CN108998442B - A kind of method for shearing DNA molecule and its application - Google Patents
A kind of method for shearing DNA molecule and its application Download PDFInfo
- Publication number
- CN108998442B CN108998442B CN201810808657.9A CN201810808657A CN108998442B CN 108998442 B CN108998442 B CN 108998442B CN 201810808657 A CN201810808657 A CN 201810808657A CN 108998442 B CN108998442 B CN 108998442B
- Authority
- CN
- China
- Prior art keywords
- polarized light
- dna molecules
- circularly polarized
- shearing
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000010008 shearing Methods 0.000 title claims abstract description 32
- 108020004414 DNA Proteins 0.000 title claims description 79
- 102000053602 DNA Human genes 0.000 title claims description 14
- 239000002105 nanoparticle Substances 0.000 claims abstract description 50
- 239000004065 semiconductor Substances 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000012634 fragment Substances 0.000 claims abstract description 16
- 238000010353 genetic engineering Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- XUJNEKJLAYXESH-UWTATZPHSA-N D-Cysteine Chemical compound SC[C@@H](N)C(O)=O XUJNEKJLAYXESH-UWTATZPHSA-N 0.000 claims description 11
- 229930195710 D‐cysteine Natural products 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- 239000000872 buffer Substances 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004201 L-cysteine Substances 0.000 claims description 6
- 235000013878 L-cysteine Nutrition 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 238000003786 synthesis reaction Methods 0.000 claims description 6
- 239000003446 ligand Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910020366 ClO 4 Inorganic materials 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 241000972773 Aulopiformes Species 0.000 description 10
- 238000012512 characterization method Methods 0.000 description 10
- 235000019515 salmon Nutrition 0.000 description 10
- 238000001962 electrophoresis Methods 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 229910004613 CdTe Inorganic materials 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 229960003180 glutathione Drugs 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000001142 circular dichroism spectrum Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108010076804 DNA Restriction Enzymes Proteins 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
Landscapes
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种剪切DNA分子的方法及其应用,属于基因工程技术领域。The invention relates to a method for shearing DNA molecules and its application, and belongs to the technical field of genetic engineering.
背景技术Background technique
获得DNA片段,对于基因测序、基因分析、基因编辑等技术而言是关键性步骤。对于基因测序,它可有效获得目的片段;对于基因分析,它可获得单一基因信息;对于基因编辑,它可选择性提取或复制基因序列。因此,DNA分子的剪切是基因工程领域必不可多的预处理步骤。Obtaining DNA fragments is a critical step for technologies such as gene sequencing, gene analysis, and gene editing. For gene sequencing, it can efficiently obtain target fragments; for gene analysis, it can obtain single gene information; for gene editing, it can selectively extract or copy gene sequences. Therefore, the shearing of DNA molecules is an essential preprocessing step in the field of genetic engineering.
随着基因领域研究的不断深入,获得结构均一,在序列、位点上具有高度特异性的DNA片段的需求变得越来越大。With the deepening of research in the field of genes, the demand for obtaining DNA fragments with uniform structure and high specificity in sequence and site has become more and more important.
目前,常用的剪切DNA分子的方法有以下几种:DNA限制性酶切法、超声波降解法、水动力剪切法等,这些方法目前都被用于DNA片段的生成,但是,限制性内切酶切法仍需要特定的生物酶,具有对pH以及温度要求高的缺陷;超声波降解法以及水动力剪切法具有对目标序列无特异性的缺陷。At present, the commonly used methods for shearing DNA molecules are as follows: DNA restriction enzyme digestion, ultrasonic degradation, hydrodynamic shearing, etc. These methods are currently used for the generation of DNA fragments, but the restriction The cleavage method still requires specific biological enzymes and has the defects of high pH and temperature requirements; the ultrasonic degradation method and the hydrodynamic shearing method have the defect of being non-specific to the target sequence.
因此,上述方法均不能很好的获得结构均一,在序列、位点上具有高度特异性的DNA片段,我们急需找到一种能够获得结构均一,在序列、位点上具有高度特异性的DNA片段的方法,以满足基因领域研究的需要。Therefore, none of the above methods can well obtain DNA fragments with uniform structure and high specificity in sequence and site. We urgently need to find a DNA fragment that can obtain uniform structure and high specificity in sequence and site. method to meet the needs of research in the field of genetics.
发明内容SUMMARY OF THE INVENTION
手性半导体纳米粒子是由IV、II-VI,IV-VI或III-V元素组成,常用于传感检测、成像、催化等;圆偏振光是光的电场方向或光矢量末端在垂直于传播方向的平面上描绘出的轨迹,常用于手性活性物质的表征。Chiral semiconductor nanoparticles are composed of IV, II-VI, IV-VI or III-V elements, and are often used in sensing, imaging, catalysis, etc.; circularly polarized light is the direction of the electric field of light or the end of the light vector that propagates The trajectory drawn on the plane of the direction is often used for the characterization of chiral active substances.
为解决上述问题,本发明提供了一种剪切DNA分子的方法。此方法将手性半导体纳米粒子与圆偏振光相结合,利用手性纳米粒子特殊构型及其在光下易发生光致氧化的原理,先将手性半导体纳米粒子与DNA分子混合后进行孵育,然后将孵育好的手性半导体纳米粒子与DNA分子混合物在圆偏振光下进行照射,即得剪切后的DNA分子;使用此方法,可快速获得大量结构均一,且在序列、位点上具有高度特异性的DNA片段,在基因工程领域具有巨大的应用潜力。To solve the above problems, the present invention provides a method for shearing DNA molecules. This method combines chiral semiconductor nanoparticles with circularly polarized light. Using the special configuration of chiral nanoparticles and the principle that they are prone to photo-oxidation under light, the chiral semiconductor nanoparticles are first mixed with DNA molecules and then incubated. , and then irradiate the incubated mixture of chiral semiconductor nanoparticles and DNA molecules under circularly polarized light to obtain sheared DNA molecules; using this method, a large number of uniform structures can be quickly obtained, and the DNA fragments with high specificity have great application potential in the field of genetic engineering.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
本发明提供了一种剪切DNA分子的方法,所述方法为先将手性半导体纳米粒子与DNA分子混合后进行孵育,然后将孵育好的手性半导体纳米粒子与DNA分子混合物在圆偏振光下进行照射,即得剪切后的DNA分子。The invention provides a method for shearing DNA molecules. The method comprises the steps of first mixing chiral semiconductor nanoparticles and DNA molecules and then incubating them, and then exposing the incubated mixture of chiral semiconductor nanoparticles and DNA molecules to circularly polarized light. Under irradiation, the sheared DNA molecule is obtained.
在本发明的一种实施方式中,所述方法为将DNA分子溶解于PBS缓冲液中,得到DNA分子溶液;将手性半导体纳米粒子加入DNA分子溶液中进行混合,得到混合液;将混合液静置进行孵育,得到孵育后的混合液;将孵育后的混合液在圆偏振光下进行照射,即得剪切后的DNA分子。In one embodiment of the present invention, the method includes dissolving DNA molecules in a PBS buffer to obtain a DNA molecule solution; adding chiral semiconductor nanoparticles into the DNA molecule solution for mixing to obtain a mixed solution; Let stand for incubation to obtain an incubated mixed solution; irradiate the incubated mixed solution under circularly polarized light to obtain sheared DNA molecules.
在本发明的一种实施方式中,所述PBS缓冲液的浓度为0.01mol/L。In an embodiment of the present invention, the concentration of the PBS buffer is 0.01 mol/L.
在本发明的一种实施方式中,所述PBS缓冲液的pH为7.4。In one embodiment of the present invention, the pH of the PBS buffer is 7.4.
在本发明的一种实施方式中,所述DNA分子溶液中DNA分子的浓度为0.5-1.5μmol/L。In an embodiment of the present invention, the concentration of DNA molecules in the DNA molecule solution is 0.5-1.5 μmol/L.
在本发明的一种实施方式中,所述DNA分子溶液中DNA分子的浓度为1μmol/L。In an embodiment of the present invention, the concentration of DNA molecules in the DNA molecule solution is 1 μmol/L.
在本发明的一种实施方式中,所述手性半导体纳米粒子是以D型半胱氨酸或L型半胱氨酸为手性配体合成的。In an embodiment of the present invention, the chiral semiconductor nanoparticles are synthesized by using D-cysteine or L-cysteine as a chiral ligand.
在本发明的一种实施方式中,所述手性半导体纳米粒子与DNA分子的摩尔比为45-55:1。In an embodiment of the present invention, the molar ratio of the chiral semiconductor nanoparticles to DNA molecules is 45-55:1.
在本发明的一种实施方式中,所述手性半导体纳米粒子与DNA分子的摩尔比为50:1。In an embodiment of the present invention, the molar ratio of the chiral semiconductor nanoparticles to DNA molecules is 50:1.
在本发明的一种实施方式中,所述静置的时间为0.5-1.5h。In an embodiment of the present invention, the standing time is 0.5-1.5 h.
在本发明的一种实施方式中,所述静置的时间为1h。In an embodiment of the present invention, the standing time is 1 h.
在本发明的一种实施方式中,所述照射为将孵育后的混合物先加入到具塞比色皿中,再在圆偏振光下进行照射。In an embodiment of the present invention, the irradiation is to add the incubated mixture into a cuvette with a stopper first, and then irradiate under circularly polarized light.
在本发明的一种实施方式中,所述照射的时间为1-3h。In an embodiment of the present invention, the irradiation time is 1-3 hours.
在本发明的一种实施方式中,所述照射的时间为2h。In an embodiment of the present invention, the irradiation time is 2 hours.
在本发明的一种实施方式中,所述圆偏振光为左圆偏振光和/或右圆偏振光。In an embodiment of the present invention, the circularly polarized light is left circularly polarized light and/or right circularly polarized light.
在本发明的一种实施方式中,所述圆偏振光的光源为激光。In an embodiment of the present invention, the light source of the circularly polarized light is a laser.
在本发明的一种实施方式中,所述圆偏振光的光源为405nm的激光。In an embodiment of the present invention, the light source of the circularly polarized light is a laser with a wavelength of 405 nm.
在本发明的一种实施方式中,所述圆偏振光是通过将光源穿过不同角度的四分之一玻片获得的。In one embodiment of the invention, the circularly polarized light is obtained by passing the light source through quarter glass slides at different angles.
本发明提供了上述一种剪切DNA分子的方法剪切得到的DNA分子片段。The present invention provides a DNA molecule fragment obtained by shearing the above-mentioned method for shearing a DNA molecule.
本案发明提供了上述一种剪切DNA分子的方法在基因工程方面的应用。The present invention provides the application of the above-mentioned method for shearing DNA molecules in genetic engineering.
有益效果:Beneficial effects:
(1)使用本发明的方法,可快速获得大量结构均一,且在序列(GAT-ATC)、位点(T-A之间)上具有高度特异性的DNA片段,在基因工程领域具有巨大的应用潜力;(1) Using the method of the present invention, a large number of DNA fragments with uniform structure and high specificity in sequence (GAT-ATC) and site (between T-A) can be quickly obtained, which has great application potential in the field of genetic engineering ;
(2)本发明所采用的手性纳米粒子对温度和pH不敏感,可应用于各种复杂条件下的DNA剪切;(2) The chiral nanoparticles used in the present invention are insensitive to temperature and pH, and can be applied to DNA shearing under various complex conditions;
(3)本发明所采用的手性纳米粒子具有高度的特异性以及生物相容性,能够在活体细胞以及肿瘤中产生DNA特异性剪切,具有应用于临床疾病治疗的潜在应用。(3) The chiral nanoparticles used in the present invention have high specificity and biocompatibility, and can generate DNA-specific cleavage in living cells and tumors, and have potential applications in clinical disease treatment.
附图说明Description of drawings
图1手性半导体纳米粒子的透射电镜图;Fig. 1 TEM image of chiral semiconductor nanoparticles;
图2手性半导体纳米粒子的圆二色光谱图;Fig. 2 circular dichroism spectrum of chiral semiconductor nanoparticles;
图3Salmon DNA与L-Cys CdTe的混合物在右圆偏振光下照射2h前后的电泳图;Fig. 3 Electropherograms of the mixture of Salmon DNA and L-Cys CdTe under right circularly polarized light irradiation for 2 h;
图4Salmon DNA与D-Cys CdTe的混合物在左圆偏振光下照射2h前后的电泳图;Fig. 4 Electropherogram of the mixture of Salmon DNA and D-Cys CdTe under left circularly polarized light before and after irradiation for 2 h;
图5非特异性Salmon DNA序列与L-Cys CdTe的混合物在右圆偏振光下照射2h前后的电泳图;Fig. 5 electrophoresis images of the mixture of non-specific Salmon DNA sequence and L-Cys CdTe under right circularly polarized light irradiation for 2 h;
图6Salmon DNA与L-GSH CdTe的混合物在圆偏振光下照射2h前后的电泳图;Fig. 6 Electropherograms of the mixture of Salmon DNA and L-GSH CdTe under circularly polarized light irradiation for 2 h;
图7Salmon DNA与L-GSH CdTe的混合物在(a)0摄氏度(b)50摄氏度并在圆偏振光下照射2h前后的电泳图;Figure 7 Electropherograms of the mixture of Salmon DNA and L-GSH CdTe at (a) 0 degrees Celsius (b) 50 degrees Celsius and irradiated under circularly polarized light for 2 hours before and after;
图8Salmon DNA与L-GSH CdTe的混合物在(a)pH 6(b)pH 8溶液中并在圆偏振光下照射2h前后的电泳图。Figure 8 Electropherograms of a mixture of Salmon DNA and L-GSH CdTe in (a) pH 6 (b) pH 8 solution and irradiated under circularly polarized light for 2 h before and after.
具体实施方式Detailed ways
下面以Salmon DNA为例,结合具体实施例和对比例,对本发明进行进一步的阐述。Taking Salmon DNA as an example below, the present invention will be further elaborated in conjunction with specific examples and comparative examples.
本发明涉及的表征方法如下:The characterization method involved in the present invention is as follows:
DNA剪切效果表征方法:取剪切后的DNA产物20uL,将其与上样缓冲液(InvitrogenTM)混合。然后迅速加入只预先制备的2.5%的琼脂糖凝胶中。待样品沉降至胶孔底部后,将凝胶放入电泳缓冲液中(InvitrogenTM),在110V电压下运行30min。最后在凝胶成像仪上检测DNA条带。Characterization method of DNA shearing effect: Take 20 uL of sheared DNA product and mix it with loading buffer (InvitrogenTM). It was then quickly added to a pre-prepared 2.5% agarose gel only. After the sample settled to the bottom of the gel hole, the gel was put into electrophoresis buffer (Invitrogen ™ ) and run at 110V for 30min. Finally, DNA bands were detected on a gel imager.
电镜表征方法:将液体样品滴加在碳支持膜上,5min后将样品用吸水纸去除。然后将铜网放置在透射电镜样品杆中,在220KV加速电压下观察样品。Electron microscope characterization method: drop the liquid sample on the carbon support membrane, and remove the sample with absorbent paper after 5 min. The copper mesh was then placed in the TEM sample holder, and the sample was observed at an accelerating voltage of 220KV.
实施例1:前驱体的合成Example 1: Synthesis of Precursors
在氮气的保护下,将4mL的0.5M的H2SO4加入到0.05g的Al2Te3溶液中,得到前驱气体。Under the protection of nitrogen, 4 mL of 0.5 M H 2 SO 4 was added to 0.05 g of Al 2 Te 3 solution to obtain the precursor gas.
实施例2:手性半导体纳米粒子的合成Example 2: Synthesis of Chiral Semiconductor Nanoparticles
将0.985g的Cd(ClO4)2·6H2O和3mL 1M的D型半胱氨酸加入到125mL水中后,通入实施例1得到的前驱气体,采用NaOH调节pH为12,前驱气体采用氮气作为载流气体,流速控制为100mL/min,将溶液边搅拌边加热到110℃,并保持8h,然后在得到的纳米粒子溶液中加入按体积比1:1加入异丙醇,然后将混合物10000rpm离心5min。然后将沉淀重悬在PBS缓冲液中(0.01M、pH 7.4),得到手性半导体纳米粒子。(图1为手性半导体纳米粒子的透射电镜图,图2为手性半导体纳米粒子的圆二色光谱图)After adding 0.985g of Cd(ClO 4 ) 2 .6H 2 O and 3mL of 1M D-cysteine to 125mL of water, the precursor gas obtained in Example 1 was introduced, and NaOH was used to adjust the pH to 12. The precursor gas was Nitrogen was used as the carrier gas, and the flow rate was controlled at 100 mL/min. The solution was heated to 110 °C while stirring and kept for 8 h. Then, isopropanol was added to the obtained nanoparticle solution in a volume ratio of 1:1, and then the mixture was mixed. Centrifuge at 10,000 rpm for 5 min. The pellet was then resuspended in PBS buffer (0.01 M, pH 7.4) to yield chiral semiconductor nanoparticles. (Fig. 1 is a transmission electron microscope image of chiral semiconductor nanoparticles, and Fig. 2 is a circular dichroism spectrum diagram of chiral semiconductor nanoparticles)
实施例3:手性半导体纳米粒子的合成Example 3: Synthesis of Chiral Semiconductor Nanoparticles
将0.985g的Cd(ClO4)2·6H2O和3mL 1M的L型半胱氨酸加入到125mL水中后,通入实施例1得到的前驱气体,采用NaOH调节pH为12,前驱气体采用氮气作为载流气体,流速控制为100mL/min,将溶液边搅拌边加热到110℃,并保持8h,然后在得到的纳米粒子溶液中加入按体积比1:1加入异丙醇,然后将混合物10000rpm离心5min。然后将沉淀重悬在PBS缓冲液中(0.01M、pH 7.4),得到手性半导体纳米粒子。(图1为手性半导体纳米粒子的透射电镜图,图2为手性半导体纳米粒子的圆二色光谱图)After adding 0.985g of Cd(ClO 4 ) 2 .6H 2 O and 3mL of 1M L-cysteine to 125mL of water, the precursor gas obtained in Example 1 was introduced, and the pH was adjusted to 12 with NaOH. Nitrogen was used as the carrier gas, and the flow rate was controlled at 100 mL/min. The solution was heated to 110 °C while stirring and kept for 8 h. Then, isopropanol was added to the obtained nanoparticle solution in a volume ratio of 1:1, and then the mixture was mixed. Centrifuge at 10,000 rpm for 5 min. The pellet was then resuspended in PBS buffer (0.01 M, pH 7.4) to yield chiral semiconductor nanoparticles. (Fig. 1 is a transmission electron microscope image of chiral semiconductor nanoparticles, and Fig. 2 is a circular dichroism spectrum diagram of chiral semiconductor nanoparticles)
实施例4:手性半导体纳米粒子与DNA的孵育Example 4: Incubation of Chiral Semiconductor Nanoparticles with DNA
将50μL的浓度为1μM的核苷酸序列为SEQ ID NO.1的鲑鱼精DNA(Salmon DNA)溶液(通过将Salmon DNA溶解于浓度为0.01M、pH 7.4的PBS缓冲液中获得)分别与实施例2、3得到的手性半导体纳米粒子摩尔比50:1充分混合后静置1h,得到孵育后的手性半导体纳米粒子与DNA的混合液。50 μL of salmon sperm DNA (Salmon DNA) solution with nucleotide sequence of SEQ ID NO. The chiral semiconductor nanoparticles obtained in Examples 2 and 3 were thoroughly mixed in a molar ratio of 50:1 and then allowed to stand for 1 hour to obtain a mixed solution of the incubated chiral semiconductor nanoparticles and DNA.
实施例5:手性半导体纳米粒子与DNA的照射Example 5: Irradiation of chiral semiconductor nanoparticles and DNA
取100μL实施例4获得的混合物加入到具塞比色皿中,然后采用405nm的激光作为光源,通过调节不同角度的四分之一玻片获得的左、右圆偏振光分别对混合液进行照射2h。Take 100 μL of the mixture obtained in Example 4 and add it to a stoppered cuvette, then use a 405nm laser as a light source, and irradiate the mixture with left and right circularly polarized lights obtained by adjusting quarter glass slides at different angles. 2h.
将照射后的混合液于8000rpm离心10min后进行表征。The irradiated mixture was centrifuged at 8000 rpm for 10 min for characterization.
表征结果如图3-4,由图可知:salmon DNA与手性半导体纳米粒子混合后,采用圆偏振光照射2小时后,在DNA序列上GATATC特异性片段中的T和A碱基处发生断裂,salmonDNA(核苷酸序列为SEQ ID NO.1)原始长度为1839bp剪切之后的长度分别为1083bp和756bp(剪切后DNA片段的核苷酸序列分别为SEQ ID NO.2、SEQ ID NO.3)。The characterization results are shown in Figure 3-4. It can be seen from the figure that after mixing salmon DNA with chiral semiconductor nanoparticles and irradiating with circularly polarized light for 2 hours, a break occurs at the T and A bases in the GATATC-specific fragment on the DNA sequence. , salmonDNA (nucleotide sequence is SEQ ID NO.1) original length is 1839bp and the length after shearing is 1083bp and 756bp respectively (the nucleotide sequence of DNA fragment after shearing is SEQ ID NO.2, SEQ ID NO. .3).
(由于使用D型半胱氨酸与L型半胱氨酸最终得到的结果几乎无差异,此处仅用D型半胱氨酸的结果进行表示)(Because there is almost no difference between the final results obtained by using D-cysteine and L-cysteine, only the results of D-cysteine are used here)
实施例6:温度对DNA剪切结果的影响Example 6: The effect of temperature on DNA shearing results
取100μL实施例4获得的混合物加入到具塞比色皿中,并将比色皿分别放于0度和50度的环境中,然后采用405nm的激光作为光源,通过调节不同角度的四分之一玻片获得的左、右圆偏振光分别对混合液进行照射2h。将照射后的混合液于8000rpm离心10min后进行表征。Take 100 μL of the mixture obtained in Example 4 and add it to a stoppered cuvette, and place the cuvette in an environment of 0 degrees and 50 degrees respectively, and then use a 405nm laser as the light source, and adjust the quarters of the different angles. The left and right circularly polarized light obtained from a glass slide were respectively irradiated to the mixture for 2 h. The irradiated mixture was centrifuged at 8000 rpm for 10 min for characterization.
表征结果如图7,由图可知:salmon DNA与手性半导体纳米粒子混合后,采用圆偏振光分别在0度和50度环境下照射2小时后,在DNA序列上GATATC特异性片段中的T和A碱基处发生断裂,salmon DNA(核苷酸序列为SEQ ID NO.1)原始长度为1839bp剪切之后的长度分别为1083bp和756bp(剪切后DNA片段的核苷酸序列分别为SEQ ID NO.2、SEQ ID NO.3)。The characterization results are shown in Figure 7. It can be seen from the figure that after mixing salmon DNA with chiral semiconductor nanoparticles and irradiating circularly polarized light at 0 degrees and 50 degrees for 2 hours, the T in the GATATC-specific fragment on the DNA sequence A break occurs at base A, and the original length of salmon DNA (nucleotide sequence is SEQ ID NO. 1) is 1839bp and the length after shearing is 1083bp and 756bp respectively (the nucleotide sequence of the DNA fragment after shearing is SEQ ID NO.1, respectively. ID NO.2, SEQ ID NO.3).
(由于使用D型半胱氨酸与L型半胱氨酸最终得到的结果几乎无差异,此处仅用D型半胱氨酸的结果进行表示)。(Since the final results obtained by using D-cysteine and L-cysteine are almost indistinguishable, only the results of D-cysteine are used here).
实施例7:pH对DNA剪切结果的影响Example 7: The effect of pH on DNA shearing results
取100μL实施例4获得的混合物加入到具塞比色皿中,调节比色皿中的pH分别为6或者8,然后采用405nm的激光作为光源,通过调节不同角度的四分之一玻片获得的左、右圆偏振光分别对混合液进行照射2h。将照射后的混合液于8000rpm离心10min后进行表征。Take 100 μL of the mixture obtained in Example 4 and add it to a stoppered cuvette, adjust the pH in the cuvette to 6 or 8, and then use a 405nm laser as the light source to adjust the quarter glass slides at different angles. The left and right circularly polarized light were respectively irradiated to the mixture for 2 h. The irradiated mixture was centrifuged at 8000 rpm for 10 min for characterization.
表征结果如图8,由图可知:salmon DNA与手性半导体纳米粒子混合后调节pH分别为2或者8,采用圆偏振光分别照射2小时后,在DNA序列上GATATC特异性片段中的T和A碱基处发生断裂,salmon DNA(核苷酸序列为SEQ ID NO.1)原始长度为1839bp剪切之后的长度分别为1083bp和756bp(剪切后DNA片段的核苷酸序列分别为SEQ ID NO.2、SEQ ID NO.3)。The characterization results are shown in Figure 8. It can be seen from the figure that after mixing salmon DNA with chiral semiconductor nanoparticles and adjusting the pH to 2 or 8, respectively, after irradiating with circularly polarized light for 2 hours, T and A break occurs at base A, and the original length of salmon DNA (nucleotide sequence is SEQ ID NO. 1) is 1839 bp, and the length after shearing is 1083 bp and 756 bp respectively (the nucleotide sequence of the sheared DNA fragment is SEQ ID NO. 1). NO.2, SEQ ID NO.3).
(由于使用D型半胱氨酸与L型半胱氨酸最终得到的结果几乎无差异,此处仅用D型半胱氨酸的结果进行表示)。(Since the final results obtained by using D-cysteine and L-cysteine are almost indistinguishable, only the results of D-cysteine are used here).
对比例1:手性半导体纳米粒子与非特异性DNA的孵育Comparative Example 1: Incubation of Chiral Semiconductor Nanoparticles with Nonspecific DNA
将salmon DNA序列在GATATC处的序列变化为GATTAC使其变成非特异性序列,其他参数与实施例1-5保持一致,观察DNA序列是否还能被剪切。The sequence of the salmon DNA sequence at GATATC was changed to GATTAC to make it a non-specific sequence, and other parameters were kept the same as those in Example 1-5, and it was observed whether the DNA sequence could still be cut.
结果如图5,非特异性salmon DNA序列与手性半导体纳米粒子混合后,采用圆偏振光照射2小时后,DNA未发生片段断裂,说明未发生DNA剪切。The results are shown in Figure 5. After the non-specific salmon DNA sequence was mixed with the chiral semiconductor nanoparticles and irradiated with circularly polarized light for 2 hours, no fragmentation of the DNA occurred, indicating that no DNA shearing occurred.
对比例2:不同手性配体修饰的半导体纳米粒子与DNA的照射Comparative example 2: Irradiation of semiconductor nanoparticles modified with different chiral ligands and DNA
在手性半导体纳米粒子的合成过程中将手性配体由半胱氨酸替换为谷胱甘肽,其他参数与实施例1-5保持一致,得到谷胱甘肽(GSH)修饰的手性半导体纳米粒子。然后将此纳米粒子以同样的孵育条件与salmon DNA混合并以相同光照条件在偏振光照射下2小时。During the synthesis of chiral semiconductor nanoparticles, the chiral ligand was replaced by cysteine with glutathione. semiconductor nanoparticles. The nanoparticles were then mixed with salmon DNA under the same incubation conditions and irradiated with polarized light for 2 hours under the same lighting conditions.
结果如图6,谷胱甘肽修饰的手性半导体纳米粒子与salmon DNA的混合物在光照下没有发生DNA剪切。The results are shown in Figure 6. The mixture of glutathione-modified chiral semiconductor nanoparticles and salmon DNA did not undergo DNA cleavage under illumination.
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.
序列表sequence listing
<110> 江南大学<110> Jiangnan University
<120> 一种剪切DNA分子的方法及其应用<120> A method for shearing DNA molecules and its application
<160> 3<160> 3
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 1839<211> 1839
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 1<400> 1
atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60
tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120
gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180
gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240
attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300
gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360
cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420
aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480
gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540
cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600
tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660
ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720
tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780
gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840
accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900
caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960
gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020
ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080
gatatccgaa aaataggagg catacacaac ctcaccccat ttacttcctc ctgccttaca 1140gatatccgaa aaataggagg catacacaac ctcaccccat ttacttcctc ctgccttaca 1140
atcggaagcc ttgcacttac cggcaccccc ttcttagcag ggtttttctc taaagatgct 1200atcggaagcc ttgcacttac cggcaccccc ttcttagcag ggttttttctc taaagatgct 1200
attattgaag ccttaaacac ctcccacctc aacgcctggg ccctcactct taccttacta 1260attattgaag ccttaaacac ctcccacctc aacgcctggg ccctcactct taccttacta 1260
gccacctcat tcactgccat ttacagcctc cgagttatct ttttcgtctc tatgggacac 1320gccacctcat tcactgccat ttacagcctc cgagttatct ttttcgtctc tatgggacac 1320
ccccgcttta cgacaacggc ccctattaat gaaaataacc catccgtaat taacccaatc 1380ccccgcttta cgacaacggc ccctattaat gaaaataacc catccgtaat taacccaatc 1380
aagcggctag cctgggggag catcattgca ggactactaa ttacatcgaa tttcctccct 1440aagcggctag cctgggggag catcattgca ggactactaa ttacatcgaa tttcctccct 1440
accaacacac ccgtaataac tatgcccacc cacttgaaat tagccgctct cctggttacc 1500accaacacac ccgtaataac tatgcccacc cacttgaaat tagccgctct cctggttacc 1500
atcttaggtc ttctcattgc attagaactt gcgtcactaa ctagcaagca atttaaaact 1560atcttaggtc ttctcattgc attagaactt gcgtcactaa ctagcaagca atttaaaact 1560
acacccaaca ttatcacaca caacttctcc aacatgctag gattcttccc cgctatcatc 1620acacccaaca ttatcacaca caacttctcc aacatgctag gattcttccc cgctatcatc 1620
caccgattaa ttcctaaact aaacttaact ctaggacaaa ccattgccag ccaaatggtt 1680caccgattaa ttcctaaact aaacttaact ctaggacaaa ccattgccag ccaaatggtt 1680
gatcaaacat gatttgaaaa agtcggcccg aaaggaatta tttcaacgca cctacccata 1740gatcaaacat gatttgaaaa agtcggcccg aaaggaatta tttcaacgca cctacccata 1740
gtcacaacga caagtaacat ccaacaaggc ataattaaaa catacctcac tctatttttc 1800gtcacaacga caagtaacat ccaacaaggc ataattaaaa catacctcac tctatttttc 1800
ctttcaacaa ctctagctgt tctactgaca ttaacctag 1839ctttcaacaa ctctagctgt tctactgaca ttaacctag 1839
<210> 2<210> 2
<211> 1083<211> 1083
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 2<400> 2
atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60
tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120
gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180
gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240
attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300
gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360
cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420
aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480
gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540
cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600
tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660
ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720
tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780
gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840
accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900
caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960
gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020
ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080
gat 1083gat 1083
<210> 3<210> 3
<211> 756<211> 756
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 3<400> 3
atccgaaaaa taggaggcat acacaacctc accccattta cttcctcctg ccttacaatc 60atccgaaaaa taggaggcat acacaacctc accccattta cttcctcctg ccttacaatc 60
ggaagccttg cacttaccgg cacccccttc ttagcagggt ttttctctaa agatgctatt 120ggaagccttg cacttaccgg cacccccttc ttagcagggt ttttctctaa agatgctatt 120
attgaagcct taaacacctc ccacctcaac gcctgggccc tcactcttac cttactagcc 180attgaagcct taaacacctc ccacctcaac gcctgggccc tcactcttac cttactagcc 180
acctcattca ctgccattta cagcctccga gttatctttt tcgtctctat gggacacccc 240acctcattca ctgccattta cagcctccga gttatctttt tcgtctctat gggacacccc 240
cgctttacga caacggcccc tattaatgaa aataacccat ccgtaattaa cccaatcaag 300cgctttacga caacggcccc tattaatgaa aataacccat ccgtaattaa cccaatcaag 300
cggctagcct gggggagcat cattgcagga ctactaatta catcgaattt cctccctacc 360cggctagcct gggggagcat cattgcagga ctactaatta catcgaattt cctccctacc 360
aacacacccg taataactat gcccacccac ttgaaattag ccgctctcct ggttaccatc 420aacacacccg taataactat gcccacccac ttgaaattag ccgctctcct ggttaccatc 420
ttaggtcttc tcattgcatt agaacttgcg tcactaacta gcaagcaatt taaaactaca 480ttaggtcttc tcattgcatt agaacttgcg tcactaacta gcaagcaatt taaaactaca 480
cccaacatta tcacacacaa cttctccaac atgctaggat tcttccccgc tatcatccac 540cccaacatta tcacacacaa cttctccaac atgctaggat tcttccccgc tatcatccac 540
cgattaattc ctaaactaaa cttaactcta ggacaaacca ttgccagcca aatggttgat 600cgattaattc ctaaactaaa cttaactcta ggacaaacca ttgccagcca aatggttgat 600
caaacatgat ttgaaaaagt cggcccgaaa ggaattattt caacgcacct acccatagtc 660caaacatgat ttgaaaaagt cggcccgaaa ggaattattt caacgcacct acccatagtc 660
acaacgacaa gtaacatcca acaaggcata attaaaacat acctcactct atttttcctt 720acaacgacaa gtaacatcca acaaggcata attaaaacat acctcactct atttttcctt 720
tcaacaactc tagctgttct actgacatta acctag 756tcaacaactc tagctgttct actgacatta acctag 756
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810808657.9A CN108998442B (en) | 2018-07-17 | 2018-07-17 | A kind of method for shearing DNA molecule and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810808657.9A CN108998442B (en) | 2018-07-17 | 2018-07-17 | A kind of method for shearing DNA molecule and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108998442A CN108998442A (en) | 2018-12-14 |
CN108998442B true CN108998442B (en) | 2020-12-29 |
Family
ID=64597281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810808657.9A Active CN108998442B (en) | 2018-07-17 | 2018-07-17 | A kind of method for shearing DNA molecule and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108998442B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111326680B (en) * | 2020-02-27 | 2023-04-07 | 京东方科技集团股份有限公司 | Light-emitting structure, preparation method thereof and display panel |
CN117363607B (en) * | 2023-10-07 | 2024-12-17 | 清华大学深圳国际研究生院 | Application of low-dimensional nanomaterial in recognition and shearing of DNA specific sites |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8472031B2 (en) * | 2010-05-25 | 2013-06-25 | Valerio Pruneri | Apparatus and method for optical interrogation |
CN102127445B (en) * | 2010-12-23 | 2013-02-27 | 江南大学 | A preparation method of self-assembled nanomaterials with chiral signals |
CN105366652A (en) * | 2015-11-23 | 2016-03-02 | 温州生物材料与工程研究所 | Chiral one-dimensional semiconductor nano-material self-assembly preparation method |
CN106635023B (en) * | 2016-12-09 | 2018-12-18 | 江南大学 | A kind of synthetic method of the chiral quantum rod based on circularly polarized light |
CN107375930A (en) * | 2017-08-11 | 2017-11-24 | 无锡迪腾敏生物科技有限公司 | A kind of construction method of the plasma chirality gold nanorods dimer based on circularly polarized light optical dynamic therapy |
CN108254343B (en) * | 2017-12-29 | 2021-05-07 | 南方科技大学 | A detection probe and its preparation method and application |
-
2018
- 2018-07-17 CN CN201810808657.9A patent/CN108998442B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108998442A (en) | 2018-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7402289B2 (en) | Representative diagnostic method | |
Zhang et al. | Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids | |
Lodewijk et al. | Liquid biopsy biomarkers in bladder cancer: a current need for patient diagnosis and monitoring | |
Djalali et al. | Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates | |
US12153013B2 (en) | Detection methods for epitachophoresis workflow automation | |
CN108998442B (en) | A kind of method for shearing DNA molecule and its application | |
JP7456637B2 (en) | Lipid-modified oligonucleotides and methods of use thereof | |
Reymond et al. | Standardized characterization of gene expression in human colorectal epithelium by two‐dimensional electrophoresis | |
US11306299B2 (en) | Simultaneous multiplex genome editing in yeast | |
JP2022532607A (en) | Equipment and methods for sample analysis | |
Chatel et al. | Ultra scale‐down characterization of the impact of conditioning methods for harvested cell broths on clarification by continuous centrifugation—Recovery of domain antibodies from rec E. coli | |
Weizenmann et al. | Chemical ligation of an entire DNA origami nanostructure | |
CN106544322A (en) | A kind of reporting system and its construction method for studying Kiss1 gene expression regulations | |
Li et al. | Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications | |
Tulluri et al. | Role of antizyme inhibitor proteins in cancers and beyond | |
Nacev et al. | Cancer-associated Histone H3 N-terminal arginine mutations disrupt PRC2 activity and impair differentiation | |
Guo et al. | Translational progress on tumor biomarkers | |
Shen et al. | Decoding the colorectal cancer ecosystem emphasizes the cooperative role of cancer cells, TAMs and CAFsin tumor progression | |
US11215622B2 (en) | Generation of cfDNA reference material | |
WO2024138626A1 (en) | Helicase topif 1, and preparation method therefor and use thereof in high-throughput sequencing | |
Saintilnord et al. | Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs | |
Chang et al. | The application of differential display as a gene profiling tool | |
Cheng et al. | In situ caging of biomolecules in graphene hybrids for light modulated bioactivity | |
WO2022155381A1 (en) | Use of immune content scores diagnostically to predict responsiveness of prostate cancer patients to immunotherapy | |
Sarthak et al. | Single-molecule identification of folded proteins from nanopore ionic current signatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |