CN109002690B - 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法 - Google Patents
通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法 Download PDFInfo
- Publication number
- CN109002690B CN109002690B CN201810591726.5A CN201810591726A CN109002690B CN 109002690 B CN109002690 B CN 109002690B CN 201810591726 A CN201810591726 A CN 201810591726A CN 109002690 B CN109002690 B CN 109002690B
- Authority
- CN
- China
- Prior art keywords
- charmm
- amino acid
- rotamers
- force field
- inp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000001413 amino acids Chemical class 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 11
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 31
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 23
- 238000000329 molecular dynamics simulation Methods 0.000 claims abstract description 12
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 9
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000011160 research Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract 1
- 229940079593 drug Drugs 0.000 abstract 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 238000007614 solvation Methods 0.000 description 2
- -1 1-N in English Chemical class 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810591726.5A CN109002690B (zh) | 2018-06-08 | 2018-06-08 | 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810591726.5A CN109002690B (zh) | 2018-06-08 | 2018-06-08 | 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109002690A CN109002690A (zh) | 2018-12-14 |
CN109002690B true CN109002690B (zh) | 2021-05-18 |
Family
ID=64601132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810591726.5A Active CN109002690B (zh) | 2018-06-08 | 2018-06-08 | 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109002690B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020034615A1 (zh) * | 2019-02-21 | 2020-02-20 | 深圳晶泰科技有限公司 | 基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 |
CN110718265B (zh) * | 2019-09-05 | 2021-02-26 | 复旦大学 | 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法 |
CN115521929B (zh) * | 2021-06-25 | 2024-08-06 | 济南大学 | 高活性农药活化脂激活酶突变体及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1414972A (zh) * | 1999-12-02 | 2003-04-30 | 思罗姆-X股份有限公司 | 通过消除t-细胞表位来降低异源蛋白的免疫原性的方法 |
CN1672160A (zh) * | 2002-05-20 | 2005-09-21 | 埃博马可西斯公司 | 在计算机上产生和筛选蛋白质文库 |
CN103761452A (zh) * | 2013-12-11 | 2014-04-30 | 深圳先进技术研究院 | 基于随机模拟的折叠病致病机理的分析方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10468119B2 (en) * | 2015-07-28 | 2019-11-05 | Yeda Research And Development Co. Ltd. | Stable proteins and methods for designing same |
-
2018
- 2018-06-08 CN CN201810591726.5A patent/CN109002690B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1414972A (zh) * | 1999-12-02 | 2003-04-30 | 思罗姆-X股份有限公司 | 通过消除t-细胞表位来降低异源蛋白的免疫原性的方法 |
CN1672160A (zh) * | 2002-05-20 | 2005-09-21 | 埃博马可西斯公司 | 在计算机上产生和筛选蛋白质文库 |
CN103761452A (zh) * | 2013-12-11 | 2014-04-30 | 深圳先进技术研究院 | 基于随机模拟的折叠病致病机理的分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109002690A (zh) | 2018-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | Drug–target affinity prediction using graph neural network and contact maps | |
McNutt et al. | GNINA 1.0: molecular docking with deep learning | |
CN109002690B (zh) | 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法 | |
Blaabjerg et al. | Rapid protein stability prediction using deep learning representations | |
Singh et al. | Molecular docking and molecular dynamics simulation | |
CN107038348B (zh) | 基于蛋白-配体相互作用指纹图谱的药物靶标预测方法 | |
CN110400598B (zh) | 基于mm/pbsa模型的蛋白质-配体结合自由能计算方法 | |
Feinstein et al. | Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets | |
Kleywegt et al. | Around o | |
Brylinski et al. | e FindSite: Improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands | |
Giguere et al. | Learning a peptide-protein binding affinity predictor with kernel ridge regression | |
Knudsen et al. | Sequence alignments and pair hidden Markov models using evolutionary history | |
Sulimov et al. | New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking | |
CN104350141B (zh) | 相互作用预测装置、相互作用预测方法和程序 | |
Konc et al. | ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins | |
CN116343949A (zh) | 蛋白配体结合亲和力预测方法、装置、系统及存储介质 | |
Brooijmans | Docking methods, ligand design, and validating data sets in the structural genomic era | |
Li et al. | Learning from real imbalanced data of 14-3-3 proteins binding specificity | |
Jethra et al. | Structure and function prediction of unknown wheat protein using LOMETS and I-TASSER | |
Ma et al. | Prediction of protein–protein binding affinity using diverse protein–protein interface features | |
Thomas et al. | In silico protein engineering: Methods and Tools | |
Leung et al. | SV-AUTOPILOT: optimized, automated construction of structural variation discovery and benchmarking pipelines | |
Esquivel-Rodríguez et al. | Evaluation of multiple protein docking structures using correctly predicted pairwise subunits | |
Zerbetto et al. | Towards bulk thermodynamics via non-equilibrium methods: gaseous methane as a case study | |
Rosignoli et al. | Making Use of Averaging Methods in MODELLER for Protein Structure Prediction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221222 Address after: Room 1001-8, No. 2399, Chuangye Avenue, Huangpu District, Guangzhou, Guangdong 510000 Patentee after: Guangzhou Sanhuan Wenyue Intellectual Property Operation Co.,Ltd. Address before: 250022 No. 336, South Xin Zhuang West Road, Shizhong District, Ji'nan, Shandong Patentee before: University of Jinan Effective date of registration: 20221222 Address after: D1101, Building 4, Software Industry Base, No. 19, 17, 18, Haitian 1st Road, Binhai Community, Yuehai Street, Nanshan District, Shenzhen, Guangdong, 518000 Patentee after: Shenzhen Xinrui Gene Technology Co.,Ltd. Address before: Room 1001-8, No. 2399, Chuangye Avenue, Huangpu District, Guangzhou, Guangdong 510000 Patentee before: Guangzhou Sanhuan Wenyue Intellectual Property Operation Co.,Ltd. |