CN109013685A - A kind of hydrocarbon contamination soil repair system based on thermal desorption in situ - Google Patents
A kind of hydrocarbon contamination soil repair system based on thermal desorption in situ Download PDFInfo
- Publication number
- CN109013685A CN109013685A CN201810739168.2A CN201810739168A CN109013685A CN 109013685 A CN109013685 A CN 109013685A CN 201810739168 A CN201810739168 A CN 201810739168A CN 109013685 A CN109013685 A CN 109013685A
- Authority
- CN
- China
- Prior art keywords
- gas
- pressure
- thermal desorption
- control
- situ thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 101
- 238000003795 desorption Methods 0.000 title claims abstract description 82
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 82
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 15
- 229930195733 hydrocarbon Natural products 0.000 title claims description 15
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 15
- 230000008439 repair process Effects 0.000 title description 3
- 238000011109 contamination Methods 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 162
- 239000007789 gas Substances 0.000 claims abstract description 138
- 239000007788 liquid Substances 0.000 claims abstract description 107
- 238000000926 separation method Methods 0.000 claims abstract description 83
- 238000001179 sorption measurement Methods 0.000 claims abstract description 79
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 238000005067 remediation Methods 0.000 claims abstract description 43
- 238000010438 heat treatment Methods 0.000 claims description 61
- 239000002699 waste material Substances 0.000 claims description 39
- 238000007789 sealing Methods 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 17
- 239000002912 waste gas Substances 0.000 claims description 15
- 238000000746 purification Methods 0.000 claims description 14
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000004064 recycling Methods 0.000 abstract description 4
- 239000010815 organic waste Substances 0.000 abstract description 3
- 230000026676 system process Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 239000003344 environmental pollutant Substances 0.000 description 6
- 231100000719 pollutant Toxicity 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000012855 volatile organic compound Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 3
- 239000002957 persistent organic pollutant Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000003900 soil pollution Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002680 soil gas Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/06—Reclamation of contaminated soil thermally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C2101/00—In situ
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Treating Waste Gases (AREA)
Abstract
本发明公开了一种基于原位热脱附的烃类污染土壤修复系统,包括:原位热脱附装置、控制装置、气液分离装置、活性炭吸附装置、排气检测装置;其中,原位热脱附装置与气液分离装置连接;气液分离装置与活性炭吸附装置连接;活性炭吸附装置与排气检测装置连接;控制装置分别与原位热脱附装置、气液分离装置、活性炭吸附装置和排气检测装置连接,对原位热脱附装置、气液分离装置、活性炭吸附装置和排气检测装置协同控制完成烃类污染土壤修复系统过程。该烃类污染土壤修复系统能实现有机废气的吸附和活性炭的循环利用,成本低,撬装化,符合我国当下可持续发展的国情需求。
The invention discloses a hydrocarbon-contaminated soil remediation system based on in-situ thermal desorption, comprising: an in-situ thermal desorption device, a control device, a gas-liquid separation device, an activated carbon adsorption device, and an exhaust gas detection device; The thermal desorption device is connected with the gas-liquid separation device; the gas-liquid separation device is connected with the activated carbon adsorption device; the activated carbon adsorption device is connected with the exhaust gas detection device; the control device is respectively connected with the in-situ thermal desorption device, the gas-liquid separation device, and the activated carbon adsorption device It is connected with the exhaust detection device, and the in-situ thermal desorption device, the gas-liquid separation device, the activated carbon adsorption device and the exhaust detection device are coordinated and controlled to complete the hydrocarbon-contaminated soil remediation system process. The hydrocarbon-contaminated soil remediation system can realize the adsorption of organic waste gas and the recycling of activated carbon. It is low-cost and skid-mounted, which meets the current national conditions of sustainable development in my country.
Description
技术领域technical field
本发明涉及环境工程领域,尤其涉及一种基于原位热脱附(In Situ ThermalDesorption,ISTD)的烃类污染土壤修复系统。The invention relates to the field of environmental engineering, in particular to a hydrocarbon-contaminated soil remediation system based on in situ thermal desorption (In Situ Thermal Desorption, ISTD).
背景技术Background technique
当今,环境危机问题日益增强,已发布的《全国土壤污染状况调查公报》显示,超三成土地受到侵蚀,近五分之一耕地遭污染。土壤污染直接导致农作物的减产,生物品质不断下降,严重威胁人体健康。国家最新生态环境保护规划中,要求在部分污染地块集中分布的城市,要规范、有序开展再开发利用污染地块治理与修复烃类污染物。烃类污染物在一定条件下直接从土壤中解吸附,产生挥发性的有机化合物(Volatile Organic Compounds,VOCs),而VOCs对增强大气氧化性的作用比氮氧化物NOx更加重要,是造成严重雾霾污染的最重要污染物。如果任凭烃类污染物在土壤中聚集,会严重污染环境卫生,造成能源浪费,安全隐患以及经济损失等一系列问题,对人类生命健康造成了威胁。Today, the environmental crisis is increasing. The published "National Soil Pollution Survey Bulletin" shows that more than 30% of the land has been eroded, and nearly one-fifth of the cultivated land has been polluted. Soil pollution directly leads to the reduction of crop production and the continuous decline of biological quality, which seriously threatens human health. In the latest national ecological and environmental protection plan, cities that are concentrated in some polluted land are required to standardize and orderly carry out the redevelopment and utilization of polluted land to treat and repair hydrocarbon pollutants. Hydrocarbon pollutants are directly desorbed from the soil under certain conditions to produce volatile organic compounds (Volatile Organic Compounds, VOCs), and VOCs are more important than nitrogen oxides (NOx) in enhancing atmospheric oxidation, which is the cause of severe fog. The most important pollutant of haze pollution. If hydrocarbon pollutants are allowed to accumulate in the soil, it will seriously pollute environmental sanitation, cause a series of problems such as energy waste, safety hazards and economic losses, and pose a threat to human life and health.
土壤气相抽提SVE技术是当前有机污染物土壤处置技术中十分有效的技术之一。在修复过程中,为提高SVE技术的工作效率,经常采取对污染场地加热的方式,使有机污染物从污染介质中快速分离,以缩短修复周期。但目前的土壤气相抽提SVE技术多采用真空设备产生负压驱使空气流过土壤孔隙,从而夹带VOCs流向抽取系统,处理过程中控制不合理,存在很大的安全隐患。Soil gas phase extraction (SVE) technology is one of the most effective technologies in the current soil disposal technology of organic pollutants. In the remediation process, in order to improve the working efficiency of SVE technology, the method of heating the contaminated site is often adopted to quickly separate the organic pollutants from the polluted medium to shorten the remediation period. However, the current soil vapor extraction SVE technology mostly uses vacuum equipment to generate negative pressure to drive air through the soil pores, thereby entraining VOCs and flowing to the extraction system. The control process is unreasonable, and there are great safety hazards.
发明内容Contents of the invention
基于现有技术所存在的问题,本发明的目的是提供一种基于原位热脱附的烃类污染土壤修复系统,其处理成本低,修复效果好,能对气相形式提取出来污染物处理后达标排放。Based on the problems existing in the prior art, the purpose of the present invention is to provide a hydrocarbon-contaminated soil remediation system based on in-situ thermal desorption, which has low treatment cost and good remediation effect, and can extract pollutants in the gas phase after treatment. Discharge.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明实施方式提供一种基于原位热脱附的烃类污染土壤修复系统,包括:The embodiment of the present invention provides a hydrocarbon-contaminated soil remediation system based on in-situ thermal desorption, including:
原位热脱附装置、控制装置、气液分离装置、活性炭吸附装置和排气检测装置;其中,In-situ thermal desorption device, control device, gas-liquid separation device, activated carbon adsorption device and exhaust gas detection device; wherein,
所述原位热脱附装置分别设有空气导入管、有机气体导出口、压力控制端和温度控制端;The in-situ thermal desorption device is respectively provided with an air inlet pipe, an organic gas outlet, a pressure control end and a temperature control end;
所述原位热脱附装置的有机气体导出口与所述气液分离装置的有机气体导出管连接;The organic gas outlet of the in-situ thermal desorption device is connected to the organic gas outlet pipe of the gas-liquid separation device;
所述气液分离装置设有分离废气导出管,该分离废气导出管与所述活性炭吸附装置连接;The gas-liquid separation device is provided with a separation waste gas outlet pipe, and the separation waste gas outlet pipe is connected with the activated carbon adsorption device;
所述活性炭吸附装置设有排气管,该排气管与所述排气检测装置连接;The activated carbon adsorption device is provided with an exhaust pipe, and the exhaust pipe is connected with the exhaust detection device;
所述控制装置通过第一压力控制线路、温度控制线路分别与所述原位热脱附装置的压力控制端和温度控制端电气连接,能检测及控制所述原位热脱附装置的压力和温度;The control device is electrically connected to the pressure control terminal and the temperature control terminal of the in-situ thermal desorption device respectively through the first pressure control circuit and the temperature control circuit, and can detect and control the pressure and temperature of the in-situ thermal desorption device. temperature;
所述控制装置通过第二压力控制线路与所述气液分离装置电气连接,能控制气液分离装置的压力;The control device is electrically connected to the gas-liquid separation device through a second pressure control circuit, and can control the pressure of the gas-liquid separation device;
所述控制装置通过第三压力控制线路与所述活性炭吸附装置电气连接,能控制所述活性炭吸附装置的压力;The control device is electrically connected to the activated carbon adsorption device through a third pressure control circuit, and can control the pressure of the activated carbon adsorption device;
所述排气检测装置设有数据传输线路,所述控制装置通过所述数据传输线路与所述排气检测装置通信连接,能根据所述排气检测装置的检测结果控制气体排放。The exhaust detection device is provided with a data transmission line, and the control device communicates with the exhaust detection device through the data transmission line, and can control gas emission according to the detection result of the exhaust detection device.
由上述本发明提供的技术方案可以看出,本发明实施例提供的基于原位热脱附的烃类污染土壤修复系统,其有益效果为:It can be seen from the above-mentioned technical solutions provided by the present invention that the beneficial effects of the hydrocarbon-contaminated soil remediation system based on in-situ thermal desorption provided by the embodiments of the present invention are as follows:
通过设置有机连接的原位热脱附装置、气液分离装置和活性炭吸附装置相互配合,能实现将有机污染土壤中VOCs的去除、土壤挥发气体气液分离、有机废气吸附和活性炭的循环利用,处理成本低,符合可持续发展的国情;原位热脱附装置不需要真空设备产生负压,常压下工作,安全性更高;通过控制装置的机电控制与活性炭吸附装置配合,使基于原位热脱附的烃类污染土壤修复系统具有吸附净化油气、废物资源化和自动控制的作用,对经过活性炭罐装置净化后的气体浓度时时检测,确保系统处理后可以达标排放。By setting up an organically connected in-situ thermal desorption device, a gas-liquid separation device and an activated carbon adsorption device to cooperate with each other, the removal of VOCs in organically polluted soil, the gas-liquid separation of soil volatile gas, the adsorption of organic waste gas and the recycling of activated carbon can be realized. The treatment cost is low, which is in line with the national conditions of sustainable development; the in-situ thermal desorption device does not need vacuum equipment to generate negative pressure, and works under normal pressure, with higher safety; through the cooperation of the electromechanical control of the control device and the activated carbon adsorption device, the original The hydrocarbon-contaminated soil remediation system with potential thermal desorption has the functions of adsorption and purification of oil and gas, waste recycling and automatic control. It constantly detects the gas concentration after purification by the activated carbon tank device to ensure that the system can meet the discharge standards after treatment.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative work.
图1为本发明实施例提供的基于原位热脱附的烃类污染土壤修复系统示意图;Fig. 1 is a schematic diagram of a hydrocarbon-contaminated soil remediation system based on in-situ thermal desorption provided by an embodiment of the present invention;
图中:1-原位热脱附装置;2-控制装置;3-气液分离装置;4-活性炭吸附装置;5-排气检测装置;6-空气导入管;7-空气压缩机;8-第一气体流量计;9-电磁阀;10-第一压力表;11-有机污染土壤密封处理箱;12-第一温度计;13-第二温度计;14-第二压力表;15-加热井多孔外壳;16-加热井碳化硅棒;17-加热井电极;18-有机气体导出口;19-加热井;20-总控制系统平台;21-第一压力控制器;22-温度控制器;23-第二压力控制器;24-第三压力控制器;25-总控制系统线路;26-第一压力控制线路;27-温度控制线路;28-第二压力控制线路;29-第三压力控制线路;30-有机气体导出管;31-第一风机;32-冷凝器气体导入管;33-冷凝器;34-冷凝废液导出管;35-废液净化罐;36-气液分离罐导入管;37-气液分离罐;38-分离废液导出管;39-液位计;40-分离废气导出管;41-第二气体流量计;42-第二风机;43-活性炭吸附罐气体导入管;44-活性炭吸附罐;45-第三温度计;46-第三压力表;47-第四温度计;48-排气管;49-HC浓度检测仪;50-数据采集器;51-数据传输线路。In the figure: 1-in-situ thermal desorption device; 2-control device; 3-gas-liquid separation device; 4-activated carbon adsorption device; 5-exhaust detection device; 6-air inlet pipe; 7-air compressor; 8 -the first gas flow meter; 9-electromagnetic valve; 10-the first pressure gauge; 11-the sealed treatment box for organic polluted soil; 12-the first thermometer; 13-the second thermometer; 14-the second pressure gauge; 15-heating Well porous shell; 16-Heating well silicon carbide rod; 17-Heating well electrode; 18-Organic gas outlet; 19-Heating well; 20-General control system platform; 21-First pressure controller; 22-Temperature controller ; 23-second pressure controller; 24-third pressure controller; 25-general control system circuit; 26-first pressure control circuit; 27-temperature control circuit; 28-second pressure control circuit; 29-third Pressure control line; 30-organic gas outlet pipe; 31-first fan; 32-condenser gas inlet pipe; 33-condenser; 34-condensed waste liquid outlet pipe; 35-waste liquid purification tank; 36-gas-liquid separation Tank inlet pipe; 37-gas-liquid separation tank; 38-separation waste liquid outlet pipe; 39-liquid level gauge; 40-separation waste gas outlet pipe; 41-second gas flow meter; 42-second fan; 43-activated carbon adsorption Tank gas inlet pipe; 44-activated carbon adsorption tank; 45-third thermometer; 46-third pressure gauge; 47-fourth thermometer; 48-exhaust pipe; 49-HC concentration detector; 50-data collector; 51 - Data transmission lines.
具体实施方式Detailed ways
下面结合本发明的具体内容,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the specific content of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
另需要说明的是本文中所提到的描述方位的“上”、“下”、“左”、“右”、“前、“后”除特殊说明均不特指该方位,只是为了描述方便,所述产品的放置方向不同其描述也不尽相同。本领域普通技术人员在没有做出创造性劳动前提下可理解的方位,都属于本发明的保护范围。It should also be noted that the "up", "down", "left", "right", "front, and back" mentioned in this article to describe the orientation do not refer to this orientation unless otherwise specified, and are just for the convenience of description The product is placed in different directions, and its description is also different. Orientations that can be understood by those of ordinary skill in the art without creative work all belong to the protection scope of the present invention.
如图1所示,本发明实施例提供一种基于原位热脱附的烃类污染土壤修复系统,包括:As shown in Figure 1, an embodiment of the present invention provides a hydrocarbon-contaminated soil remediation system based on in-situ thermal desorption, including:
原位热脱附装置1、控制装置2、气液分离装置3、活性炭吸附装置4和排气检测装置5;其中,In-situ thermal desorption device 1, control device 2, gas-liquid separation device 3, activated carbon adsorption device 4 and exhaust gas detection device 5; wherein,
原位热脱附装置1分别设有空气导入管6、有机气体导出口18、压力控制端和温度控制端;The in-situ thermal desorption device 1 is respectively provided with an air inlet pipe 6, an organic gas outlet 18, a pressure control end and a temperature control end;
原位热脱附装置1的有机气体导出口18与气液分离装置3的有机气体导出管30连接;The organic gas outlet 18 of the in-situ thermal desorption device 1 is connected to the organic gas outlet pipe 30 of the gas-liquid separation device 3;
气液分离装置3设有分离废气导出管40,该分离废气导出管40与活性炭吸附装置4连接;The gas-liquid separation device 3 is provided with a separation waste gas outlet pipe 40, and the separation waste gas outlet pipe 40 is connected with the activated carbon adsorption device 4;
活性炭吸附装置4设有排气管48,该排气管48与排气检测装置5连接;Activated carbon adsorption device 4 is provided with exhaust pipe 48, and this exhaust pipe 48 is connected with exhaust detection device 5;
控制装置2通过第一压力控制线路26、温度控制线路27分别与原位热脱附装置1的压力控制端和温度控制端电气连接,能检测及控制原位热脱附装置1的压力和温度;The control device 2 is electrically connected to the pressure control terminal and the temperature control terminal of the in-situ thermal desorption device 1 respectively through the first pressure control circuit 26 and the temperature control circuit 27, and can detect and control the pressure and temperature of the in-situ thermal desorption device 1 ;
控制装置2通过第二压力控制线路28与气液分离装置3电气连接,能控制气液分离装置3的压力;The control device 2 is electrically connected to the gas-liquid separation device 3 through the second pressure control circuit 28, and can control the pressure of the gas-liquid separation device 3;
控制装置2通过第三压力控制线路29与活性炭吸附装置4电气连接,能控制活性炭吸附装置4的压力;The control device 2 is electrically connected with the activated carbon adsorption device 4 through the third pressure control circuit 29, and can control the pressure of the activated carbon adsorption device 4;
排气检测装置5设有数据传输线路51,控制装置2通过数据传输线路51与排气检测装置5通信连接,能根据排气检测装置5的检测结果控制气体排放。The exhaust detection device 5 is provided with a data transmission line 51 , and the control device 2 communicates with the exhaust detection device 5 through the data transmission line 51 , and can control gas emission according to the detection result of the exhaust detection device 5 .
上述土壤修复系统中,控制装置2能协同控制原位热脱附装置1、气液分离装置3、活性炭吸附装置4和排气检测装置5完成对烃类污染土壤的修复过程。In the above soil remediation system, the control device 2 can coordinately control the in-situ thermal desorption device 1, the gas-liquid separation device 3, the activated carbon adsorption device 4 and the exhaust gas detection device 5 to complete the remediation process of hydrocarbon-contaminated soil.
参见图1,上述土壤修复系统中,原位热脱附装置1包括:Referring to Fig. 1, in the above-mentioned soil remediation system, the in-situ thermal desorption device 1 includes:
空气导入管6、空气压缩机7、第一气体流量计8、电磁阀9、第一压力表10、有机污染土壤密封处理箱11、第一温度计12、第二温度计13、第二压力表14、加热井装置和有机气体导出口18,其中:Air inlet pipe 6, air compressor 7, first gas flow meter 8, solenoid valve 9, first pressure gauge 10, organic polluted soil sealed treatment box 11, first thermometer 12, second thermometer 13, second pressure gauge 14 , heating well device and organic gas outlet 18, wherein:
空气导入管6一端与外界相通,另一端依次经空气压缩机7、第一气体流量计8、电磁阀9与有机污染土壤密封处理箱11连接;One end of the air introduction pipe 6 communicates with the outside world, and the other end is connected to the organic polluted soil sealing treatment box 11 successively through the air compressor 7, the first gas flow meter 8, and the electromagnetic valve 9;
有机污染土壤密封处理箱11设有有机气体导出口18;The sealed treatment box 11 for organic polluted soil is provided with an organic gas outlet 18;
空气压缩机7的控制端为压力控制端;The control end of the air compressor 7 is a pressure control end;
加热井装置设在有机污染土壤密封处理箱11内;The heating well device is arranged in the sealed treatment box 11 of organic polluted soil;
第一压力表10与有机污染土壤密封处理箱11内部连接;The first pressure gauge 10 is internally connected with the sealed treatment box 11 of organic polluted soil;
第一压力表10的检测端和空气压缩机7的控制端作为压力控制端;The detection end of the first pressure gauge 10 and the control end of the air compressor 7 are used as the pressure control end;
第二压力表14连接于有机污染土壤密封处理箱11内部的有机气体导出口18处;The second pressure gauge 14 is connected to the organic gas outlet 18 inside the organic-contaminated soil sealing treatment box 11;
第一温度计12与第二温度计13分别与有机污染土壤密封处理箱11连接;The first thermometer 12 and the second thermometer 13 are respectively connected with the sealed treatment box 11 of organic polluted soil;
第一温度计12和第二温度计13的检测端和加热井装置的控制端作为温度控制端。The detection terminals of the first thermometer 12 and the second thermometer 13 and the control terminal of the heating well device are used as temperature control terminals.
上述土壤修复系统中,加热井装置包括:多个加热井,并列设置在有机污染土壤密封处理箱11内;In the above soil remediation system, the heating well device includes: a plurality of heating wells arranged side by side in the sealed treatment box 11 for organic polluted soil;
各加热井结构相同,每个加热井包括:加热井多孔外壳15、加热井碳化硅棒16和加热井电极17;其中,加热井碳化硅棒16设在加热井多孔外壳15内,加热井碳化硅棒16上端设置加热井电极17,加热井电极17的上端为控制端。Each heating well has the same structure, and each heating well includes: a heating well porous casing 15, a heating well silicon carbide rod 16 and a heating well electrode 17; wherein, the heating well silicon carbide rod 16 is arranged in the heating well porous casing 15, and the heating well carbonization A heating well electrode 17 is arranged on the upper end of the silicon rod 16, and the upper end of the heating well electrode 17 is a control end.
加热井数量及在有机污染土壤密封处理箱11内设置的位置,可根据所处理原位烃类污染土壤面积大小可进行调整。图1中所布置的加热井装置数量为三个,并列排布于有机污染土壤密封箱11中,此为较优选的加热井数量及布置方式。The number of heating wells and the positions set in the organic-contaminated soil sealing treatment box 11 can be adjusted according to the size of the treated in-situ hydrocarbon-contaminated soil. The number of heating wells arranged in Fig. 1 is three, and they are arranged side by side in the sealed box 11 of organic polluted soil, which is the preferred number and arrangement of heating wells.
具体的,上述原位热脱附装置1中,空气导入管6与外界相通,通过空气压缩机7、第一气体流量计8、电磁阀9与有机污染土壤密封处理箱11连接;第一压力表10对有机污染土壤密封处理箱11内部压力进行监测,根据内部压力对空气压缩机7进行控制;加热井多孔外壳15、加热井碳化硅(SIC)棒16、加热井电极17共同构成对有机污染土壤密封处理箱11中有机污染土壤加热的加热井19;第一温度计12、第二温度计13对有机污染土壤密封处理箱11不同点的温度进行监测,根据内部温度对由加热井多孔外壳15、加热井碳化硅(SIC)棒16、加热井电极17共同构成的加热井进行温度控制;第二压力表14对有机污染土壤密封处理箱11内部靠近有机气体导出口18出压力的进行监测。Specifically, in the above-mentioned in-situ thermal desorption device 1, the air introduction pipe 6 communicates with the outside world, and is connected to the sealed treatment box 11 of organic polluted soil through the air compressor 7, the first gas flow meter 8, and the solenoid valve 9; the first pressure Table 10 monitors the internal pressure of the organic-contaminated soil sealing treatment box 11, and controls the air compressor 7 according to the internal pressure; the porous casing 15 of the heating well, the silicon carbide (SIC) rod 16 of the heating well, and the electrode 17 of the heating well jointly constitute an organic The heating well 19 heated by organic polluted soil in the sealed treatment box 11 for contaminated soil; the first thermometer 12 and the second thermometer 13 monitor the temperature at different points of the sealed treatment box 11 for organic polluted soil, and the porous shell 15 of the heating well is controlled according to the internal temperature. 1, heating well silicon carbide (SIC) rod 16, heating well electrode 17 jointly formed heating well carries out temperature control; Second pressure gauge 14 is close to the organic gas outlet 18 outlet pressure monitoring of organic pollution soil sealing treatment box 11 inside.
上述原位热脱附装置1能在有机污染土壤密封处理箱11内由加热井装置作为热源对污染土壤进行加热处理,原位热脱附装置1的大小可以根据所处理污染土壤的量对箱体大小进行调整,这样可以降低处理成本和热能的浪费。原位热脱附装置1既可经空气导入管6配合风机抽入空气,又可经有机气体导出口18配合风机抽出有机污染混合气体,可以提高烃类污染土壤的效率,也保证该原位热脱附装置1内压力平衡,风机通过控制装置根据该原位热脱附装置1内的压力进行控制,不需要真空产生负压来进行气体的导出,提高该土壤修复系统的安全性。The above-mentioned in-situ thermal desorption device 1 can use the heating well device as a heat source to heat the contaminated soil in the sealed treatment box 11 for organic polluted soil. The size of the body can be adjusted, which can reduce the cost of processing and the waste of heat energy. The in-situ thermal desorption device 1 can not only draw in air through the air inlet pipe 6 with a fan, but also extract the organic pollution mixed gas through the organic gas outlet 18 with a fan, which can improve the efficiency of hydrocarbon-contaminated soil and ensure that the in-situ The pressure in the thermal desorption device 1 is balanced, and the fan is controlled by the control device according to the pressure in the in-situ thermal desorption device 1, and there is no need for vacuum to generate negative pressure to export the gas, which improves the safety of the soil remediation system.
参见图1,上述土壤修复系统中,气液分离装置3包括:Referring to Fig. 1, in the above-mentioned soil remediation system, the gas-liquid separation device 3 includes:
有机气体导出管30、第一风机31、冷凝器气体导入管32、冷凝器33、冷凝废液导出管34、废液净化罐35、第一气液分离罐导入管36、气液分离罐37、分离废液导出管38、液位计39和分离废气导出管40;其中,Organic gas outlet pipe 30, first fan 31, condenser gas inlet pipe 32, condenser 33, condensed waste liquid outlet pipe 34, waste liquid purification tank 35, first gas-liquid separation tank introduction pipe 36, gas-liquid separation tank 37 , Separation waste liquid export pipe 38, liquid level gauge 39 and separation waste gas export pipe 40; Wherein,
有机气体导出管30一端为连接原位热脱附装置1的有机气体导出口18的连接端,有机气体导出管30的另一端与第一风机31连接;One end of the organic gas outlet pipe 30 is the connection end connected to the organic gas outlet 18 of the in-situ thermal desorption device 1, and the other end of the organic gas outlet pipe 30 is connected to the first fan 31;
第一风机31通过冷凝器气体导入管32与冷凝器33连接;The first fan 31 is connected with the condenser 33 through the condenser gas introduction pipe 32;
冷凝器33分别设有冷凝废液导出管34和气液分离罐导入管36,冷凝废液导出管34与废液收集罐35连接,气液分离罐导入管36与气液分离罐37连接;The condenser 33 is respectively provided with a condensed waste liquid outlet pipe 34 and a gas-liquid separation tank inlet pipe 36, the condensed waste liquid outlet pipe 34 is connected to the waste liquid collection tank 35, and the gas-liquid separation tank inlet pipe 36 is connected to the gas-liquid separation tank 37;
气液分离罐37分别设有分离废液导出管38和分离废气导出管40,分离废液导出管38与废液净化罐35连接。The gas-liquid separation tank 37 is respectively provided with a separation waste liquid outlet pipe 38 and a separation waste gas outlet pipe 40 , and the separation waste liquid outlet pipe 38 is connected to the waste liquid purification tank 35 .
具体的,上述气液分离装置3中,有机气体导出管30与有机气体导出口18连接,有机污染土壤密封处理箱11中的有机污染气体导出;有机气体导出管30与第一风机31连接,第一风机31将有机污染土壤密封处理箱11中的有机污染气体经过冷凝器气体导入管32抽入到冷凝器33;冷凝废液导出管34将冷凝器33与废液收集罐35连接,冷凝器33冷凝下来的废水流入废液收集罐35;气液分离罐导入管36将冷凝器33与气液分离罐37连接,经过冷凝器33冷凝后的有机气体导入气液分离罐37;分离废液导出管38将气液分离罐37与废液净化罐35连接,气液分离罐37分离出来的废水流入废液净化罐35。Specifically, in the above-mentioned gas-liquid separation device 3, the organic gas outlet pipe 30 is connected with the organic gas outlet 18, and the organic polluted gas in the organic polluted soil sealing treatment box 11 is exported; the organic gas outlet pipe 30 is connected with the first fan 31, The first fan 31 draws the organic polluted gas in the organic polluted soil sealing treatment box 11 into the condenser 33 through the condenser gas inlet pipe 32; The waste water condensed by the device 33 flows into the waste liquid collection tank 35; the gas-liquid separation tank introduction pipe 36 connects the condenser 33 with the gas-liquid separation tank 37, and the organic gas condensed by the condenser 33 is introduced into the gas-liquid separation tank 37; The liquid outlet pipe 38 connects the gas-liquid separation tank 37 with the waste liquid purification tank 35 , and the waste water separated from the gas-liquid separation tank 37 flows into the waste liquid purification tank 35 .
参见图1,上述土壤修复系统中,活性炭吸附装置4包括:Referring to Fig. 1, in the above-mentioned soil remediation system, the activated carbon adsorption device 4 includes:
第二气体流量计41、第二风机42、气体导入管43、活性炭吸附罐44、第三温度计45、第三压力表46、第四温度计47和排气管48;其中,The second gas flow meter 41, the second fan 42, the gas inlet pipe 43, the activated carbon adsorption tank 44, the third thermometer 45, the third pressure gauge 46, the fourth thermometer 47 and the exhaust pipe 48; wherein,
活性炭吸附罐44上分别设有气体导入管43和排气管48;排气管48与活性炭吸附罐44出口连接,将处理后的气体排出;The activated carbon adsorption tank 44 is respectively provided with a gas inlet pipe 43 and an exhaust pipe 48; the exhaust pipe 48 is connected with the outlet of the activated carbon adsorption tank 44 to discharge the treated gas;
第二气体流量计41与第二风机42依次与活性炭吸附罐44的气体导入管43连接;The second gas flow meter 41 and the second blower fan 42 are connected with the gas introduction pipe 43 of the activated carbon adsorption tank 44 in turn;
第二气体流量计41设有连接气液分离装置3的分离废气导出管40的连接端;The second gas flow meter 41 is provided with a connection end connected to the separation exhaust gas outlet pipe 40 of the gas-liquid separation device 3;
第三温度计45、第三压力表46、第四温度计47分别设在活性炭吸附罐44上;The third thermometer 45, the third pressure gauge 46, and the fourth thermometer 47 are respectively arranged on the activated carbon adsorption tank 44;
第三压力表46和第二风机42的控制端经第三压力控制线路29与控制装置电气连接。The control ends of the third pressure gauge 46 and the second fan 42 are electrically connected to the control device through the third pressure control line 29 .
具体的,上述活性炭吸附装置4中,第二气体流量计41与气体导入管43连接,对导入管中的气体流量进行控制;第二风机42、第三压力表46经过第三压力控制线路29与第三压力控制器24连接,以实现第三压力表46的压力数据反馈到第三压力控制器24,并根据第三压力表46压力数据对第二风机42进行控制,从而实现对活性炭吸附罐43进气量进行控制;第三温度计45、第四温度计47分别与活性炭吸附罐44的下部、上部连接,第三温度计45对活性炭吸附罐44的下部温度进行测定,第四温度计47对活性炭吸附罐44的上部温度进行测定。Specifically, in the above activated carbon adsorption device 4, the second gas flowmeter 41 is connected to the gas inlet pipe 43 to control the gas flow in the inlet pipe; the second fan 42 and the third pressure gauge 46 pass through the third pressure control line 29 Connect with the third pressure controller 24 to realize the feedback of the pressure data of the third pressure gauge 46 to the third pressure controller 24, and control the second fan 42 according to the pressure data of the third pressure gauge 46, so as to realize the adsorption of activated carbon The tank 43 air intake is controlled; the third thermometer 45 and the fourth thermometer 47 are connected with the bottom and the top of the activated carbon adsorption tank 44 respectively, and the third thermometer 45 measures the temperature of the bottom of the activated carbon adsorption tank 44, and the fourth thermometer 47 controls the temperature of the activated carbon adsorption tank 44. The temperature of the upper part of the adsorption tank 44 was measured.
上述活性炭吸附装置4中,第三温度计45与活性炭吸附罐44的上部连接,第四温度计47与活性炭吸附罐44的下部连接。In the above activated carbon adsorption device 4 , the third thermometer 45 is connected to the upper part of the activated carbon adsorption tank 44 , and the fourth thermometer 47 is connected to the lower part of the activated carbon adsorption tank 44 .
参见图1,上述土壤修复系统中,排气检测装置5包括:Referring to Fig. 1, in the above-mentioned soil remediation system, the exhaust detection device 5 includes:
HC浓度检测仪49和数据采集器50和数据传输线路51;其中,HC concentration detector 49 and data collector 50 and data transmission line 51; Wherein,
HC浓度检测仪49与活性炭吸附装置4的排气管48连接,能对排气管48中气体进行监测;The HC concentration detector 49 is connected with the exhaust pipe 48 of the active carbon adsorption device 4, and can monitor the gas in the exhaust pipe 48;
数据采集器设有数据传输线路51;The data collector is provided with a data transmission line 51;
数据采集器50与HC浓度检测仪49电气连接,能将HC浓度检测仪49采集的数据通过数据传输线路51向控制装置2发送。The data collector 50 is electrically connected with the HC concentration detector 49 and can send the data collected by the HC concentration detector 49 to the control device 2 through the data transmission line 51 .
具体的,上述排气检测装置5中,HC浓度检测仪49对活性炭吸附装置4的排气管48中气体进行监测,分析所排放的气体是否达标;数据采集器50将HC浓度检测仪49所采集的数据记录汇总,并通过数据传输线路51将数据传输给控制装置2的总控制器20,出现不达标气体排放,及时报警,也便于不定时查看,以保证经过处理后所排放气体符合排放标准。Specifically, in the above-mentioned exhaust gas detection device 5, the HC concentration detector 49 monitors the gas in the exhaust pipe 48 of the activated carbon adsorption device 4, and analyzes whether the discharged gas reaches the standard; The collected data records are summarized, and the data is transmitted to the master controller 20 of the control device 2 through the data transmission line 51. If there is any gas discharge that does not meet the standard, an alarm will be issued in time, and it is also convenient to check from time to time, so as to ensure that the discharged gas after treatment meets the discharge requirements. standard.
参见图1,上述土壤修复系统中,控制装置2包括:Referring to Fig. 1, in the above-mentioned soil remediation system, the control device 2 includes:
总控制器20、第一压力控制器21、温度控制器22、第二压力控制器23、第三压力控制器24、总控制线路25、第一压力控制线路26、温度控制线路27、第二压力控制线路28和第三压力控制线路29;其中,General controller 20, first pressure controller 21, temperature controller 22, second pressure controller 23, third pressure controller 24, general control circuit 25, first pressure control circuit 26, temperature control circuit 27, second A pressure control circuit 28 and a third pressure control circuit 29; wherein,
第一压力控制器21通过第一压力控制线路26与原位热脱附装置1的第一压力表10和空气压缩机7电气连接,能根据第一压力表10检测的原位热脱附装置1内压力控制空气压缩机7对原位热脱附装置1内的压力进行控制;The first pressure controller 21 is electrically connected to the first pressure gauge 10 and the air compressor 7 of the in-situ thermal desorption device 1 through the first pressure control line 26, and the in-situ thermal desorption device can be detected according to the first pressure gauge 10 1. The internal pressure control air compressor 7 controls the pressure in the in-situ thermal desorption device 1;
温度控制器22通过温度控制线路27与原位热脱附装置1的第一温度计12、第二温度计13和加热井装置的控制端电气连接,能根据第一温度计12、第二温度计13检测的原位热脱附装置1内温度控制加热井装置对原位热脱附装置1内温度进行控制;The temperature controller 22 is electrically connected with the first thermometer 12, the second thermometer 13 of the in-situ thermal desorption device 1 and the control end of the heating well device through the temperature control line 27, and can detect the temperature according to the first thermometer 12 and the second thermometer 13. The temperature control heating well device in the in-situ thermal desorption device 1 controls the temperature in the in-situ thermal desorption device 1;
第二压力控制器23通过第二压力控制线路28分别与原位热脱附装置1的第二压力表14和气液分离装置3的第一风机31电气连接,能根据第二压力表14检测的原位热脱附装置1的有机气体导出口18处压力对第一风机31进行控制;The second pressure controller 23 is electrically connected with the second pressure gauge 14 of the in-situ thermal desorption device 1 and the first blower fan 31 of the gas-liquid separation device 3 respectively through the second pressure control line 28, and can be detected according to the second pressure gauge 14 The pressure at the organic gas outlet 18 of the in-situ thermal desorption device 1 controls the first fan 31;
第三压力控制器24通过第三压力控制线路29分别与活性炭吸附装置4的第三压力表46和第二风机42电气连接,能根据第三压力表46检测的活性炭吸附装置4内压力对第二风机42进行控制;The third pressure controller 24 is electrically connected with the third pressure gauge 46 and the second blower fan 42 of the activated carbon adsorption device 4 respectively by the third pressure control circuit 29, and the pressure in the activated carbon adsorption device 4 detected by the third pressure gauge 46 can affect the first pressure in the activated carbon adsorption device 4. Two fans 42 are controlled;
总控制器20通过总控制线路25分别与第一压力控制器21、温度控制器22、第二压力控制器23、第三压力控制器24电气连接;The master controller 20 is electrically connected to the first pressure controller 21, the temperature controller 22, the second pressure controller 23, and the third pressure controller 24 respectively through the master control line 25;
总控制器20通过总控制线路25与排气检测装置5的数据传输线路51电气连接。The main controller 20 is electrically connected to the data transmission line 51 of the exhaust detection device 5 through the main control line 25 .
具体的,上述控制装置2中,总控制器20通过总控制系统线路25对第一压力控制器21、温度控制器22、第二压力控制器23、第三压力控制器24实现检测数据汇总和控制;Specifically, in the above-mentioned control device 2, the general controller 20 realizes summarization and summarization of detection data for the first pressure controller 21, the temperature controller 22, the second pressure controller 23, and the third pressure controller 24 through the general control system line 25. control;
第一压力控制器21根据第一压力表10所检测的数据,对空气压缩机7进行控制,来实现对有机污染土壤密封处理箱11进气量的控制,从而对有机污染土壤密封处理箱11内部压力进行控制;The first pressure controller 21 controls the air compressor 7 according to the data detected by the first pressure gauge 10 to realize the control of the air intake of the organic-contaminated soil sealing treatment box 11, thereby sealing the organic-contaminated soil treatment box 11 internal pressure control;
温度控制器22根据第一温度计12、第二温度计13所检测的有机污染土壤密封处理箱11不同区域的温度,对加热井电极17进行控制,从而对有机污染土壤密封处理箱11内部温度的控制;The temperature controller 22 controls the heating well electrode 17 according to the temperatures in different regions of the organic-contaminated soil sealing treatment box 11 detected by the first thermometer 12 and the second thermometer 13, thereby controlling the internal temperature of the organic-contaminated soil sealing treatment box 11 ;
第二压力控制器23根据第二压力表14所监测的数据,对第一风机31进行控制,从而对冷凝器33的进气量进行控制,第二压力控制器24根据第三压力表46所检测的数据,对第二风机42进行控制,从而对活性炭吸附装置44的进气量进行控制;The second pressure controller 23 controls the first fan 31 according to the data monitored by the second pressure gauge 14, thereby controlling the intake air volume of the condenser 33. The detected data controls the second fan 42, thereby controlling the intake air volume of the activated carbon adsorption device 44;
第一压力控制线路26将空气压缩机7、第一压力表10与第一压力控制器21连接,以实现第一压力表10的压力数据反馈到第一压力控制器21,并根据压力数据对空气压缩机7进行控制。The first pressure control line 26 connects the air compressor 7, the first pressure gauge 10 and the first pressure controller 21, so that the pressure data of the first pressure gauge 10 can be fed back to the first pressure controller 21, and the pressure data can be adjusted according to the pressure data. The air compressor 7 is controlled.
温度控制线路27将第一温度计12、第二温度计13、电极17与温度控制器22连接,以实现第一温度计12、第二温度计13的温度数据反馈到温度控制器22,并根据温度数据对加热井的电极17进行控制,从而对有机污染土壤密封处理箱11内部温度的控制;The temperature control circuit 27 is connected with the first thermometer 12, the second thermometer 13, the electrode 17 and the temperature controller 22, so that the temperature data of the first thermometer 12 and the second thermometer 13 are fed back to the temperature controller 22, and according to the temperature data The electrodes 17 of the heating well are controlled to control the internal temperature of the organic polluted soil sealing treatment box 11;
第二压力控制线路28将第二压力表14、第一风机31与第二压力控制器23连接,以实现第二压力表14的压力数据反馈到第二压力控制器23,并根据第二压力表14压力数据对第一风机31进行控制,从而实现对冷凝器33进气量进行控制。The second pressure control line 28 connects the second pressure gauge 14, the first fan 31 and the second pressure controller 23, so that the pressure data of the second pressure gauge 14 can be fed back to the second pressure controller 23, and according to the second pressure The pressure data in Table 14 controls the first fan 31, thereby realizing the control of the air intake of the condenser 33.
上述基于原位热脱附(ISTD,In Situ Thermal Desorption)装置的烃类污染土壤修复系统中,第一压力控制线路26、温度控制线路27、第二压力控制线路28、第三压力控制线路29同时接入原位热脱附装置1、控制装置2、气液分离装置3和活性炭吸附装置4,通过控制装置2实现对整个烃类土壤修复系统进行自动控制或者人为控制;有机气体导出管30连接原位热脱附装置1和气液分离装置3,将有机污染土壤密封处理箱11中挥发的有机气体导入冷凝器33;分离废气导出管40连接气液分离装置3和活性炭吸附装置4,将气液分离罐37中分离出来的有机气体导入活性炭吸附装置4;排气检测装置5对排气管48中气体进行实时监测,保证所排放的气体达标;总控制器20通过总控制系统线路25对第一压力控制器21、温度控制器22、第二压力控制器23、第三压力控制器24和数据采集器50的数据收集汇总,并实现对整个烃类污染土壤系统协同控制。In the above-mentioned hydrocarbon-contaminated soil remediation system based on an in-situ thermal desorption (ISTD, In Situ Thermal Desorption) device, the first pressure control circuit 26, the temperature control circuit 27, the second pressure control circuit 28, and the third pressure control circuit 29 Simultaneously connect in-situ thermal desorption device 1, control device 2, gas-liquid separation device 3 and activated carbon adsorption device 4, through the control device 2 to realize automatic control or manual control of the entire hydrocarbon soil remediation system; organic gas outlet pipe 30 Connect the in-situ thermal desorption device 1 and the gas-liquid separation device 3, and guide the organic gas volatilized in the sealed treatment box 11 of organic polluted soil into the condenser 33; the separation waste gas outlet pipe 40 is connected to the gas-liquid separation device 3 and the activated carbon adsorption device 4, and the The organic gas separated in the gas-liquid separation tank 37 is introduced into the activated carbon adsorption device 4; the exhaust gas detection device 5 monitors the gas in the exhaust pipe 48 in real time to ensure that the discharged gas reaches the standard; Collect and summarize the data of the first pressure controller 21, temperature controller 22, second pressure controller 23, third pressure controller 24 and data collector 50, and realize coordinated control of the entire hydrocarbon-contaminated soil system.
本发明的土壤修复系统中,通过采用原位热脱附装置,能在加热源周围是以辐射加热的方式来传递热量,是能用于处理现场污染物沸点高于水的热修复技术,可通过加热土壤提高有机污染物挥发效率以气相形式提取出来,废气直接通过活性炭吸收并回收充分利用,如排出的尾气可直接燃烧,没有二次污染,并且对油气净化后的浓度实时检测,确保处理后可以达标排放。特别是,该原位热脱附装置不需要真空设备产生负压进行气体导出,仅由控制装置控制的风机根据该原位热脱附装置内的压力,通过空气导入管和有机气体导出口进行气体的导入、导出,提高了整个系统的安全性。这种利用原位热脱附装置的土壤修复系统,对于开发经济上、技术上可行的土地修复方法,具有良好的借鉴意义。In the soil remediation system of the present invention, by using the in-situ thermal desorption device, heat can be transferred around the heating source in the form of radiation heating, which is a thermal remediation technology that can be used to treat on-site pollutants with a boiling point higher than that of water. Heating the soil improves the volatilization efficiency of organic pollutants and extracts them in the form of gas phase. The exhaust gas is directly absorbed by activated carbon and fully utilized. For example, the exhaust gas can be directly burned without secondary pollution, and the concentration of purified oil and gas is detected in real time to ensure treatment. Afterwards, discharge standards can be met. In particular, the in-situ thermal desorption device does not need vacuum equipment to generate negative pressure for gas export, and only the fan controlled by the control device passes through the air inlet pipe and the organic gas outlet according to the pressure in the in-situ thermal desorption device. The introduction and export of gas improves the safety of the whole system. This kind of soil remediation system using in-situ thermal desorption device has good reference significance for the development of economically and technically feasible land remediation methods.
下面将结合附图对本发明实施例作进一步地详细描述。Embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
实施例Example
如图1所示,本实施例提供一种基于ISTD的烃类污染土壤修复系统,包括:原位热脱附装置1、控制装置2、气液分离装置3、活性炭吸附装置4和排气检测装置5。As shown in Figure 1, this embodiment provides a hydrocarbon-contaminated soil remediation system based on ISTD, including: in-situ thermal desorption device 1, control device 2, gas-liquid separation device 3, activated carbon adsorption device 4 and exhaust gas detection device 5.
其中,所述原位热脱附装置1包括:空气导入管6、空气压缩机7、第一气体流量计8、电磁阀9、第一压力表10、有机污染土壤密封处理箱11、第一温度计12、第二温度计13、第二压力表14、加热井多孔外壳15、加热井碳化硅(SIC)棒16、加热井电极17、有机气体导出口18和加热井19,空气通过空气导入管6在空气压缩机7作用下,进入有机污染土壤密封处理箱11,采用空压机吹扫方式,通过空压机7产生压缩空气(第一流量计8控制空气流量)对原位热脱附装置1进行吹扫,经加热井19加热(第一温度计13、第二温度计14监测箱内温度)后,土壤中烃类有机物挥发,在压缩空气的带动下经过有机气体导出口18导出原位热脱附装置1。Wherein, the in-situ thermal desorption device 1 includes: an air inlet pipe 6, an air compressor 7, a first gas flow meter 8, a solenoid valve 9, a first pressure gauge 10, a sealed treatment box 11 for organic polluted soil, a first Thermometer 12, second thermometer 13, second pressure gauge 14, heater well porous shell 15, heater well silicon carbide (SIC) rod 16, heater well electrode 17, organic gas outlet 18 and heater well 19, air passes through the air inlet pipe 6. Under the action of the air compressor 7, it enters the sealed treatment box 11 for organic polluted soil, adopts the air compressor purging method, and generates compressed air (the first flow meter 8 controls the air flow rate) through the air compressor 7 to desorb the in-situ heat. The device 1 is purged, and after being heated by the heating well 19 (the first thermometer 13 and the second thermometer 14 monitor the temperature in the box), the hydrocarbon organic matter in the soil volatilizes, and is led out of the original position through the organic gas outlet 18 under the drive of the compressed air. Thermal desorption device 1.
所述气液分离装置3包括:有机气体导出管30、第一风机31、冷凝器气体导入管32、冷凝器33、冷凝废液导出管34、废液净化罐35、第一气液分离罐导入管36、气液分离罐37、分离废液导出管38、液位计39和分离废气导出管40,在第一风机31作用下,将原位热脱附装置1中的有机气体导入冷凝器33,将高温有机气体降温,部分水蒸气冷凝流入废液净化罐35,被冷凝的有机气体导入气液分离罐37,将有机气体中废液分离出来,废液流入废液净化罐35,有机气体经过分离废气导出管40导出气液分离装置3。The gas-liquid separation device 3 includes: an organic gas outlet pipe 30, a first fan 31, a condenser gas inlet pipe 32, a condenser 33, a condensed waste liquid outlet pipe 34, a waste liquid purification tank 35, and a first gas-liquid separation tank The introduction pipe 36, the gas-liquid separation tank 37, the separation waste liquid outlet pipe 38, the liquid level gauge 39 and the separation waste gas outlet pipe 40, under the action of the first fan 31, lead the organic gas in the in-situ thermal desorption device 1 into condensation device 33, the high-temperature organic gas is cooled, part of the water vapor condenses and flows into the waste liquid purification tank 35, the condensed organic gas is introduced into the gas-liquid separation tank 37, and the waste liquid in the organic gas is separated, and the waste liquid flows into the waste liquid purification tank 35, The organic gas is exported to the gas-liquid separation device 3 through the separation waste gas outlet pipe 40 .
所述活性炭吸附装置4包括:第二气体流量计41、第二风机42、气体导入管43、活性炭吸附罐44、第三温度计45、第三压力表46和第四温度计47,在第二风机42作用下(第二气体流量计41控制有机气体流量),将气液分离装置3中有机气体导入活性炭吸附罐44(第三温度计45、第四温度计47测定活性炭罐上、下部温度),经过活性炭罐处理后的气体排到空气中。Described activated carbon adsorption device 4 comprises: the second gas flowmeter 41, the second blower fan 42, gas inlet pipe 43, activated carbon adsorption tank 44, the 3rd thermometer 45, the 3rd pressure gauge 46 and the 4th thermometer 47, in the second blower fan Under the action of 42 (the second gas flowmeter 41 controls the organic gas flow rate), the organic gas in the gas-liquid separation device 3 is introduced into the activated carbon adsorption tank 44 (the third thermometer 45 and the fourth thermometer 47 measure the temperature of the upper and lower parts of the activated carbon tank). The gas treated by the activated carbon tank is discharged into the air.
所述排气检测装置5包括:排气管48、HC浓度检测仪49、数据采集器50和数据传输线路51,HC浓度检测仪49对排气管48中气体进行检测,数据采集器50将HC浓度检测仪49检测的数据采集,通过数据线路51传输给温压控制装置2的总控制器20,检测达标后经排气管48排入空气。The exhaust detection device 5 includes: an exhaust pipe 48, a HC concentration detector 49, a data collector 50 and a data transmission line 51, the HC concentration detector 49 detects the gas in the exhaust pipe 48, and the data collector 50 will The data collected by the HC concentration detector 49 is transmitted to the general controller 20 of the temperature and pressure control device 2 through the data line 51, and the air is discharged into the air through the exhaust pipe 48 after the detection reaches the standard.
所述控制装置2包括:总控制器20、第一压力控制器21、温度控制器22、第二压力控制器23、第三压力控制器24、总控制系统线路25、第一压力控制线路26、温度控制线路27、第二压力控制线路28和第三压力控制线路29,第一压力控制器21通过第一压力表10反馈的有机污染土壤密封处理箱11中压力数据,对空气压缩机7进行控制;温度控制器通过第一温度计12、第二温度计13反馈的有机污染土壤密封处理箱11中温度数据对加热井19温度控制;控制装置2中第二压力控制器23通过第二压力表14反馈的有机污染土壤密封处理箱11中压力数据,对第一风机31进行控制;第三压力控制器24通过第三压力表46反馈的活性炭吸附罐44中压力数据,对第二风机42进行控制,从而实现对活性炭吸附罐44中的压力调节;总控制器20根据排气检测装置5中数据采集器50反馈的数据判断排放气体是否达到排放标准,当活性炭吸附罐44吸附饱和后,检测系统5显示HC浓度超标,控制装置2中总控制器20对整个烃类污染土壤系统进行控制,关闭整个系统。The control device 2 includes: a general controller 20, a first pressure controller 21, a temperature controller 22, a second pressure controller 23, a third pressure controller 24, a general control system circuit 25, and a first pressure control circuit 26 , temperature control circuit 27, the second pressure control circuit 28 and the 3rd pressure control circuit 29, the first pressure controller 21 passes the pressure data in the organic polluted soil seal treatment box 11 that the first pressure gauge 10 feeds back, to air compressor 7 Control; the temperature controller controls the temperature of the heating well 19 through the temperature data in the sealed treatment box 11 of organic contaminated soil fed back by the first thermometer 12 and the second thermometer 13; the second pressure controller 23 in the control device 2 passes the second pressure gauge 14 The pressure data in the sealed treatment box 11 of organic polluted soil fed back controls the first fan 31; the third pressure controller 24 controls the second fan 42 through the pressure data in the active carbon adsorption tank 44 fed back by the third pressure gauge 46 control, so as to realize the pressure adjustment in the activated carbon adsorption tank 44; the total controller 20 judges whether the exhaust gas reaches the emission standard according to the data fed back by the data collector 50 in the exhaust detection device 5, and when the activated carbon adsorption tank 44 is adsorbed and saturated, the detection The system 5 shows that the concentration of HC exceeds the standard, and the master controller 20 in the control device 2 controls the entire hydrocarbon-contaminated soil system and shuts down the entire system.
上述烃类污染土壤修复系统中的原位热脱附装置1、气液分离装置3、活性炭吸附装置4和排气检测装置5分别与温压控制装置2连接,温压控制装置2能对原位热脱附装置1、气液分离装置3、活性炭吸附装置4协同控制完成烃类污染土壤修复过程。The in-situ thermal desorption device 1, gas-liquid separation device 3, activated carbon adsorption device 4 and exhaust gas detection device 5 in the above hydrocarbon-contaminated soil remediation system are connected to the temperature and pressure control device 2 respectively, and the temperature and pressure control device 2 can control the original The potential heat desorption device 1, the gas-liquid separation device 3, and the activated carbon adsorption device 4 are coordinated and controlled to complete the hydrocarbon-contaminated soil remediation process.
具体的,原位热脱附装置1的空气导入管6与大气连通,空气压缩机7将空气抽入,经过第一气体流量计8和电磁阀9,将空气抽入原位热脱附装置1的有机污染土壤密封处理箱11,在加热井19的加热下,有机污染土壤中低沸点烃类有机物挥发,经过有机气体导出口18导入气液分离装置3,在第一风机31的作用下将有机气体导入冷凝器33,冷凝器33使有机气体降温,部分水蒸气冷凝成废液流入废液净化罐35,被冷凝的有机气体进入气液分离罐37,有机气体中分离出来的废液流入废液净化罐35,剩余有机气体在第二风机42作用下进入活性炭吸附罐44,经过活性炭吸附罐44处理的有机气体达到排放标准后排入空气中。控制装置2中第一压力控制器21通过第一压力表10反馈的有机污染土壤密封处理箱11中压力数据,对空气压缩机7进行控制,从而实现对温压控制装置2中的压力调节;控制装置2中温度控制器通过第一温度计12、第二温度计13反馈的有机污染土壤密封处理箱11中温度数据对加热井19温度控制,从而实现对温压控制装置2中的压力调节;控制装置2中第二压力控制器23通过第二压力表14反馈的有机污染土壤密封处理箱11中压力数据,对第一风机31进行控制,从而实现对温压控制装置2中的压力调节,也实现对气液分离装置3中冷凝器33、气液分离罐37中气体流量进行调节;控制装置2中第三压力控制器24通过第三压力表46反馈的活性炭吸附罐44中压力数据,对第二风机42进行控制,从而实现对活性炭吸附罐44中的压力调节;控制装置2中总控制器20根据排气检测装置5中数据采集器50反馈的数据判断排放气体是否达到排放标准;当活性炭吸附罐44吸附饱和后,检测系统5显示HC浓度超标,控制装置2中总控制器20对整个烃类污染土壤系统进行控制,关闭整个系统,发出警报,通知相关技术人员更换活性炭吸附罐44中活性炭。Specifically, the air inlet pipe 6 of the in-situ thermal desorption device 1 communicates with the atmosphere, and the air compressor 7 draws air in, and the air is drawn into the in-situ thermal desorption device through the first gas flow meter 8 and the solenoid valve 9 1 organic contaminated soil sealed treatment box 11, under the heating of the heating well 19, the low-boiling hydrocarbon organic matter in the organic contaminated soil volatilizes, and is introduced into the gas-liquid separation device 3 through the organic gas export port 18, under the action of the first fan 31 The organic gas is introduced into the condenser 33, the condenser 33 cools the organic gas, part of the water vapor is condensed into waste liquid and flows into the waste liquid purification tank 35, the condensed organic gas enters the gas-liquid separation tank 37, and the waste liquid separated from the organic gas Flow into the waste liquid purification tank 35, and the remaining organic gas enters the activated carbon adsorption tank 44 under the action of the second fan 42, and the organic gas treated by the activated carbon adsorption tank 44 meets the emission standard and is discharged into the air. The first pressure controller 21 in the control device 2 controls the air compressor 7 through the pressure data in the sealed treatment box 11 of organic polluted soil fed back by the first pressure gauge 10, thereby realizing the pressure regulation in the temperature and pressure control device 2; The temperature controller in the control device 2 controls the temperature of the heating well 19 through the temperature data in the sealed treatment box 11 of organic contaminated soil fed back by the first thermometer 12 and the second thermometer 13, thereby realizing the pressure adjustment in the temperature and pressure control device 2; The second pressure controller 23 in the device 2 controls the first blower fan 31 through the pressure data in the organic-contaminated soil sealing treatment box 11 fed back by the second pressure gauge 14, thereby realizing the pressure regulation in the temperature and pressure control device 2, and also Realize that the gas flow in the condenser 33 and the gas-liquid separation tank 37 in the gas-liquid separation device 3 is regulated; the third pressure controller 24 in the control device 2 passes the pressure data in the active carbon adsorption tank 44 fed back by the third pressure gauge 46, to The second blower fan 42 controls, thereby realizes the pressure adjustment in the activated carbon adsorption tank 44; In the control device 2, the total controller 20 judges whether the exhaust gas reaches the discharge standard according to the data fed back by the data collector 50 in the exhaust detection device 5; After the activated carbon adsorption tank 44 is adsorbed and saturated, the detection system 5 shows that the HC concentration exceeds the standard, and the master controller 20 in the control device 2 controls the entire hydrocarbon-contaminated soil system, shuts down the entire system, sends an alarm, and notifies relevant technical personnel to replace the activated carbon adsorption tank 44 medium activated carbon.
本发明实施例的土壤修复系统具有以下优点:The soil remediation system of the embodiment of the present invention has the following advantages:
(1)能对烃类污染土壤修复,通过可循环利用的活性炭吸附有机废气,对污染土壤有着良好的修复效果,经济效益良好。(1) It can remediate hydrocarbon-contaminated soil, and absorb organic waste gas through recyclable activated carbon, which has a good remediation effect on polluted soil and good economic benefits.
(2)适用于各种采用原位修复技术的烃类污染土壤的修复,并且可以根据所处理土壤面积大小选择加热井数量和位置排布,以最佳的方式和最小的成本对污染土壤进行处理和修复,既可大大节省成本,又可以根据需求进行灵活调整加热井数量。(2) It is suitable for the remediation of various hydrocarbon-contaminated soils using in-situ remediation technology, and the number and location of heating wells can be selected according to the size of the treated soil area, and the polluted soil can be treated in the best way and at the lowest cost. Treatment and repair can not only greatly save costs, but also flexibly adjust the number of heating wells according to demand.
(2)以排出气体成分浓度为控制参数,利用机电控制技术,通过控制装置对空气压缩机7、加热井19、第一风机31、第二风机42的控制实现对系统的压力、温度进行控制,控制整个系统的运行。(2) Taking the exhaust gas component concentration as the control parameter, using electromechanical control technology, the pressure and temperature of the system can be controlled by controlling the air compressor 7, the heating well 19, the first fan 31, and the second fan 42 through the control device , to control the operation of the entire system.
(3)该系统的工艺流程简单,采用撬装式设备,设备结构简单,运行费用低。(3) The technological process of the system is simple, and skid-mounted equipment is used, which has a simple structure and low operating costs.
(4)该系统采用活性炭吸附技术,实现高效率、低成本、可循环使用的目标。(4) The system adopts activated carbon adsorption technology to achieve the goals of high efficiency, low cost and recyclable use.
(5)该系统能实现对污染土壤原位修复,工艺对周围环境污染小,实现废物资源化,符合可持续发展的要求。(5) The system can realize in-situ remediation of polluted soil, the process has little pollution to the surrounding environment, realizes recycling of waste, and meets the requirements of sustainable development.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field can easily conceive of changes or changes within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810739168.2A CN109013685A (en) | 2018-07-06 | 2018-07-06 | A kind of hydrocarbon contamination soil repair system based on thermal desorption in situ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810739168.2A CN109013685A (en) | 2018-07-06 | 2018-07-06 | A kind of hydrocarbon contamination soil repair system based on thermal desorption in situ |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109013685A true CN109013685A (en) | 2018-12-18 |
Family
ID=64640596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810739168.2A Pending CN109013685A (en) | 2018-07-06 | 2018-07-06 | A kind of hydrocarbon contamination soil repair system based on thermal desorption in situ |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109013685A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111438172A (en) * | 2020-04-27 | 2020-07-24 | 北京市市政四建设工程有限责任公司 | In-situ remediation device and method for volatile organic contaminated soil |
CN112122327A (en) * | 2020-08-20 | 2020-12-25 | 杨晓秋 | Prosthetic devices based on soil thermal desorption repair technique |
CN112433040A (en) * | 2020-10-15 | 2021-03-02 | 天津大学 | Soil normal position thermal desorption experiment analogue means |
CN112517622A (en) * | 2020-11-18 | 2021-03-19 | 吉林大学 | Contaminated soil strengthening in-situ thermal desorption heating device and method |
CN114323144A (en) * | 2021-12-30 | 2022-04-12 | 北京建工环境修复股份有限公司 | In-situ thermal desorption engineering operation monitoring method, device and system |
CN114700360A (en) * | 2022-03-29 | 2022-07-05 | 武汉骅越自然科技有限责任公司 | A three-dimensional scene construction system for slope soil ecological restoration engineering |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202539178U (en) * | 2012-01-10 | 2012-11-21 | 北京建工环境修复有限责任公司 | Hot air gas phase extraction device for soil polluted by volatile organic matters |
CN205673362U (en) * | 2016-06-03 | 2016-11-09 | 上海格林曼环境技术有限公司 | The heated well of contaminated site electrical heating desorption prosthetic device in situ |
CN205926587U (en) * | 2016-08-03 | 2017-02-08 | 中钢集团天澄环保科技股份有限公司 | Mercurous pollution treatment system is restoreed to high -efficient thermal desorption |
CN106513430A (en) * | 2017-01-09 | 2017-03-22 | 北京石油化工学院 | Heat strengthening SVE based hydrocarbon contaminated soil remediation system |
CN106734151A (en) * | 2017-01-11 | 2017-05-31 | 北京高能时代环境技术股份有限公司 | For the resistance heating original position thermal desorption repair system of VOCs contaminated sites |
CN106734153A (en) * | 2017-01-18 | 2017-05-31 | 北京高能时代环境技术股份有限公司 | For thermal desorption processing system in situ and method that contaminated soil is carried out with heat exchange pattern |
CN206731798U (en) * | 2017-04-19 | 2017-12-12 | 四川农业大学 | A kind of original position soil hierarchical classification superposing type repairs structure |
CN107983760A (en) * | 2017-12-15 | 2018-05-04 | 新冶高科技集团有限公司 | A kind of method that organic pollution solid waste reparation is realized using microwave treatment |
CN108114970A (en) * | 2017-12-21 | 2018-06-05 | 永清环保股份有限公司 | A kind of contaminated soil original position thermal desorption repair system and method |
-
2018
- 2018-07-06 CN CN201810739168.2A patent/CN109013685A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202539178U (en) * | 2012-01-10 | 2012-11-21 | 北京建工环境修复有限责任公司 | Hot air gas phase extraction device for soil polluted by volatile organic matters |
CN205673362U (en) * | 2016-06-03 | 2016-11-09 | 上海格林曼环境技术有限公司 | The heated well of contaminated site electrical heating desorption prosthetic device in situ |
CN205926587U (en) * | 2016-08-03 | 2017-02-08 | 中钢集团天澄环保科技股份有限公司 | Mercurous pollution treatment system is restoreed to high -efficient thermal desorption |
CN106513430A (en) * | 2017-01-09 | 2017-03-22 | 北京石油化工学院 | Heat strengthening SVE based hydrocarbon contaminated soil remediation system |
CN106734151A (en) * | 2017-01-11 | 2017-05-31 | 北京高能时代环境技术股份有限公司 | For the resistance heating original position thermal desorption repair system of VOCs contaminated sites |
CN106734153A (en) * | 2017-01-18 | 2017-05-31 | 北京高能时代环境技术股份有限公司 | For thermal desorption processing system in situ and method that contaminated soil is carried out with heat exchange pattern |
CN206731798U (en) * | 2017-04-19 | 2017-12-12 | 四川农业大学 | A kind of original position soil hierarchical classification superposing type repairs structure |
CN107983760A (en) * | 2017-12-15 | 2018-05-04 | 新冶高科技集团有限公司 | A kind of method that organic pollution solid waste reparation is realized using microwave treatment |
CN108114970A (en) * | 2017-12-21 | 2018-06-05 | 永清环保股份有限公司 | A kind of contaminated soil original position thermal desorption repair system and method |
Non-Patent Citations (1)
Title |
---|
施维林主编: "《土壤污染与修复》", 30 June 2018, 北京:中国建材工业出版社 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111438172A (en) * | 2020-04-27 | 2020-07-24 | 北京市市政四建设工程有限责任公司 | In-situ remediation device and method for volatile organic contaminated soil |
CN112122327A (en) * | 2020-08-20 | 2020-12-25 | 杨晓秋 | Prosthetic devices based on soil thermal desorption repair technique |
CN112122327B (en) * | 2020-08-20 | 2022-02-22 | 广州市番禺环境工程有限公司 | Prosthetic devices based on soil thermal desorption repair technique |
CN112433040A (en) * | 2020-10-15 | 2021-03-02 | 天津大学 | Soil normal position thermal desorption experiment analogue means |
CN112517622A (en) * | 2020-11-18 | 2021-03-19 | 吉林大学 | Contaminated soil strengthening in-situ thermal desorption heating device and method |
CN112517622B (en) * | 2020-11-18 | 2022-01-28 | 吉林大学 | A kind of polluted soil strengthening in-situ thermal desorption additional heat device and method |
CN114323144A (en) * | 2021-12-30 | 2022-04-12 | 北京建工环境修复股份有限公司 | In-situ thermal desorption engineering operation monitoring method, device and system |
CN114323144B (en) * | 2021-12-30 | 2023-12-01 | 北京建工环境修复股份有限公司 | In-situ thermal desorption engineering operation monitoring method, device and system |
CN114700360A (en) * | 2022-03-29 | 2022-07-05 | 武汉骅越自然科技有限责任公司 | A three-dimensional scene construction system for slope soil ecological restoration engineering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109013685A (en) | A kind of hydrocarbon contamination soil repair system based on thermal desorption in situ | |
CN107952789B (en) | In-situ thermal desorption system, in-situ thermal desorption-oxidation repair system and repair method | |
CN103551373B (en) | System and method for removing organic pollutants in soil employing microwave-assisted soil vapor extraction (SVE) | |
CN204710846U (en) | A kind of steam strengthening thermal desorption and gas phase extracting soil repair system | |
CN108339842A (en) | A kind of soil vapor extraction system and method for combining injection with hot-air based on water vapour | |
CN102172615B (en) | Vacuum strengthened far-infrared thermal desorption system for organism-polluted soil | |
CN204737749U (en) | Volatile organic compounds pollutes normal position prosthetic devices of groundwater | |
CN107855354A (en) | A kind of organic polluted soil thermal desorption prosthetic device and method | |
CN107144592A (en) | A kind of multiple feasibility study experimental provision of contaminated soil hot repair and method | |
CN105436200A (en) | Steam heat assisted extracting method for volatile/semi-volatile organic polluted soil in soil | |
CN111215440A (en) | Organic contaminated soil in-situ alternate electric heating desorption system | |
CN115591921A (en) | High-efficiency and energy-saving in-situ gas thermal desorption system | |
CN106513430B (en) | A system for remediation of hydrocarbon-contaminated soil based on thermally enhanced SVE | |
CN208033273U (en) | A kind of dystopy gas heating extracting integral type thermal desorption device | |
CN204093827U (en) | The integrated repair system of soil vapor extraction and underground water gas injection | |
CN204412753U (en) | A kind of portable contaminated soil remediation equipment | |
CN212494515U (en) | In-situ remediation device for volatile organic contaminated soil | |
CN205851549U (en) | A kind of solar powered ventilation system device repaired for contaminated site | |
CN108772413A (en) | A kind of organic material contaminated soil batch heating disposal plant and method of disposal | |
CN206652833U (en) | A kind of hydrocarbon contamination soil repair system for strengthening SVE based on heat | |
CN208513348U (en) | A kind of onboard vapor extraction soil repair system | |
CN215388529U (en) | Collecting and processing system for waste gas generated in hazardous waste treatment process | |
CN115180765B (en) | Underground water circulation well temperature control method, system and device | |
CN208341357U (en) | Contaminated soil in-situ radio-frequency heats gas phase and extracts prosthetic device | |
CN207709531U (en) | A kind of organic polluted soil thermal desorption prosthetic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181218 |