CN109002863B - 一种基于紧凑卷积神经网络的图像处理方法 - Google Patents
一种基于紧凑卷积神经网络的图像处理方法 Download PDFInfo
- Publication number
- CN109002863B CN109002863B CN201810682103.9A CN201810682103A CN109002863B CN 109002863 B CN109002863 B CN 109002863B CN 201810682103 A CN201810682103 A CN 201810682103A CN 109002863 B CN109002863 B CN 109002863B
- Authority
- CN
- China
- Prior art keywords
- compact
- layer
- branch
- neural network
- convolutional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 36
- 238000003672 processing method Methods 0.000 title claims abstract description 11
- 238000011176 pooling Methods 0.000 claims abstract description 35
- 238000010586 diagram Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 83
- 230000009467 reduction Effects 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 4
- 230000001502 supplementing effect Effects 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 4
- 230000008447 perception Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/192—Recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references
- G06V30/194—References adjustable by an adaptive method, e.g. learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810682103.9A CN109002863B (zh) | 2018-06-27 | 2018-06-27 | 一种基于紧凑卷积神经网络的图像处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810682103.9A CN109002863B (zh) | 2018-06-27 | 2018-06-27 | 一种基于紧凑卷积神经网络的图像处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109002863A CN109002863A (zh) | 2018-12-14 |
CN109002863B true CN109002863B (zh) | 2022-04-15 |
Family
ID=64602113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810682103.9A Active CN109002863B (zh) | 2018-06-27 | 2018-06-27 | 一种基于紧凑卷积神经网络的图像处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109002863B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112465251A (zh) * | 2020-12-08 | 2021-03-09 | 上海电力大学 | 一种基于最简门控神经网络的短期光伏出力概率预测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105975931A (zh) * | 2016-05-04 | 2016-09-28 | 浙江大学 | 一种基于多尺度池化的卷积神经网络人脸识别方法 |
CN106471526A (zh) * | 2014-08-29 | 2017-03-01 | 谷歌公司 | 使用深度神经网络来处理图像 |
CN106504064A (zh) * | 2016-10-25 | 2017-03-15 | 清华大学 | 基于深度卷积神经网络的服装分类与搭配推荐方法及系统 |
CN107239802A (zh) * | 2017-06-28 | 2017-10-10 | 广东工业大学 | 一种图像分类方法及装置 |
CN107945182A (zh) * | 2018-01-02 | 2018-04-20 | 东北农业大学 | 基于卷积神经网络模型GoogleNet的玉米叶片病害识别方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015180101A1 (en) * | 2014-05-29 | 2015-12-03 | Beijing Kuangshi Technology Co., Ltd. | Compact face representation |
CN105917354A (zh) * | 2014-10-09 | 2016-08-31 | 微软技术许可有限责任公司 | 用于图像处理的空间金字塔池化网络 |
CN106503729A (zh) * | 2016-09-29 | 2017-03-15 | 天津大学 | 一种基于顶层权值的图像卷积特征的生成方法 |
CN107220643A (zh) * | 2017-04-12 | 2017-09-29 | 广东工业大学 | 基于紧凑型神经网络的深度学习模型的交通标志识别系统 |
CN107194371B (zh) * | 2017-06-14 | 2020-06-09 | 易视腾科技股份有限公司 | 基于层次化卷积神经网络的用户专注度识别方法及系统 |
CN107688808B (zh) * | 2017-08-07 | 2021-07-06 | 电子科技大学 | 一种快速的自然场景文本检测方法 |
CN107844740A (zh) * | 2017-09-05 | 2018-03-27 | 中国地质调查局西安地质调查中心 | 一种脱机手写、印刷汉字识别方法及系统 |
CN107610123A (zh) * | 2017-10-11 | 2018-01-19 | 中共中央办公厅电子科技学院 | 一种基于深度卷积神经网络的图像美学质量评价方法 |
-
2018
- 2018-06-27 CN CN201810682103.9A patent/CN109002863B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106471526A (zh) * | 2014-08-29 | 2017-03-01 | 谷歌公司 | 使用深度神经网络来处理图像 |
CN105975931A (zh) * | 2016-05-04 | 2016-09-28 | 浙江大学 | 一种基于多尺度池化的卷积神经网络人脸识别方法 |
CN106504064A (zh) * | 2016-10-25 | 2017-03-15 | 清华大学 | 基于深度卷积神经网络的服装分类与搭配推荐方法及系统 |
CN107239802A (zh) * | 2017-06-28 | 2017-10-10 | 广东工业大学 | 一种图像分类方法及装置 |
CN107945182A (zh) * | 2018-01-02 | 2018-04-20 | 东北农业大学 | 基于卷积神经网络模型GoogleNet的玉米叶片病害识别方法 |
Non-Patent Citations (3)
Title |
---|
Going deeper with convolutions;Christian Szegedy等;《Computer Vision and Pattern Recognition》;20140917;第1-12页 * |
Rethinking the Inception Architecture for Computer Vision;Christian Szegedy等;《Computer Vision and Pattern Recognition》;20151211;第1-10页 * |
多尺寸池化卷积神经网络的人体行为识别研究;周书仁等;《小型微型计算机系统》;20170831;第38卷(第8期);第1893-1898页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109002863A (zh) | 2018-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112308158B (zh) | 一种基于部分特征对齐的多源领域自适应模型及方法 | |
CN110210539B (zh) | 多级深度特征融合的rgb-t图像显著性目标检测方法 | |
CN106919920B (zh) | 基于卷积特征和空间视觉词袋模型的场景识别方法 | |
US20190228268A1 (en) | Method and system for cell image segmentation using multi-stage convolutional neural networks | |
CN109993100B (zh) | 基于深层特征聚类的人脸表情识别的实现方法 | |
CN112381097A (zh) | 一种基于深度学习的场景语义分割方法 | |
CN108596240B (zh) | 一种基于判别特征网络的图像语义分割方法 | |
CN104408479A (zh) | 一种基于深度局部特征描述符的海量图像分类方法 | |
CN114693624A (zh) | 一种图像检测方法、装置、设备及可读存储介质 | |
CN110110724A (zh) | 基于指数型挤压函数驱动胶囊神经网络的文本验证码识别方法 | |
CN114863572B (zh) | 一种多通道异构传感器的肌电手势识别方法 | |
CN107545281B (zh) | 一种基于深度学习的单一有害气体红外图像分类识别方法 | |
CN115965864A (zh) | 一种用于农作物病害识别的轻量级注意力机制网络 | |
CN114882278A (zh) | 一种基于注意力机制和迁移学习的轮胎花纹分类方法和装置 | |
CN112989955B (zh) | 基于空时双流异构嫁接卷积神经网络人体动作识别方法 | |
CN109002863B (zh) | 一种基于紧凑卷积神经网络的图像处理方法 | |
CN110782001A (zh) | 一种基于组卷积神经网络使用共享卷积核的改进方法 | |
CN117744745A (zh) | 一种基于YOLOv5网络模型的图像优化方法及优化系统 | |
CN113642480A (zh) | 一种字符识别方法、装置、设备及存储介质 | |
CN117853862A (zh) | 基于rgb通道信息融合的深度学习图像操作链取证方法 | |
CN110490876B (zh) | 一种基于轻量级神经网络的图像分割方法 | |
CN109934281A (zh) | 一种二分类网络的非监督训练方法 | |
CN114049500A (zh) | 基于元学习重加权网络伪标签训练的图像评价方法及系统 | |
Liu | Comparison of different Convolutional Neural Network models on Fruit 360 Dataset | |
CN114581903A (zh) | 一种基于卷积神经网络的车牌字符识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240612 Address after: 510000 No. 135 West Xingang Road, Guangdong, Guangzhou Patentee after: SUN YAT-SEN University Country or region after: China Address before: No.9, Nanguo East Road, Yunlu community residents committee, Daliang sub district office, Shunde District, Foshan City, Guangdong Province, 528399 Patentee before: FOSHAN SHUNDE SUN YAT-SEN UNIVERSITY Research Institute Country or region before: China Patentee before: SYSU-CMU SHUNDE INTERNATIONAL JOINT Research Institute Patentee before: SUN YAT-SEN University |