publication of CN109030946A publication Critical patent/CN109030946A/zh
Application granted granted Critical
Publication of CN109030946B publication Critical patent/CN109030946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种可设定频段的牵引供电系统频域阻抗测量装置及测量方法。其装置的主要构成是:降压变压器(T)的次边线圈串接开关(K)后接扰动电路;微处理器(MPU)通过驱动电路(DC)与扰动电路中IGBT器件的门极相连;扰动电路主要由:降压变压器、二极管、IGBT器件、电阻组成;该装置能对牵引供电系统进行设定频段的频域阻抗特性测量;使用该装置进行牵引供电系统频域阻抗测量,其测量数据处理量小、测量效率高、测出的阻抗特性及谐振频率精度高、更准确可靠。

Description

可设定频段的牵引供电系统频域阻抗测量方法
技术领域
本发明涉及一种牵引供电系统频域阻抗测量装置及测量方法。
背景技术
截止2016年底,我国电气化铁路总里程已达7.4万公里,铁路电气化率达60%以上,电力牵引完成运输任务比重超过80%。同时,电气化铁路以每年平均6640公里的速度持续扩展,预计到2030年,铁路电气化里程将达约15万公里。电气化铁路中最重要的电气装置是牵引供电系统。牵引供电系统含有大量的感性和容性元件,感性与容性元件的相互匹配会给牵引供电系统带来较多的谐振点。而以电力电子变流器作为动力变换单元的电力机车,则会给牵引供电系统带来大量的谐波;牵引供电系统自身也具有一定量的谐波。当这些谐波频率与谐振点频率相匹配时,会发生谐波谐振现象,严重时会导致断路器误动、线路损坏、牵引电机故障及牵引闭锁等问题。而阻抗测量技术能够精确得到牵引供电系统的阻抗特性,从而精确地获取系统的谐振点频率,通过在这些谐振点频率处添加滤波器,从而滤除谐振点处的谐波,避免谐波谐振的发生,对保障牵引供电系统安全稳定运行有重要作用。
现有的牵引供电系统频域阻抗特性测量装置是分析、测出宽频段的各个频点的阻抗,进而得到系统的谐振点频率。其扰动信号发生装置产生的宽频段扰动信号的频带固定、不能进行调节和控制;当其频带过宽时,会导致测量数据处理量大、测量效率低、测出的阻抗特性及谐振频率精度低;而当其频带过窄时,会导致谐振频率的漏测,测出的阻抗特性及谐振频率准确性低和可靠性差。
发明内容:
本发明的第一发明目的在于提供一种可设定测量频段的牵引供电系统频域阻抗测量装置,该装置能对牵引供电系统阻抗特性进行定频段的频域阻抗测量。
本发明实现其第一发明目的所采用的技术方案是,一种可设定频段的牵引供电系统频域阻抗测量装置,包括接在接触网和钢轨之间的降压变压器的原边线圈,降压变压器的次边线圈串接开关后接扰动电路;电流传感器安装在接触网和降压变压器的原边之间,电压传感器并联安装在降压变压器的原边端口;电流传感器、电压传感器与信号调理器相连;信号调理器与微处理器相连;同时,微处理器还通过驱动电路与扰动电路中IGBT器件的门极相连;
其特征在于:所述的扰动电路由正半周扰动电路和负半周扰动电路组成,其中:
正半周扰动电路的组成是:降压变压器次边的上端与二极管一的正极相连;二极管一的负极与IGBT器件一的集电极相连,IGBT器件一的发射极通过电阻一与二极管三的负极相连;二极管三的正极与二极管一的正极相连;IGBT器件一的发射极还通过电阻三与降压变压器次边的下端相连;IGBT器件一的门极与驱动电路相连;
负半周扰动电路的组成是:降压变压器次边的上端与二极管二的负极相连;二极管二的正极与IGBT器件二的发射极相连,IGBT器件二的集电极通过电阻二与二极管四的正极相连;二极管四的负极与二极管二的负极相连;IGBT器件二的集电极还通过电阻三与降压变压器次边的下端相连;IGBT器件二的门极与驱动电路相连。
本发明的第二发明目的在于提供一种使用上述的可设定测量频段的牵引供电系统频域阻抗测量装置对牵引供电系统频域阻抗特性进行测量的方法,该方法的测量数据处理量小、测量效率高、测出的阻抗特性及谐振频率,更精确、可靠。
本发明实现其第二发明目的,所采用的技术方案是,一种使用上述的可设定测量频段的牵引供电系统频域阻抗测量装置,对牵引供电系统进行频域阻抗的测量方法,其步骤是:
A、控制信号产生:
微处理器产生设定频段的鸟鸣信号y(t),所述的鸟鸣信号y(t)为在频率变化周期内,频率随时间线性变换的变频正弦信号,其数学表达式为:y(t)=sin(2π(f0+(f1-f0)t/Ts)t),其中,t为时间,Ts为频率变化周期,f0为设定频段的最低频率值,f1为设定频段的最高频率值;微处理器通过变频正弦信号y(t)得到频率从f0线性变换到f1的鸟鸣控制信号yP(t),闭合开关,微处理器通过驱动电路将鸟鸣控制信号yP(t)传送至扰动电路中IGBT器件一和IGBT器件二的门极,以控制IGBT器件一和IGBT器件二的开、闭;
B、扰动信号的产生
B1、正半周扰动
降压变压器的原边电压处于正半周时,降压变压器的次边上端的正极性电压被二极管二和二极管四的负极隔断,负半周扰动电路断开、不工作;正半周扰动电路工作,其中:
降压变压器次边上端、二极管一、IGBT器件一、电阻三和降压变压器次边下端依次相连,形成正半周小电阻支路;降压变压器次边上端、二极管三、电阻一、电阻三和降压变压器次边下端依次相连,形成正半周大电阻支路;
当微处理器传送的鸟鸣控制信号yP(t)=1时:正半周小电阻支路导通,正半周大电阻支路被正半周小电阻支路旁路,降压变压器次边上端的正极性电流流过正半周小电阻支路回到降压变压器次边下端;
当微处理器传送的鸟鸣控制信号yP(t)=0时:IGBT器件一关断,正半周小电阻支路断开,降压变压器次边上端的正极性电流流过正半周大电阻支路回到降压变压器次边下端;
正半周小电阻支路和正半周大电阻支路在频率从f0线性变换到f1的鸟鸣控制信号yP(t)的控制下交替流过正向电流,进而通过降压变压器在牵引供电系统中产生频率在f0到f1之间的正半周扰动;
B2、负半周扰动
降压变压器的原边电压处于负半周时,降压变压器次边上端的负极性电压被二极管一和二极管三的正极隔断,正半周扰动电路断开、不工作;负半周扰动电路工作,其中:
降压变压器次边上端、二极管二、IGBT器件二、电阻三和降压变压器次边下端依次相连,形成负半周小电阻支路;降压变压器次边上端、二极管四、电阻二、电阻三和降压变压器次边下端依次相连,形成负半周大电阻支路;
当微处理器传送的鸟鸣控制信号yP(t)=1时:负半周小电阻支路导通,负半周大电阻支路被负半周小电阻支路旁路,降压变压器次边上端的负极性电流流过负半周小电阻支路回到降压变压器次边下端;
当微处理器传送的鸟鸣控制信号yP(t)=0时:IGBT器件二关断,负半周小电阻支路断开,降压变压器次边上端的负极性电流流过负半周大电阻支路回到降压变压器次边下端;
负半周小电阻支路和负半周大电阻支路在频率从f0线性变换到f1的鸟鸣控制信号yP(t)的控制下交替流过负极性电流,进而通过降压变压器在牵引供电系统中产生频率在f0到f1之间的负半周扰动;
C、扰动时电压、电流信息的获取
扰动信号产生的同时,电压传感器将采集得到的牵引供电系统的扰动时电压信息u2(t)通过信号调理器处理后送微处理器;电流传感器将采集得到的牵引供电系统的扰动时电流信息i2(t)通过信号调理器处理后,送微处理器;
D、无扰动时电压、电流信息的获取
断开开关,扰动电路停止工作,牵引供电系统中不再有扰动信号;电压传感器将采集得到的牵引供电系统的无扰动时电压信息u1(t),通过信号调理器处理后送微处理器;电流传感器将采集得到的牵引供电系统的无扰动时电流信息i1(t),通过信号调理器处理后送微处理器;
E、获取频域阻抗
微处理器将无扰动时电压信息u1(t)、无扰动时电流信息i1(t)、扰动时电压信息u2(t)和扰动时电流信息i2(t),通过快速傅里叶变换分别得到无扰动时频域电压信息U1(f)、无扰动时频域电流信息I1(f)、扰动时频域电压信息U2(f)、扰动时频域电流信息I2(f);再计算得到频带(f0~f1)内的频域阻抗特性Z(f),其中f表示频率;进而得到牵引供电系统的谐振频率。
与现有技术相比,本发明的有益效果是:
一、本发明的扰动信号的频段范围可以自行、任意设定,可进行各种频段的宽频带阻抗测量,其适应性强。可根据牵引供电系统谐波特性的经验数据或历史数据,确定系统谐振点可能存在的频域范围。测量时,即将该频域范围作为扰动信号的设定频段,就能得到系统的频域阻抗及谐振点频率;而不需要对过宽频域范围内的阻抗进行测量,其测量数据处理量小、测量效率高、测出的阻抗特性及谐振频率精度高;也避免了测量频带过窄导致的谐振频率的漏测,其测出的阻抗特性、谐振频率更准确、可靠。
二、本发明的扰动电路中的四个扰动支路中,只有两个支路需要使用昂贵的大功率IGBT器件,IGBT器件使用量减少一半,装置的制造、维护成本低,利于大规模推广使用。
下面结合附图和具体实施方式对本发明作进一步的详细说明。
附图说明
图1为本发明实施例的装置的电路示意图。
具体实施方式
图1示出,本发明的一种具体实施方式是,一种可设定频段的牵引供电系统频域阻抗测量装置,包括接在接触网C和钢轨R之间的降压变压器T的原边线圈,降压变压器T的次边线圈串接开关K后接扰动电路;电流传感器CT安装在接触网C和降压变压器T的原边之间,电压传感器PT并联安装在降压变压器T的原边端口;电流传感器CT、电压传感器PT与信号调理器SP相连;信号调理器SP与微处理器MPU相连;同时,微处理器MPU还通过驱动电路DC与扰动电路中IGBT器件的门极相连;
其特征在于:所述的扰动电路由正半周扰动电路DT1和负半周扰动电路DT2组成,其中:
正半周扰动电路DT1的组成是:降压变压器T次边的上端与二极管一D1的正极相连;二极管一D1的负极与IGBT器件一T1的集电极相连,IGBT器件一T1的发射极通过电阻一R1与二极管三D3的负极相连;二极管三D3的正极与二极管一D1的正极相连;IGBT器件一T1的发射极还通过电阻三R3与降压变压器T次边的下端相连;IGBT器件一T1的门极与驱动电路DC相连;
负半周扰动电路DT2的组成是:降压变压器T次边的上端与二极管二D2的负极相连;二极管二D2的正极与IGBT器件二T2的发射极相连,IGBT器件二T2的集电极通过电阻二R2与二极管四D4的正极相连;二极管四D4的负极与二极管二D2的负极相连;IGBT器件二T2的集电极还通过电阻三R3与降压变压器T次边的下端相连;IGBT器件二T2的门极与驱动电路DC相连。
一种使用本例的可设定测量频段的牵引供电系统频域阻抗测量装置,对牵引供电系统进行频域阻抗的测量方法,其步骤是:
A、控制信号产生:
微处理器MPU产生设定频段的鸟鸣信号y(t),所述的鸟鸣信号y(t)为在频率变化周期内,频率随时间线性变换的变频正弦信号,其数学表达式为:y(t)=sin(2π(f0+(f1-f0)t/Ts)t),其中,t为时间,Ts为频率变化周期,f0为设定频段的最低频率值,f1为设定频段的最高频率值;微处理器MPU通过变频正弦信号y(t)得到频率从f0线性变换到f1的鸟鸣控制信号yP(t),闭合开关K,微处理器MPU通过驱动电路DC将鸟鸣控制信号yP(t)传送至扰动电路中IGBT器件一T1和IGBT器件二T2的门极,以控制IGBT器件一T1和IGBT器件二T2的开、闭;
B、扰动信号的产生
B1、正半周扰动
降压变压器T的原边电压处于正半周时,降压变压器T的次边上端的正极性电压被二极管二D2和二极管四D4的负极隔断,负半周扰动电路DT2断开、不工作;正半周扰动电路DT1工作,其中:
降压变压器T次边上端、二极管一D1、IGBT器件一T1、电阻三R3和降压变压器T次边下端依次相连,形成正半周小电阻支路;降压变压器T次边上端、二极管三D3、电阻一R1、电阻三R3和降压变压器T次边下端依次相连,形成正半周大电阻支路;
当微处理器MPU传送的鸟鸣控制信号yP(t)=1时:正半周小电阻支路导通,正半周大电阻支路被正半周小电阻支路旁路,降压变压器T次边上端的正极性电流流过正半周小电阻支路回到降压变压器T次边下端;
当微处理器MPU传送的鸟鸣控制信号yP(t)=0时:IGBT器件一T1关断,正半周小电阻支路断开,降压变压器T次边上端的正极性电流流过正半周大电阻支路回到降压变压器T次边下端;
正半周小电阻支路和正半周大电阻支路在频率从f0线性变换到f1的鸟鸣控制信号yP(t)的控制下交替流过正向电流,进而通过降压变压器T在牵引供电系统中产生频率在f0到f1之间的正半周扰动;
B2、负半周扰动
降压变压器T的原边电压处于负半周时,降压变压器T次边上端的负极性电压被二极管一D1和二极管三D3的正极隔断,正半周扰动电路DT1断开、不工作;负半周扰动电路DT2工作,其中:
降压变压器T次边上端、二极管二D2、IGBT器件二T2、电阻三R3和降压变压器T次边下端依次相连,形成负半周小电阻支路;降压变压器T次边上端、二极管四D4、电阻二R2、电阻三R3和降压变压器T次边下端依次相连,形成负半周大电阻支路;
当微处理器MPU传送的鸟鸣控制信号yP(t)=1时:负半周小电阻支路导通,负半周大电阻支路被负半周小电阻支路旁路,降压变压器T次边上端的负极性电流流过负半周小电阻支路回到降压变压器T次边下端;
当微处理器MPU传送的鸟鸣控制信号yP(t)=0时:IGBT器件二T2关断,负半周小电阻支路断开,降压变压器T次边上端的负极性电流流过负半周大电阻支路回到降压变压器T次边下端;
负半周小电阻支路和负半周大电阻支路在频率从f0线性变换到f1的鸟鸣控制信号yP(t)的控制下交替流过负极性电流,进而通过降压变压器T在牵引供电系统中产生频率在f0到f1之间的负半周扰动;
C、扰动时电压、电流信息的获取
扰动信号产生的同时,电压传感器PT将采集得到的牵引供电系统的扰动时电压信息u2(t)通过信号调理器SP处理后送微处理器MPU;电流传感器CT将采集得到的牵引供电系统的扰动时电流信息i2(t)通过信号调理器SP处理后,送微处理器MPU;
D、无扰动时电压、电流信息的获取
断开开关K,扰动电路停止工作,牵引供电系统中不再有扰动信号;电压传感器PT将采集得到的牵引供电系统的无扰动时电压信息u1(t),通过信号调理器SP处理后送微处理器MPU;电流传感器CT将采集得到的牵引供电系统的无扰动时电流信息i1(t),通过信号调理器SP处理后送微处理器MPU;
E、获取频域阻抗
微处理器MPU将无扰动时电压信息u1(t)、无扰动时电流信息i1(t)、扰动时电压信息u2(t)和扰动时电流信息i2(t),通过快速傅里叶变换分别得到无扰动时频域电压信息U1(f)、无扰动时频域电流信息I1(f)、扰动时频域电压信息U2(f)、扰动时频域电流信息I2(f);再计算得到频带(f0~f1)内的频域阻抗特性Z(f),其中f表示频率;进而得到牵引供电系统的谐振频率。/>

Claims (1)

1.一种可设定频段的牵引供电系统的频域阻抗测量方法,其使用的频域阻抗测量装置,包括接在接触网(C)和钢轨(R)之间的降压变压器(T)的原边线圈,降压变压器(T)的次边线圈串接开关(K)后接扰动电路;电流传感器(CT)安装在接触网(C)和降压变压器(T)的原边之间,电压传感器(PT)并联安装在降压变压器(T)的原边端口;电流传感器(CT)、电压传感器(PT)与信号调理器(SP)相连;信号调理器(SP)与微处理器(MPU)相连;同时,微处理器(MPU)还通过驱动电路(DC)与扰动电路中IGBT器件的门极相连;
其特征在于:所述的扰动电路由正半周扰动电路(DT1)和负半周扰动电路(DT2)组成,其中:
正半周扰动电路(DT1)的组成是:降压变压器(T)次边的上端与二极管一(D1)的正极相连;二极管一(D1)的负极与IGBT器件一(T1)的集电极相连,IGBT器件一(T1)的发射极通过电阻一(R1)与二极管三(D3)的负极相连;二极管三(D3)的正极与二极管一(D1)的正极相连;IGBT器件一(T1)的发射极还通过电阻三(R3)与降压变压器(T)次边的下端相连;IGBT器件一(T1)的门极与驱动电路(DC)相连;
负半周扰动电路(DT2)的组成是:降压变压器(T)次边的上端与二极管二(D2)的负极相连;二极管二(D2)的正极与IGBT器件二(T2)的发射极相连,IGBT器件二(T2)的集电极通过电阻二(R2)与二极管四(D4)的正极相连;二极管四(D4)的负极与二极管二(D2)的负极相连;IGBT器件二(T2)的集电极还通过电阻三(R3)与降压变压器(T)次边的下端相连;IGBT器件二(T2)的门极与驱动电路(DC)相连;
使用所述的频域阻抗测量装置,对牵引供电系统进行频域阻抗的测量方法,其步骤是:
A、控制信号产生:
微处理器(MPU)产生设定频段的鸟鸣信号y(t),所述的鸟鸣信号y(t)为在频率变化周期内,频率随时间线性变换的变频正弦信号,其数学表达式为:y(t)=sin(2π(f0+(f1-f0)t/Ts)t),其中,t为时间,Ts为频率变化周期,f0为设定频段的最低频率值,f1为设定频段的最高频率值;微处理器(MPU)通过变频正弦信号y(t)得到频率从f0线性变换到f1的鸟鸣控制信号yP(t),闭合开关(K),微处理器(MPU)通过驱动电路(DC)将鸟鸣控制信号yP(t)传送至扰动电路中IGBT器件一(T1)和IGBT器件二(T2)的门极,以控制IGBT器件一(T1)和IGBT器件二(T2)的开、闭;
B、扰动信号的产生
B1、正半周扰动
降压变压器(T)的原边电压处于正半周时,降压变压器(T)的次边上端的正极性电压被二极管二(D2)和二极管四(D4)的负极隔断,负半周扰动电路(DT2)断开、不工作;正半周扰动电路(DT1)工作,其中:
降压变压器(T)次边上端、二极管一(D1)、IGBT器件一(T1)、电阻三(R3)和降压变压器(T)次边下端依次相连,形成正半周小电阻支路;降压变压器(T)次边上端、二极管三(D3)、电阻一(R1)、电阻三(R3)和降压变压器(T)次边下端依次相连,形成正半周大电阻支路;
当微处理器(MPU)传送的鸟鸣控制信号yP(t)=1时:正半周小电阻支路导通,正半周大电阻支路被正半周小电阻支路旁路,降压变压器(T)次边上端的正极性电流流过正半周小电阻支路回到降压变压器(T)次边下端;
当微处理器(MPU)传送的鸟鸣控制信号yP(t)=0时:IGBT器件一(T1)关断,正半周小电阻支路断开,降压变压器(T)次边上端的正极性电流流过正半周大电阻支路回到降压变压器(T)次边下端;
正半周小电阻支路和正半周大电阻支路在频率从f0线性变换到f1的鸟鸣控制信号yP(t)的控制下交替流过正向电流,进而通过降压变压器(T)在牵引供电系统中产生频率在f0到f1之间的正半周扰动;
B2、负半周扰动
降压变压器(T)的原边电压处于负半周时,降压变压器(T)次边上端的负极性电压被二极管一(D1)和二极管三(D3)的正极隔断,正半周扰动电路(DT1)断开、不工作;负半周扰动电路(DT2)工作,其中:
降压变压器(T)次边上端、二极管二(D2)、IGBT器件二(T2)、电阻三(R3)和降压变压器(T)次边下端依次相连,形成负半周小电阻支路;降压变压器(T)次边上端、二极管四(D4)、电阻二(R2)、电阻三(R3)和降压变压器(T)次边下端依次相连,形成负半周大电阻支路;
当微处理器(MPU)传送的鸟鸣控制信号yP(t)=1时:负半周小电阻支路导通,负半周大电阻支路被负半周小电阻支路旁路,降压变压器(T)次边上端的负极性电流流过负半周小电阻支路回到降压变压器(T)次边下端;
当微处理器(MPU)传送的鸟鸣控制信号yP(t)=0时:IGBT器件二(T2)关断,负半周小电阻支路断开,降压变压器(T)次边上端的负极性电流流过负半周大电阻支路回到降压变压器(T)次边下端;
负半周小电阻支路和负半周大电阻支路在频率从f0线性变换到f1的鸟鸣控制信号yP(t)的控制下交替流过负极性电流,进而通过降压变压器(T)在牵引供电系统中产生频率在f0到f1之间的负半周扰动;
C、扰动时电压、电流信息的获取
扰动信号产生的同时,电压传感器(PT)将采集得到的牵引供电系统的扰动时电压信息u2(t)通过信号调理器(SP)处理后送微处理器(MPU);电流传感器(CT)将采集得到的牵引供电系统的扰动时电流信息i2(t)通过信号调理器(SP)处理后,送微处理器(MPU);
D、无扰动时电压、电流信息的获取
断开开关(K),扰动电路停止工作,牵引供电系统中不再有扰动信号;电压传感器(PT)将采集得到的牵引供电系统的无扰动时电压信息u1(t),通过信号调理器(SP)处理后送微处理器(MPU);电流传感器(CT)将采集得到的牵引供电系统的无扰动时电流信息i1(t),通过信号调理器(SP)处理后送微处理器(MPU);
E、获取频域阻抗
微处理器(MPU)将无扰动时电压信息u1(t)、无扰动时电流信息i1(t)、扰动时电压信息u2(t)和扰动时电流信息i2(t),通过快速傅里叶变换分别得到无扰动时频域电压信息U1(f)、无扰动时频域电流信息I1(f)、扰动时频域电压信息U2(f)、扰动时频域电流信息I2(f);再计算得到频带(f0~f1)内的频域阻抗特性Z(f),其中f表示频率;进而得到牵引供电系统的谐振频率。
CN201810763207.2A 2018-07-12 2018-07-12 可设定频段的牵引供电系统频域阻抗测量方法 Active CN109030946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810763207.2A CN109030946B (zh) 2018-07-12 2018-07-12 可设定频段的牵引供电系统频域阻抗测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810763207.2A CN109030946B (zh) 2018-07-12 2018-07-12 可设定频段的牵引供电系统频域阻抗测量方法

Publications (2)

Publication Number Publication Date
CN109030946A CN109030946A (zh) 2018-12-18
CN109030946B true CN109030946B (zh) 2023-10-20

Family

ID=64641088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810763207.2A Active CN109030946B (zh) 2018-07-12 2018-07-12 可设定频段的牵引供电系统频域阻抗测量方法

Country Status (1)

Country Link
CN (1) CN109030946B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716086B (zh) * 2019-09-30 2020-10-13 北京科技大学 一种基于稀土镍基钙钛矿化合物的频率探测与滤波方法
CN111025018A (zh) * 2019-12-19 2020-04-17 北京交通大学 基于小信号扰动注入的对牵引网和机车阻抗测试的方法
CN112083237B (zh) * 2020-07-31 2021-06-29 西安交通大学 一种用于大尺度电气设备宽频特性时域测量方法及系统
CN112964935B (zh) * 2021-02-04 2021-11-02 西南交通大学 一种可控宽频带电网阻抗测量装置及其测量方法
CN114236408A (zh) * 2021-12-17 2022-03-25 西南交通大学 一种锂电池可控宽频带阻抗测量方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203608B1 (en) * 2006-06-16 2007-04-10 International Business Machines Corporation Impedane measurement of chip, package, and board power supply system using pseudo impulse response
CN101170284A (zh) * 2007-09-28 2008-04-30 清华大学 用于电气化铁路供电的单相统一电能质量控制器
CN105738705A (zh) * 2016-04-08 2016-07-06 西南交通大学 牵引供电系统谐波阻抗测量装置及其测量方法
CN107247185A (zh) * 2017-06-05 2017-10-13 西南交通大学 牵引供电系统谐波阻抗测量装置及其试验方法
CN208636375U (zh) * 2018-07-12 2019-03-22 西南交通大学 一种可设定频段的牵引供电系统频域阻抗测量装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203608B1 (en) * 2006-06-16 2007-04-10 International Business Machines Corporation Impedane measurement of chip, package, and board power supply system using pseudo impulse response
CN101170284A (zh) * 2007-09-28 2008-04-30 清华大学 用于电气化铁路供电的单相统一电能质量控制器
CN105738705A (zh) * 2016-04-08 2016-07-06 西南交通大学 牵引供电系统谐波阻抗测量装置及其测量方法
CN107247185A (zh) * 2017-06-05 2017-10-13 西南交通大学 牵引供电系统谐波阻抗测量装置及其试验方法
CN208636375U (zh) * 2018-07-12 2019-03-22 西南交通大学 一种可设定频段的牵引供电系统频域阻抗测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Series transformer based diode-bridge-type solid state fault current limiter;Amir HEIDARY;Frontiers of Information Technology & Electronic Engineering;第16卷(第9期);769-783 *

Also Published As

Publication number Publication date
CN109030946A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109030946B (zh) 可设定频段的牵引供电系统频域阻抗测量方法
CN102707190B (zh) 地铁牵引供电系统直流侧短路故障测距装置及方法
CN104965152A (zh) 一种电缆绝缘状态诊断方法及诊断装置
CN105738705B (zh) 牵引供电系统谐波阻抗的测量方法
CN104090182A (zh) 交流电气化铁道牵引网阻抗频率特性测试装置
CN104155525A (zh) 一种多频扫描式杆塔接地电阻测量装置及方法
CN102508121B (zh) 多端柔性直流输电系统的直流线路单端故障定位方法
CN103207351A (zh) 一种基于重合闸的输电线路故障定位方法
CN102096019A (zh) 小电流接地系统单相接地故障测距方法和装置
CN104965161B (zh) 一种电缆绝缘介质谱及局部放电缺陷检测方法及装置
CN110554239B (zh) 一种绝缘电阻的在线测试装置
CN105699779A (zh) 一种级联h桥型牵引网阻抗测试谐波发生器及测试方法
CN107247185A (zh) 牵引供电系统谐波阻抗测量装置及其试验方法
CN109917192A (zh) 基于衰减振荡波的功率mosfet器件导通电阻和输出电容的测试装置
CN110703045A (zh) 一种基于rl模型算法的直流配电网故障测距方法
Nussbaumer et al. Transient distribution of voltages in induction machine stator windings resulting from switching of power electronics
CN105044470A (zh) 一种基于谐振原理的变流器直流电容容量检测方法
CN109581171A (zh) 高频电流法复合电场电力电缆中间接头局部放电检测系统
CN104215867A (zh) 励磁变压器低压侧单相接地故障在线识别方法
CN201859178U (zh) 谐波电能计量装置
CN102323488A (zh) 一种基于谐波分量的输电线路正序电容抗干扰测量方法
CN104965160B (zh) 一种电缆局部放电检测方法及检测装置
CN102323487A (zh) 基于谐波分量的输电线路零序电容抗干扰测量方法
CN208636375U (zh) 一种可设定频段的牵引供电系统频域阻抗测量装置
CN103558535A (zh) 在轨运行状态下霍尔电推力器放电电流低频振荡的测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant