CN109009101B - An adaptive real-time denoising method for EEG signals - Google Patents
An adaptive real-time denoising method for EEG signals Download PDFInfo
- Publication number
- CN109009101B CN109009101B CN201810842340.7A CN201810842340A CN109009101B CN 109009101 B CN109009101 B CN 109009101B CN 201810842340 A CN201810842340 A CN 201810842340A CN 109009101 B CN109009101 B CN 109009101B
- Authority
- CN
- China
- Prior art keywords
- matrix
- sampling
- signal
- source signal
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000003044 adaptive effect Effects 0.000 title abstract description 3
- 239000011159 matrix material Substances 0.000 claims abstract description 44
- 238000005070 sampling Methods 0.000 claims abstract description 23
- 239000013598 vector Substances 0.000 claims description 18
- 230000006978 adaptation Effects 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Psychology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种脑电信号自适应实时去噪方法;本发明先对采样矩阵X进行中心化处理,计算采样矩阵X的协方差矩阵,并计算其特征值与特征向量,计算滤波自适用系数、滤波器系数、噪音信号y源信号;最后得到源信号矩阵;本发明在计算复杂度与收敛速度间取得了平衡,便于在PFGA中实现,可满足脑电信号实时采集需求。本发明收敛速度快,不易改变波形形状,可有效去除生理伪迹与电路噪声。
The invention discloses an adaptive real-time denoising method for electroencephalogram signals; the invention first performs centralization processing on a sampling matrix X, calculates the covariance matrix of the sampling matrix X, calculates its eigenvalues and eigenvectors, and calculates and filters the self-adaptive Coefficients, filter coefficients, noise signal y source signal; finally, the source signal matrix is obtained; the present invention achieves a balance between computational complexity and convergence speed, is easy to implement in PFGA, and can meet the real-time acquisition requirements of EEG signals. The invention has fast convergence speed, is not easy to change the waveform shape, and can effectively remove physiological artifacts and circuit noise.
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810842340.7A CN109009101B (en) | 2018-07-27 | 2018-07-27 | An adaptive real-time denoising method for EEG signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810842340.7A CN109009101B (en) | 2018-07-27 | 2018-07-27 | An adaptive real-time denoising method for EEG signals |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109009101A CN109009101A (en) | 2018-12-18 |
CN109009101B true CN109009101B (en) | 2021-04-06 |
Family
ID=64647059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810842340.7A Active CN109009101B (en) | 2018-07-27 | 2018-07-27 | An adaptive real-time denoising method for EEG signals |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109009101B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111740614B (en) * | 2020-06-24 | 2024-04-12 | 东北电力大学 | Y-source two-stage matrix converter analysis method based on state space average model |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080249430A1 (en) * | 2007-04-05 | 2008-10-09 | Erwin Roy John | System and Method for Pain Detection and Computation of a Pain Quantification Index |
CN102488517A (en) * | 2011-12-13 | 2012-06-13 | 湖州康普医疗器械科技有限公司 | Method and device for detecting burst suppression state in brain signal |
US20130096391A1 (en) * | 2011-10-14 | 2013-04-18 | Flint Hills Scientific, L.L.C. | Seizure detection methods, apparatus, and systems using a short term average/long term average algorithm |
CN104091172A (en) * | 2014-07-04 | 2014-10-08 | 北京工业大学 | Characteristic extraction method of motor imagery electroencephalogram signals |
CN104523269A (en) * | 2015-01-15 | 2015-04-22 | 江南大学 | Self-adaptive recognition method orienting epilepsy electroencephalogram transfer environment |
CN106108894A (en) * | 2016-07-18 | 2016-11-16 | 天津大学 | A kind of emotion electroencephalogramrecognition recognition method improving Emotion identification model time robustness |
CN106264521A (en) * | 2016-09-22 | 2017-01-04 | 小菜儿成都信息科技有限公司 | The automatic removal method of lower jaw interference in the multichannel brain signal of telecommunication |
CN106963373A (en) * | 2017-04-12 | 2017-07-21 | 博睿康科技(常州)股份有限公司 | A kind of electric adaptive filter method of brain |
-
2018
- 2018-07-27 CN CN201810842340.7A patent/CN109009101B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080249430A1 (en) * | 2007-04-05 | 2008-10-09 | Erwin Roy John | System and Method for Pain Detection and Computation of a Pain Quantification Index |
US20130096391A1 (en) * | 2011-10-14 | 2013-04-18 | Flint Hills Scientific, L.L.C. | Seizure detection methods, apparatus, and systems using a short term average/long term average algorithm |
CN102488517A (en) * | 2011-12-13 | 2012-06-13 | 湖州康普医疗器械科技有限公司 | Method and device for detecting burst suppression state in brain signal |
CN104091172A (en) * | 2014-07-04 | 2014-10-08 | 北京工业大学 | Characteristic extraction method of motor imagery electroencephalogram signals |
CN104523269A (en) * | 2015-01-15 | 2015-04-22 | 江南大学 | Self-adaptive recognition method orienting epilepsy electroencephalogram transfer environment |
CN106108894A (en) * | 2016-07-18 | 2016-11-16 | 天津大学 | A kind of emotion electroencephalogramrecognition recognition method improving Emotion identification model time robustness |
CN106264521A (en) * | 2016-09-22 | 2017-01-04 | 小菜儿成都信息科技有限公司 | The automatic removal method of lower jaw interference in the multichannel brain signal of telecommunication |
CN106963373A (en) * | 2017-04-12 | 2017-07-21 | 博睿康科技(常州)股份有限公司 | A kind of electric adaptive filter method of brain |
Non-Patent Citations (4)
Title |
---|
Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces;Ricardo Aler等;《Information Sciences 》;20121231;第53-66页 * |
Comprehensive Common Spatial Patterns With Temporal Structure Information of EEG Data: Minimizing Nontask Related EEG Component;Haixian Wang等;《IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING》;20120930;第59卷(第9期);第2496-2505页 * |
基于扩散张量成像的脑组织各向异性电导率计算模型的研究综述;吴占雄 等;《生物物理学报》;20110630;第27卷(第6期);第491-499页 * |
基于运动想象脑电信号的导联排序研究;胡侠 等;《计算机工程与设计》;20101231;第31卷(第19期);第4265-4267页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109009101A (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Geng et al. | An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface | |
Sanei et al. | A new adaptive line enhancer based on singular spectrum analysis | |
CN102835955B (en) | A method for automatic removal of electro-oculogram artifacts in EEG signals without threshold setting | |
Roy et al. | Image denoising by data adaptive and non-data adaptive transform domain denoising method using EEG signal | |
CN110269609B (en) | Method for separating ocular artifacts from electroencephalogram signals based on single channel | |
Jafarifarmand et al. | Real-time ocular artifacts removal of EEG data using a hybrid ICA-ANC approach | |
Vaneghi et al. | A comparative approach to ECG feature extraction methods | |
CN108478215A (en) | EEG Noise Cancellation, storage medium based on wavelet analysis and device | |
Liu et al. | Automatic extracellular spike denoising using wavelet neighbor coefficients and level dependency | |
Kotas et al. | Averaging of nonlinearly aligned signal cycles for noise suppression | |
CN109009101B (en) | An adaptive real-time denoising method for EEG signals | |
Phinyomark et al. | Applications of variance fractal dimension: A survey | |
Lin et al. | Online recursive ICA algorithm used for motor imagery EEG signal | |
Azami et al. | Automatic signal segmentation based on singular spectrum analysis and imperialist competitive algorithm | |
Jiang et al. | Covariance and time-scale methods for blind separation of delayed sources | |
CN105997067B (en) | Adaptive electromyography signal detection process method based on fraction Fourier conversion | |
Soysa et al. | An eigenfilter based approach for extraction of fetal heart signals under noisy conditions using adaptive filters | |
Assi et al. | Kmeans-ICA based automatic method for EOG denoising in multi-channel EEG recordings | |
CN106682605B (en) | Method and system for identifying electroencephalogram amplification degree | |
Chintala et al. | Mixed step size normalized least mean fourth adaptive algorithm for artifact elimination from raw EEG signals | |
Zhang et al. | A fast adaptive LPCA method for fetal ECG extraction based on multichannel signals | |
KR20140009635A (en) | Extracting erd/ers feature using pso | |
Miljković et al. | Independent component analysis (ICA) methods for neonatal EEG artifact extraction: Sensitivity to variation of artifact properties | |
AL-Jobouri et al. | From biomedical signal processing techniques to fMRI parcellation | |
Khanom et al. | Performance analysis of QR-decomposition RLS and householder sliding window RLS for noise elimination of EEG |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |