CN109003679A - 一种脑血管出血与缺血预测方法及装置 - Google Patents
一种脑血管出血与缺血预测方法及装置 Download PDFInfo
- Publication number
- CN109003679A CN109003679A CN201810687069.4A CN201810687069A CN109003679A CN 109003679 A CN109003679 A CN 109003679A CN 201810687069 A CN201810687069 A CN 201810687069A CN 109003679 A CN109003679 A CN 109003679A
- Authority
- CN
- China
- Prior art keywords
- medical
- data
- prediction models
- prediction
- medical image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000032843 Hemorrhage Diseases 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000000302 ischemic effect Effects 0.000 title abstract description 5
- 238000012549 training Methods 0.000 claims abstract description 87
- 238000012545 processing Methods 0.000 claims description 73
- 208000028867 ischemia Diseases 0.000 claims description 63
- 210000001627 cerebral artery Anatomy 0.000 claims description 32
- 238000004140 cleaning Methods 0.000 claims description 23
- 238000007781 pre-processing Methods 0.000 claims description 21
- 238000010276 construction Methods 0.000 claims description 19
- 230000002490 cerebral effect Effects 0.000 claims description 18
- 230000002792 vascular Effects 0.000 claims description 18
- 230000000740 bleeding effect Effects 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 201000010099 disease Diseases 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 14
- 238000002583 angiography Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 11
- 238000013136 deep learning model Methods 0.000 claims description 8
- 238000002372 labelling Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 4
- 210000001367 artery Anatomy 0.000 abstract description 4
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 210000004556 brain Anatomy 0.000 abstract description 2
- 238000002059 diagnostic imaging Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 12
- 238000004590 computer program Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 208000026106 cerebrovascular disease Diseases 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 238000003745 diagnosis Methods 0.000 description 8
- 210000004204 blood vessel Anatomy 0.000 description 6
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 5
- 208000034158 bleeding Diseases 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 201000006474 Brain Ischemia Diseases 0.000 description 4
- 206010008120 Cerebral ischaemia Diseases 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 206010008118 cerebral infarction Diseases 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 208000031226 Hyperlipidaemia Diseases 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810687069.4A CN109003679B (zh) | 2018-06-28 | 2018-06-28 | 一种脑血管出血与缺血预测方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810687069.4A CN109003679B (zh) | 2018-06-28 | 2018-06-28 | 一种脑血管出血与缺血预测方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109003679A true CN109003679A (zh) | 2018-12-14 |
CN109003679B CN109003679B (zh) | 2021-06-08 |
Family
ID=64600617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810687069.4A Active CN109003679B (zh) | 2018-06-28 | 2018-06-28 | 一种脑血管出血与缺血预测方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109003679B (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109493975A (zh) * | 2018-12-20 | 2019-03-19 | 广州天鹏计算机科技有限公司 | 基于xgboost模型的慢性病复发预测方法、装置和计算机设备 |
CN109829892A (zh) * | 2019-01-03 | 2019-05-31 | 众安信息技术服务有限公司 | 一种预测模型的训练方法、使用该模型的预测方法及装置 |
CN110111886A (zh) * | 2019-05-16 | 2019-08-09 | 闻康集团股份有限公司 | 一种基于XGBoost疾病预测的智能问诊系统及方法 |
CN110503151A (zh) * | 2019-08-26 | 2019-11-26 | 北京推想科技有限公司 | 一种影像的处理方法和系统 |
CN110660478A (zh) * | 2019-09-18 | 2020-01-07 | 西安交通大学 | 一种基于迁移学习的癌症图像预测判别方法和系统 |
CN111832644A (zh) * | 2020-07-08 | 2020-10-27 | 北京工业大学 | 一种基于序列级别的脑部医疗影像报告生成方法及系统 |
CN112712878A (zh) * | 2020-12-30 | 2021-04-27 | 四川桑瑞思环境技术工程有限公司 | 一种数字化手术室系统和控制方法 |
CN112991320A (zh) * | 2021-04-07 | 2021-06-18 | 德州市人民医院 | 脑出血患者血肿扩大风险预测系统及方法 |
CN113130078A (zh) * | 2021-05-11 | 2021-07-16 | 首都医科大学附属北京天坛医院 | 一种预测颅内动脉瘤闭塞的方法、装置以及设备 |
WO2021151273A1 (zh) * | 2020-05-26 | 2021-08-05 | 平安科技(深圳)有限公司 | 疾病预测方法、装置、电子设备及存储介质 |
CN114068013A (zh) * | 2021-11-16 | 2022-02-18 | 高峰 | 一种脑动脉闭塞人工智能辅助决策系统 |
CN114450752A (zh) * | 2019-08-30 | 2022-05-06 | 通用电气精准医疗有限责任公司 | 用于利用深度学习模型的计算机辅助诊断的方法和系统 |
CN114431836A (zh) * | 2022-04-11 | 2022-05-06 | 中南大学湘雅医院 | 基于人工智能的甲黑线良恶性预测系统 |
CN114898888A (zh) * | 2022-07-15 | 2022-08-12 | 武汉大学 | 医学数据处理方法、装置、计算机设备及可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103654714A (zh) * | 2013-12-14 | 2014-03-26 | 刘于肇 | 中医治未病眼全息慢性病痛症智能诊疗仪 |
CN106682435A (zh) * | 2016-12-31 | 2017-05-17 | 西安百利信息科技有限公司 | 一种多模型融合自动检测医学图像中病变的系统及方法 |
CN108053885A (zh) * | 2017-11-27 | 2018-05-18 | 上海市第六人民医院 | 一种出血转化预测系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107122589A (zh) * | 2017-03-23 | 2017-09-01 | 浙江大学 | 一种将多种主要不良心血管事件预测模型融合的集成预测方法 |
-
2018
- 2018-06-28 CN CN201810687069.4A patent/CN109003679B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103654714A (zh) * | 2013-12-14 | 2014-03-26 | 刘于肇 | 中医治未病眼全息慢性病痛症智能诊疗仪 |
CN106682435A (zh) * | 2016-12-31 | 2017-05-17 | 西安百利信息科技有限公司 | 一种多模型融合自动检测医学图像中病变的系统及方法 |
CN108053885A (zh) * | 2017-11-27 | 2018-05-18 | 上海市第六人民医院 | 一种出血转化预测系统 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109493975A (zh) * | 2018-12-20 | 2019-03-19 | 广州天鹏计算机科技有限公司 | 基于xgboost模型的慢性病复发预测方法、装置和计算机设备 |
CN109829892A (zh) * | 2019-01-03 | 2019-05-31 | 众安信息技术服务有限公司 | 一种预测模型的训练方法、使用该模型的预测方法及装置 |
CN110111886A (zh) * | 2019-05-16 | 2019-08-09 | 闻康集团股份有限公司 | 一种基于XGBoost疾病预测的智能问诊系统及方法 |
CN110503151A (zh) * | 2019-08-26 | 2019-11-26 | 北京推想科技有限公司 | 一种影像的处理方法和系统 |
CN114450752A (zh) * | 2019-08-30 | 2022-05-06 | 通用电气精准医疗有限责任公司 | 用于利用深度学习模型的计算机辅助诊断的方法和系统 |
CN110660478A (zh) * | 2019-09-18 | 2020-01-07 | 西安交通大学 | 一种基于迁移学习的癌症图像预测判别方法和系统 |
WO2021151273A1 (zh) * | 2020-05-26 | 2021-08-05 | 平安科技(深圳)有限公司 | 疾病预测方法、装置、电子设备及存储介质 |
CN111832644A (zh) * | 2020-07-08 | 2020-10-27 | 北京工业大学 | 一种基于序列级别的脑部医疗影像报告生成方法及系统 |
CN112712878A (zh) * | 2020-12-30 | 2021-04-27 | 四川桑瑞思环境技术工程有限公司 | 一种数字化手术室系统和控制方法 |
CN112712878B (zh) * | 2020-12-30 | 2024-09-06 | 四川桑瑞思环境技术工程有限公司 | 一种数字化手术室系统和控制方法 |
CN112991320A (zh) * | 2021-04-07 | 2021-06-18 | 德州市人民医院 | 脑出血患者血肿扩大风险预测系统及方法 |
CN113130078A (zh) * | 2021-05-11 | 2021-07-16 | 首都医科大学附属北京天坛医院 | 一种预测颅内动脉瘤闭塞的方法、装置以及设备 |
CN114068013B (zh) * | 2021-11-16 | 2022-09-23 | 高峰 | 一种脑动脉闭塞人工智能辅助决策系统 |
CN114068013A (zh) * | 2021-11-16 | 2022-02-18 | 高峰 | 一种脑动脉闭塞人工智能辅助决策系统 |
CN114431836A (zh) * | 2022-04-11 | 2022-05-06 | 中南大学湘雅医院 | 基于人工智能的甲黑线良恶性预测系统 |
CN114898888A (zh) * | 2022-07-15 | 2022-08-12 | 武汉大学 | 医学数据处理方法、装置、计算机设备及可读存储介质 |
CN114898888B (zh) * | 2022-07-15 | 2022-09-23 | 武汉大学 | 医学数据处理方法、装置、计算机设备及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN109003679B (zh) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109003679B (zh) | 一种脑血管出血与缺血预测方法及装置 | |
Abdar et al. | UncertaintyFuseNet: robust uncertainty-aware hierarchical feature fusion model with ensemble Monte Carlo dropout for COVID-19 detection | |
US11341631B2 (en) | System and method for automatically detecting a physiological condition from a medical image of a patient | |
Laserson et al. | Textray: Mining clinical reports to gain a broad understanding of chest x-rays | |
CN109087306A (zh) | 动脉血管图像模型训练方法、分割方法、装置及电子设备 | |
JP2022505205A (ja) | 腸の病理学のための画像スコアリング | |
CN111048210B (zh) | 基于眼底图像评估疾病风险的方法及设备 | |
CN110874409A (zh) | 病情分级预测系统、方法、电子设备及可读存储介质 | |
Bhosale et al. | Bio-medical imaging (X-ray, CT, ultrasound, ECG), genome sequences applications of deep neural network and machine learning in diagnosis, detection, classification, and segmentation of COVID-19: a Meta-analysis & systematic review | |
CN111340794B (zh) | 冠状动脉狭窄的量化方法及装置 | |
CN115222674A (zh) | 基于多维特征融合的颅内动脉瘤破裂风险的检测装置 | |
Sharma et al. | Classification of heart disease from MRI images using convolutional neural network | |
Roy et al. | Vessels segmentation in angiograms using convolutional neural network: A deep learning based approach | |
Chen et al. | Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3D CNN | |
CN118154865A (zh) | 基于超声臂丛神经图像多尺度离散优化的多目标分割方法 | |
Al-antari et al. | Deep learning myocardial infarction segmentation framework from cardiac magnetic resonance images | |
Lo et al. | Fetal organ anomaly classification network for identifying organ anomalies in fetal MRI | |
Singh et al. | Osteoporosis prescreening and bone mineral density prediction using dental panoramic radiographs | |
Noori et al. | A comparative analysis for diabetic prediction based on machine learning techniques | |
Hua et al. | DRAN: Densely reversed attention based convolutional network for diabetic retinopathy detection | |
Tsaniya et al. | Automatic radiology report generator using transformer with contrast-based image enhancement | |
CN111436212A (zh) | 用于医学成像评估的深度学习的应用 | |
Tang et al. | A neural network to pulmonary embolism aided diagnosis with a feature selection approach | |
Baltruschat | Deep learning for automatic lung disease analysis in chest x-rays | |
EP4198997A1 (en) | A computer implemented method, a method and a system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200424 Address after: 518052 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A Applicant after: ZhongAn Information Technology Service Co.,Ltd. Applicant after: NORTH CAMPUS, HUASHAN HOSPITAL AFFILIATED TO FUDAN University Address before: 518052 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A (located in Shenzhen Qianhai business secretary Co. Ltd.) Applicant before: ZhongAn Information Technology Service Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240407 Address after: 518052 Room 201, building A, 1 front Bay Road, Shenzhen Qianhai cooperation zone, Shenzhen, Guangdong Patentee after: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region after: China Patentee after: HUASHAN HOSPITAL, FUDAN University Address before: 518052 Room 201, building A, 1 front Bay Road, Shenzhen Qianhai cooperation zone, Shenzhen, Guangdong Patentee before: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China Patentee before: NORTH CAMPUS, HUASHAN HOSPITAL AFFILIATED TO FUDAN University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240416 Address after: Room 1179, W Zone, 11th Floor, Building 1, No. 158 Shuanglian Road, Qingpu District, Shanghai, 201702 Patentee after: Shanghai Zhongan Information Technology Service Co.,Ltd. Country or region after: China Address before: 518052 Room 201, building A, 1 front Bay Road, Shenzhen Qianhai cooperation zone, Shenzhen, Guangdong Patentee before: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China Patentee before: HUASHAN HOSPITAL, FUDAN University |
|
TR01 | Transfer of patent right |