CN108998442B - A kind of method for shearing DNA molecule and its application - Google Patents

A kind of method for shearing DNA molecule and its application Download PDF

Info

Publication number
CN108998442B
CN108998442B CN201810808657.9A CN201810808657A CN108998442B CN 108998442 B CN108998442 B CN 108998442B CN 201810808657 A CN201810808657 A CN 201810808657A CN 108998442 B CN108998442 B CN 108998442B
Authority
CN
China
Prior art keywords
polarized light
dna molecules
circularly polarized
shearing
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810808657.9A
Other languages
Chinese (zh)
Other versions
CN108998442A (en
Inventor
匡华
孙茂忠
胥传来
徐丽广
马伟
刘丽强
宋珊珊
吴晓玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Determine Bio Tech Co ltd
Jiangnan University
Original Assignee
Wuxi Determine Bio Tech Co ltd
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Determine Bio Tech Co ltd, Jiangnan University filed Critical Wuxi Determine Bio Tech Co ltd
Priority to CN201810808657.9A priority Critical patent/CN108998442B/en
Publication of CN108998442A publication Critical patent/CN108998442A/en
Application granted granted Critical
Publication of CN108998442B publication Critical patent/CN108998442B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Landscapes

  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a method for shearing DNA molecules and application thereof, belonging to the technical field of genetic engineering. Mixing chiral semiconductor nanoparticles and DNA molecules, incubating, and irradiating the incubated mixture of the chiral semiconductor nanoparticles and the DNA molecules under circularly polarized light to obtain sheared DNA molecules; the method of the invention can quickly obtain a large number of DNA fragments with uniform structures and high specificity on sequences and sites, and has great application potential in the field of genetic engineering.

Description

一种剪切DNA分子的方法及其应用A kind of method for shearing DNA molecule and its application

技术领域technical field

本发明涉及一种剪切DNA分子的方法及其应用,属于基因工程技术领域。The invention relates to a method for shearing DNA molecules and its application, and belongs to the technical field of genetic engineering.

背景技术Background technique

获得DNA片段,对于基因测序、基因分析、基因编辑等技术而言是关键性步骤。对于基因测序,它可有效获得目的片段;对于基因分析,它可获得单一基因信息;对于基因编辑,它可选择性提取或复制基因序列。因此,DNA分子的剪切是基因工程领域必不可多的预处理步骤。Obtaining DNA fragments is a critical step for technologies such as gene sequencing, gene analysis, and gene editing. For gene sequencing, it can efficiently obtain target fragments; for gene analysis, it can obtain single gene information; for gene editing, it can selectively extract or copy gene sequences. Therefore, the shearing of DNA molecules is an essential preprocessing step in the field of genetic engineering.

随着基因领域研究的不断深入,获得结构均一,在序列、位点上具有高度特异性的DNA片段的需求变得越来越大。With the deepening of research in the field of genes, the demand for obtaining DNA fragments with uniform structure and high specificity in sequence and site has become more and more important.

目前,常用的剪切DNA分子的方法有以下几种:DNA限制性酶切法、超声波降解法、水动力剪切法等,这些方法目前都被用于DNA片段的生成,但是,限制性内切酶切法仍需要特定的生物酶,具有对pH以及温度要求高的缺陷;超声波降解法以及水动力剪切法具有对目标序列无特异性的缺陷。At present, the commonly used methods for shearing DNA molecules are as follows: DNA restriction enzyme digestion, ultrasonic degradation, hydrodynamic shearing, etc. These methods are currently used for the generation of DNA fragments, but the restriction The cleavage method still requires specific biological enzymes and has the defects of high pH and temperature requirements; the ultrasonic degradation method and the hydrodynamic shearing method have the defect of being non-specific to the target sequence.

因此,上述方法均不能很好的获得结构均一,在序列、位点上具有高度特异性的DNA片段,我们急需找到一种能够获得结构均一,在序列、位点上具有高度特异性的DNA片段的方法,以满足基因领域研究的需要。Therefore, none of the above methods can well obtain DNA fragments with uniform structure and high specificity in sequence and site. We urgently need to find a DNA fragment that can obtain uniform structure and high specificity in sequence and site. method to meet the needs of research in the field of genetics.

发明内容SUMMARY OF THE INVENTION

手性半导体纳米粒子是由IV、II-VI,IV-VI或III-V元素组成,常用于传感检测、成像、催化等;圆偏振光是光的电场方向或光矢量末端在垂直于传播方向的平面上描绘出的轨迹,常用于手性活性物质的表征。Chiral semiconductor nanoparticles are composed of IV, II-VI, IV-VI or III-V elements, and are often used in sensing, imaging, catalysis, etc.; circularly polarized light is the direction of the electric field of light or the end of the light vector that propagates The trajectory drawn on the plane of the direction is often used for the characterization of chiral active substances.

为解决上述问题,本发明提供了一种剪切DNA分子的方法。此方法将手性半导体纳米粒子与圆偏振光相结合,利用手性纳米粒子特殊构型及其在光下易发生光致氧化的原理,先将手性半导体纳米粒子与DNA分子混合后进行孵育,然后将孵育好的手性半导体纳米粒子与DNA分子混合物在圆偏振光下进行照射,即得剪切后的DNA分子;使用此方法,可快速获得大量结构均一,且在序列、位点上具有高度特异性的DNA片段,在基因工程领域具有巨大的应用潜力。To solve the above problems, the present invention provides a method for shearing DNA molecules. This method combines chiral semiconductor nanoparticles with circularly polarized light. Using the special configuration of chiral nanoparticles and the principle that they are prone to photo-oxidation under light, the chiral semiconductor nanoparticles are first mixed with DNA molecules and then incubated. , and then irradiate the incubated mixture of chiral semiconductor nanoparticles and DNA molecules under circularly polarized light to obtain sheared DNA molecules; using this method, a large number of uniform structures can be quickly obtained, and the DNA fragments with high specificity have great application potential in the field of genetic engineering.

本发明的技术方案如下:The technical scheme of the present invention is as follows:

本发明提供了一种剪切DNA分子的方法,所述方法为先将手性半导体纳米粒子与DNA分子混合后进行孵育,然后将孵育好的手性半导体纳米粒子与DNA分子混合物在圆偏振光下进行照射,即得剪切后的DNA分子。The invention provides a method for shearing DNA molecules. The method comprises the steps of first mixing chiral semiconductor nanoparticles and DNA molecules and then incubating them, and then exposing the incubated mixture of chiral semiconductor nanoparticles and DNA molecules to circularly polarized light. Under irradiation, the sheared DNA molecule is obtained.

在本发明的一种实施方式中,所述方法为将DNA分子溶解于PBS缓冲液中,得到DNA分子溶液;将手性半导体纳米粒子加入DNA分子溶液中进行混合,得到混合液;将混合液静置进行孵育,得到孵育后的混合液;将孵育后的混合液在圆偏振光下进行照射,即得剪切后的DNA分子。In one embodiment of the present invention, the method includes dissolving DNA molecules in a PBS buffer to obtain a DNA molecule solution; adding chiral semiconductor nanoparticles into the DNA molecule solution for mixing to obtain a mixed solution; Let stand for incubation to obtain an incubated mixed solution; irradiate the incubated mixed solution under circularly polarized light to obtain sheared DNA molecules.

在本发明的一种实施方式中,所述PBS缓冲液的浓度为0.01mol/L。In an embodiment of the present invention, the concentration of the PBS buffer is 0.01 mol/L.

在本发明的一种实施方式中,所述PBS缓冲液的pH为7.4。In one embodiment of the present invention, the pH of the PBS buffer is 7.4.

在本发明的一种实施方式中,所述DNA分子溶液中DNA分子的浓度为0.5-1.5μmol/L。In an embodiment of the present invention, the concentration of DNA molecules in the DNA molecule solution is 0.5-1.5 μmol/L.

在本发明的一种实施方式中,所述DNA分子溶液中DNA分子的浓度为1μmol/L。In an embodiment of the present invention, the concentration of DNA molecules in the DNA molecule solution is 1 μmol/L.

在本发明的一种实施方式中,所述手性半导体纳米粒子是以D型半胱氨酸或L型半胱氨酸为手性配体合成的。In an embodiment of the present invention, the chiral semiconductor nanoparticles are synthesized by using D-cysteine or L-cysteine as a chiral ligand.

在本发明的一种实施方式中,所述手性半导体纳米粒子与DNA分子的摩尔比为45-55:1。In an embodiment of the present invention, the molar ratio of the chiral semiconductor nanoparticles to DNA molecules is 45-55:1.

在本发明的一种实施方式中,所述手性半导体纳米粒子与DNA分子的摩尔比为50:1。In an embodiment of the present invention, the molar ratio of the chiral semiconductor nanoparticles to DNA molecules is 50:1.

在本发明的一种实施方式中,所述静置的时间为0.5-1.5h。In an embodiment of the present invention, the standing time is 0.5-1.5 h.

在本发明的一种实施方式中,所述静置的时间为1h。In an embodiment of the present invention, the standing time is 1 h.

在本发明的一种实施方式中,所述照射为将孵育后的混合物先加入到具塞比色皿中,再在圆偏振光下进行照射。In an embodiment of the present invention, the irradiation is to add the incubated mixture into a cuvette with a stopper first, and then irradiate under circularly polarized light.

在本发明的一种实施方式中,所述照射的时间为1-3h。In an embodiment of the present invention, the irradiation time is 1-3 hours.

在本发明的一种实施方式中,所述照射的时间为2h。In an embodiment of the present invention, the irradiation time is 2 hours.

在本发明的一种实施方式中,所述圆偏振光为左圆偏振光和/或右圆偏振光。In an embodiment of the present invention, the circularly polarized light is left circularly polarized light and/or right circularly polarized light.

在本发明的一种实施方式中,所述圆偏振光的光源为激光。In an embodiment of the present invention, the light source of the circularly polarized light is a laser.

在本发明的一种实施方式中,所述圆偏振光的光源为405nm的激光。In an embodiment of the present invention, the light source of the circularly polarized light is a laser with a wavelength of 405 nm.

在本发明的一种实施方式中,所述圆偏振光是通过将光源穿过不同角度的四分之一玻片获得的。In one embodiment of the invention, the circularly polarized light is obtained by passing the light source through quarter glass slides at different angles.

本发明提供了上述一种剪切DNA分子的方法剪切得到的DNA分子片段。The present invention provides a DNA molecule fragment obtained by shearing the above-mentioned method for shearing a DNA molecule.

本案发明提供了上述一种剪切DNA分子的方法在基因工程方面的应用。The present invention provides the application of the above-mentioned method for shearing DNA molecules in genetic engineering.

有益效果:Beneficial effects:

(1)使用本发明的方法,可快速获得大量结构均一,且在序列(GAT-ATC)、位点(T-A之间)上具有高度特异性的DNA片段,在基因工程领域具有巨大的应用潜力;(1) Using the method of the present invention, a large number of DNA fragments with uniform structure and high specificity in sequence (GAT-ATC) and site (between T-A) can be quickly obtained, which has great application potential in the field of genetic engineering ;

(2)本发明所采用的手性纳米粒子对温度和pH不敏感,可应用于各种复杂条件下的DNA剪切;(2) The chiral nanoparticles used in the present invention are insensitive to temperature and pH, and can be applied to DNA shearing under various complex conditions;

(3)本发明所采用的手性纳米粒子具有高度的特异性以及生物相容性,能够在活体细胞以及肿瘤中产生DNA特异性剪切,具有应用于临床疾病治疗的潜在应用。(3) The chiral nanoparticles used in the present invention have high specificity and biocompatibility, and can generate DNA-specific cleavage in living cells and tumors, and have potential applications in clinical disease treatment.

附图说明Description of drawings

图1手性半导体纳米粒子的透射电镜图;Fig. 1 TEM image of chiral semiconductor nanoparticles;

图2手性半导体纳米粒子的圆二色光谱图;Fig. 2 circular dichroism spectrum of chiral semiconductor nanoparticles;

图3Salmon DNA与L-Cys CdTe的混合物在右圆偏振光下照射2h前后的电泳图;Fig. 3 Electropherograms of the mixture of Salmon DNA and L-Cys CdTe under right circularly polarized light irradiation for 2 h;

图4Salmon DNA与D-Cys CdTe的混合物在左圆偏振光下照射2h前后的电泳图;Fig. 4 Electropherogram of the mixture of Salmon DNA and D-Cys CdTe under left circularly polarized light before and after irradiation for 2 h;

图5非特异性Salmon DNA序列与L-Cys CdTe的混合物在右圆偏振光下照射2h前后的电泳图;Fig. 5 electrophoresis images of the mixture of non-specific Salmon DNA sequence and L-Cys CdTe under right circularly polarized light irradiation for 2 h;

图6Salmon DNA与L-GSH CdTe的混合物在圆偏振光下照射2h前后的电泳图;Fig. 6 Electropherograms of the mixture of Salmon DNA and L-GSH CdTe under circularly polarized light irradiation for 2 h;

图7Salmon DNA与L-GSH CdTe的混合物在(a)0摄氏度(b)50摄氏度并在圆偏振光下照射2h前后的电泳图;Figure 7 Electropherograms of the mixture of Salmon DNA and L-GSH CdTe at (a) 0 degrees Celsius (b) 50 degrees Celsius and irradiated under circularly polarized light for 2 hours before and after;

图8Salmon DNA与L-GSH CdTe的混合物在(a)pH 6(b)pH 8溶液中并在圆偏振光下照射2h前后的电泳图。Figure 8 Electropherograms of a mixture of Salmon DNA and L-GSH CdTe in (a) pH 6 (b) pH 8 solution and irradiated under circularly polarized light for 2 h before and after.

具体实施方式Detailed ways

下面以Salmon DNA为例,结合具体实施例和对比例,对本发明进行进一步的阐述。Taking Salmon DNA as an example below, the present invention will be further elaborated in conjunction with specific examples and comparative examples.

本发明涉及的表征方法如下:The characterization method involved in the present invention is as follows:

DNA剪切效果表征方法:取剪切后的DNA产物20uL,将其与上样缓冲液(InvitrogenTM)混合。然后迅速加入只预先制备的2.5%的琼脂糖凝胶中。待样品沉降至胶孔底部后,将凝胶放入电泳缓冲液中(InvitrogenTM),在110V电压下运行30min。最后在凝胶成像仪上检测DNA条带。Characterization method of DNA shearing effect: Take 20 uL of sheared DNA product and mix it with loading buffer (InvitrogenTM). It was then quickly added to a pre-prepared 2.5% agarose gel only. After the sample settled to the bottom of the gel hole, the gel was put into electrophoresis buffer (Invitrogen ) and run at 110V for 30min. Finally, DNA bands were detected on a gel imager.

电镜表征方法:将液体样品滴加在碳支持膜上,5min后将样品用吸水纸去除。然后将铜网放置在透射电镜样品杆中,在220KV加速电压下观察样品。Electron microscope characterization method: drop the liquid sample on the carbon support membrane, and remove the sample with absorbent paper after 5 min. The copper mesh was then placed in the TEM sample holder, and the sample was observed at an accelerating voltage of 220KV.

实施例1:前驱体的合成Example 1: Synthesis of Precursors

在氮气的保护下,将4mL的0.5M的H2SO4加入到0.05g的Al2Te3溶液中,得到前驱气体。Under the protection of nitrogen, 4 mL of 0.5 M H 2 SO 4 was added to 0.05 g of Al 2 Te 3 solution to obtain the precursor gas.

实施例2:手性半导体纳米粒子的合成Example 2: Synthesis of Chiral Semiconductor Nanoparticles

将0.985g的Cd(ClO4)2·6H2O和3mL 1M的D型半胱氨酸加入到125mL水中后,通入实施例1得到的前驱气体,采用NaOH调节pH为12,前驱气体采用氮气作为载流气体,流速控制为100mL/min,将溶液边搅拌边加热到110℃,并保持8h,然后在得到的纳米粒子溶液中加入按体积比1:1加入异丙醇,然后将混合物10000rpm离心5min。然后将沉淀重悬在PBS缓冲液中(0.01M、pH 7.4),得到手性半导体纳米粒子。(图1为手性半导体纳米粒子的透射电镜图,图2为手性半导体纳米粒子的圆二色光谱图)After adding 0.985g of Cd(ClO 4 ) 2 .6H 2 O and 3mL of 1M D-cysteine to 125mL of water, the precursor gas obtained in Example 1 was introduced, and NaOH was used to adjust the pH to 12. The precursor gas was Nitrogen was used as the carrier gas, and the flow rate was controlled at 100 mL/min. The solution was heated to 110 °C while stirring and kept for 8 h. Then, isopropanol was added to the obtained nanoparticle solution in a volume ratio of 1:1, and then the mixture was mixed. Centrifuge at 10,000 rpm for 5 min. The pellet was then resuspended in PBS buffer (0.01 M, pH 7.4) to yield chiral semiconductor nanoparticles. (Fig. 1 is a transmission electron microscope image of chiral semiconductor nanoparticles, and Fig. 2 is a circular dichroism spectrum diagram of chiral semiconductor nanoparticles)

实施例3:手性半导体纳米粒子的合成Example 3: Synthesis of Chiral Semiconductor Nanoparticles

将0.985g的Cd(ClO4)2·6H2O和3mL 1M的L型半胱氨酸加入到125mL水中后,通入实施例1得到的前驱气体,采用NaOH调节pH为12,前驱气体采用氮气作为载流气体,流速控制为100mL/min,将溶液边搅拌边加热到110℃,并保持8h,然后在得到的纳米粒子溶液中加入按体积比1:1加入异丙醇,然后将混合物10000rpm离心5min。然后将沉淀重悬在PBS缓冲液中(0.01M、pH 7.4),得到手性半导体纳米粒子。(图1为手性半导体纳米粒子的透射电镜图,图2为手性半导体纳米粒子的圆二色光谱图)After adding 0.985g of Cd(ClO 4 ) 2 .6H 2 O and 3mL of 1M L-cysteine to 125mL of water, the precursor gas obtained in Example 1 was introduced, and the pH was adjusted to 12 with NaOH. Nitrogen was used as the carrier gas, and the flow rate was controlled at 100 mL/min. The solution was heated to 110 °C while stirring and kept for 8 h. Then, isopropanol was added to the obtained nanoparticle solution in a volume ratio of 1:1, and then the mixture was mixed. Centrifuge at 10,000 rpm for 5 min. The pellet was then resuspended in PBS buffer (0.01 M, pH 7.4) to yield chiral semiconductor nanoparticles. (Fig. 1 is a transmission electron microscope image of chiral semiconductor nanoparticles, and Fig. 2 is a circular dichroism spectrum diagram of chiral semiconductor nanoparticles)

实施例4:手性半导体纳米粒子与DNA的孵育Example 4: Incubation of Chiral Semiconductor Nanoparticles with DNA

将50μL的浓度为1μM的核苷酸序列为SEQ ID NO.1的鲑鱼精DNA(Salmon DNA)溶液(通过将Salmon DNA溶解于浓度为0.01M、pH 7.4的PBS缓冲液中获得)分别与实施例2、3得到的手性半导体纳米粒子摩尔比50:1充分混合后静置1h,得到孵育后的手性半导体纳米粒子与DNA的混合液。50 μL of salmon sperm DNA (Salmon DNA) solution with nucleotide sequence of SEQ ID NO. The chiral semiconductor nanoparticles obtained in Examples 2 and 3 were thoroughly mixed in a molar ratio of 50:1 and then allowed to stand for 1 hour to obtain a mixed solution of the incubated chiral semiconductor nanoparticles and DNA.

实施例5:手性半导体纳米粒子与DNA的照射Example 5: Irradiation of chiral semiconductor nanoparticles and DNA

取100μL实施例4获得的混合物加入到具塞比色皿中,然后采用405nm的激光作为光源,通过调节不同角度的四分之一玻片获得的左、右圆偏振光分别对混合液进行照射2h。Take 100 μL of the mixture obtained in Example 4 and add it to a stoppered cuvette, then use a 405nm laser as a light source, and irradiate the mixture with left and right circularly polarized lights obtained by adjusting quarter glass slides at different angles. 2h.

将照射后的混合液于8000rpm离心10min后进行表征。The irradiated mixture was centrifuged at 8000 rpm for 10 min for characterization.

表征结果如图3-4,由图可知:salmon DNA与手性半导体纳米粒子混合后,采用圆偏振光照射2小时后,在DNA序列上GATATC特异性片段中的T和A碱基处发生断裂,salmonDNA(核苷酸序列为SEQ ID NO.1)原始长度为1839bp剪切之后的长度分别为1083bp和756bp(剪切后DNA片段的核苷酸序列分别为SEQ ID NO.2、SEQ ID NO.3)。The characterization results are shown in Figure 3-4. It can be seen from the figure that after mixing salmon DNA with chiral semiconductor nanoparticles and irradiating with circularly polarized light for 2 hours, a break occurs at the T and A bases in the GATATC-specific fragment on the DNA sequence. , salmonDNA (nucleotide sequence is SEQ ID NO.1) original length is 1839bp and the length after shearing is 1083bp and 756bp respectively (the nucleotide sequence of DNA fragment after shearing is SEQ ID NO.2, SEQ ID NO. .3).

(由于使用D型半胱氨酸与L型半胱氨酸最终得到的结果几乎无差异,此处仅用D型半胱氨酸的结果进行表示)(Because there is almost no difference between the final results obtained by using D-cysteine and L-cysteine, only the results of D-cysteine are used here)

实施例6:温度对DNA剪切结果的影响Example 6: The effect of temperature on DNA shearing results

取100μL实施例4获得的混合物加入到具塞比色皿中,并将比色皿分别放于0度和50度的环境中,然后采用405nm的激光作为光源,通过调节不同角度的四分之一玻片获得的左、右圆偏振光分别对混合液进行照射2h。将照射后的混合液于8000rpm离心10min后进行表征。Take 100 μL of the mixture obtained in Example 4 and add it to a stoppered cuvette, and place the cuvette in an environment of 0 degrees and 50 degrees respectively, and then use a 405nm laser as the light source, and adjust the quarters of the different angles. The left and right circularly polarized light obtained from a glass slide were respectively irradiated to the mixture for 2 h. The irradiated mixture was centrifuged at 8000 rpm for 10 min for characterization.

表征结果如图7,由图可知:salmon DNA与手性半导体纳米粒子混合后,采用圆偏振光分别在0度和50度环境下照射2小时后,在DNA序列上GATATC特异性片段中的T和A碱基处发生断裂,salmon DNA(核苷酸序列为SEQ ID NO.1)原始长度为1839bp剪切之后的长度分别为1083bp和756bp(剪切后DNA片段的核苷酸序列分别为SEQ ID NO.2、SEQ ID NO.3)。The characterization results are shown in Figure 7. It can be seen from the figure that after mixing salmon DNA with chiral semiconductor nanoparticles and irradiating circularly polarized light at 0 degrees and 50 degrees for 2 hours, the T in the GATATC-specific fragment on the DNA sequence A break occurs at base A, and the original length of salmon DNA (nucleotide sequence is SEQ ID NO. 1) is 1839bp and the length after shearing is 1083bp and 756bp respectively (the nucleotide sequence of the DNA fragment after shearing is SEQ ID NO.1, respectively. ID NO.2, SEQ ID NO.3).

(由于使用D型半胱氨酸与L型半胱氨酸最终得到的结果几乎无差异,此处仅用D型半胱氨酸的结果进行表示)。(Since the final results obtained by using D-cysteine and L-cysteine are almost indistinguishable, only the results of D-cysteine are used here).

实施例7:pH对DNA剪切结果的影响Example 7: The effect of pH on DNA shearing results

取100μL实施例4获得的混合物加入到具塞比色皿中,调节比色皿中的pH分别为6或者8,然后采用405nm的激光作为光源,通过调节不同角度的四分之一玻片获得的左、右圆偏振光分别对混合液进行照射2h。将照射后的混合液于8000rpm离心10min后进行表征。Take 100 μL of the mixture obtained in Example 4 and add it to a stoppered cuvette, adjust the pH in the cuvette to 6 or 8, and then use a 405nm laser as the light source to adjust the quarter glass slides at different angles. The left and right circularly polarized light were respectively irradiated to the mixture for 2 h. The irradiated mixture was centrifuged at 8000 rpm for 10 min for characterization.

表征结果如图8,由图可知:salmon DNA与手性半导体纳米粒子混合后调节pH分别为2或者8,采用圆偏振光分别照射2小时后,在DNA序列上GATATC特异性片段中的T和A碱基处发生断裂,salmon DNA(核苷酸序列为SEQ ID NO.1)原始长度为1839bp剪切之后的长度分别为1083bp和756bp(剪切后DNA片段的核苷酸序列分别为SEQ ID NO.2、SEQ ID NO.3)。The characterization results are shown in Figure 8. It can be seen from the figure that after mixing salmon DNA with chiral semiconductor nanoparticles and adjusting the pH to 2 or 8, respectively, after irradiating with circularly polarized light for 2 hours, T and A break occurs at base A, and the original length of salmon DNA (nucleotide sequence is SEQ ID NO. 1) is 1839 bp, and the length after shearing is 1083 bp and 756 bp respectively (the nucleotide sequence of the sheared DNA fragment is SEQ ID NO. 1). NO.2, SEQ ID NO.3).

(由于使用D型半胱氨酸与L型半胱氨酸最终得到的结果几乎无差异,此处仅用D型半胱氨酸的结果进行表示)。(Since the final results obtained by using D-cysteine and L-cysteine are almost indistinguishable, only the results of D-cysteine are used here).

对比例1:手性半导体纳米粒子与非特异性DNA的孵育Comparative Example 1: Incubation of Chiral Semiconductor Nanoparticles with Nonspecific DNA

将salmon DNA序列在GATATC处的序列变化为GATTAC使其变成非特异性序列,其他参数与实施例1-5保持一致,观察DNA序列是否还能被剪切。The sequence of the salmon DNA sequence at GATATC was changed to GATTAC to make it a non-specific sequence, and other parameters were kept the same as those in Example 1-5, and it was observed whether the DNA sequence could still be cut.

结果如图5,非特异性salmon DNA序列与手性半导体纳米粒子混合后,采用圆偏振光照射2小时后,DNA未发生片段断裂,说明未发生DNA剪切。The results are shown in Figure 5. After the non-specific salmon DNA sequence was mixed with the chiral semiconductor nanoparticles and irradiated with circularly polarized light for 2 hours, no fragmentation of the DNA occurred, indicating that no DNA shearing occurred.

对比例2:不同手性配体修饰的半导体纳米粒子与DNA的照射Comparative example 2: Irradiation of semiconductor nanoparticles modified with different chiral ligands and DNA

在手性半导体纳米粒子的合成过程中将手性配体由半胱氨酸替换为谷胱甘肽,其他参数与实施例1-5保持一致,得到谷胱甘肽(GSH)修饰的手性半导体纳米粒子。然后将此纳米粒子以同样的孵育条件与salmon DNA混合并以相同光照条件在偏振光照射下2小时。During the synthesis of chiral semiconductor nanoparticles, the chiral ligand was replaced by cysteine with glutathione. semiconductor nanoparticles. The nanoparticles were then mixed with salmon DNA under the same incubation conditions and irradiated with polarized light for 2 hours under the same lighting conditions.

结果如图6,谷胱甘肽修饰的手性半导体纳米粒子与salmon DNA的混合物在光照下没有发生DNA剪切。The results are shown in Figure 6. The mixture of glutathione-modified chiral semiconductor nanoparticles and salmon DNA did not undergo DNA cleavage under illumination.

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.

序列表sequence listing

<110> 江南大学<110> Jiangnan University

<120> 一种剪切DNA分子的方法及其应用<120> A method for shearing DNA molecules and its application

<160> 3<160> 3

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 1839<211> 1839

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 1<400> 1

atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60

tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120

gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180

gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240

attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300

gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360

cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420

aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480

gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540

cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600

tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660

ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720

tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780

gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840

accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900

caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960

gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020

ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080

gatatccgaa aaataggagg catacacaac ctcaccccat ttacttcctc ctgccttaca 1140gatatccgaa aaataggagg catacacaac ctcaccccat ttacttcctc ctgccttaca 1140

atcggaagcc ttgcacttac cggcaccccc ttcttagcag ggtttttctc taaagatgct 1200atcggaagcc ttgcacttac cggcaccccc ttcttagcag ggttttttctc taaagatgct 1200

attattgaag ccttaaacac ctcccacctc aacgcctggg ccctcactct taccttacta 1260attattgaag ccttaaacac ctcccacctc aacgcctggg ccctcactct taccttacta 1260

gccacctcat tcactgccat ttacagcctc cgagttatct ttttcgtctc tatgggacac 1320gccacctcat tcactgccat ttacagcctc cgagttatct ttttcgtctc tatgggacac 1320

ccccgcttta cgacaacggc ccctattaat gaaaataacc catccgtaat taacccaatc 1380ccccgcttta cgacaacggc ccctattaat gaaaataacc catccgtaat taacccaatc 1380

aagcggctag cctgggggag catcattgca ggactactaa ttacatcgaa tttcctccct 1440aagcggctag cctgggggag catcattgca ggactactaa ttacatcgaa tttcctccct 1440

accaacacac ccgtaataac tatgcccacc cacttgaaat tagccgctct cctggttacc 1500accaacacac ccgtaataac tatgcccacc cacttgaaat tagccgctct cctggttacc 1500

atcttaggtc ttctcattgc attagaactt gcgtcactaa ctagcaagca atttaaaact 1560atcttaggtc ttctcattgc attagaactt gcgtcactaa ctagcaagca atttaaaact 1560

acacccaaca ttatcacaca caacttctcc aacatgctag gattcttccc cgctatcatc 1620acacccaaca ttatcacaca caacttctcc aacatgctag gattcttccc cgctatcatc 1620

caccgattaa ttcctaaact aaacttaact ctaggacaaa ccattgccag ccaaatggtt 1680caccgattaa ttcctaaact aaacttaact ctaggacaaa ccattgccag ccaaatggtt 1680

gatcaaacat gatttgaaaa agtcggcccg aaaggaatta tttcaacgca cctacccata 1740gatcaaacat gatttgaaaa agtcggcccg aaaggaatta tttcaacgca cctacccata 1740

gtcacaacga caagtaacat ccaacaaggc ataattaaaa catacctcac tctatttttc 1800gtcacaacga caagtaacat ccaacaaggc ataattaaaa catacctcac tctatttttc 1800

ctttcaacaa ctctagctgt tctactgaca ttaacctag 1839ctttcaacaa ctctagctgt tctactgaca ttaacctag 1839

<210> 2<210> 2

<211> 1083<211> 1083

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 2<400> 2

atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60atgcacccca ctacactcat cttaagctca tcccttttaa taatctttgc acttctaatc 60

tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120tatcctctta tcaccactct cacccctacc cctcagcaca aaaactgatc ccttaaccaa 120

gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180gtgaaaactg ccatcaaaat ggccttccta gtaagcttac tccccctttt tatcttccta 180

gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240gatcaaggaa ctgaaactat cgtcactaac tgacaatgaa taaacaccac aacctttgat 240

attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300attaacctta gctttaaatt tgaccactac tccattattt ttaccccgat cgccctgtac 300

gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360gtaacctgat ctattctcga attcgcatca tggtacatac atgccgaccc caatataaac 360

cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420cggttcttta aatatctcct cctcttcctg attgccataa ttattttagt caccgccaat 420

aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480aacatatttc aactattcat cggctgagaa ggagttggaa ttatatcgtt cctcctcatt 480

gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540gggtgatggc acggacgggc tgacgctaac acagctgcca tacaagctgt aatttataac 540

cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600cgtgtaggag acatcggact tatcttgagt atggcctggt tcgcaataaa ccttaactcc 600

tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660tgagaaattc aacaaatatt tgcctcttca aaaggactcg accttacact ccctcttatg 660

ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720ggcctcattc tagccgccac cggcaaatca gcgcaatttg gacttcaccc gtgacttcct 720

tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780tcagcgatag aaggtcctac gccggtatct gccctactac actccagcac catagtagtc 780

gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840gcgggcatct tcctattaat tcgactccac cctcttatag aaaataacca aacagcccta 840

accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900accacttgct tatgcctagg agccctaacc accctattca ccgctacctg tgccctaaca 900

caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960caaaatgata ttaaaaaaat tgttgcattc tctacgtcca gtcaactagg acttatgata 960

gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020gttaccatcg gacttaatca accacaacta gcctttctcc acatctgcac tcacgcattc 1020

ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080ttcaaagcta tacttttctt atgctcgggc tcaattattc acagtttaaa cgacgaacaa 1080

gat 1083gat 1083

<210> 3<210> 3

<211> 756<211> 756

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 3<400> 3

atccgaaaaa taggaggcat acacaacctc accccattta cttcctcctg ccttacaatc 60atccgaaaaa taggaggcat acacaacctc accccattta cttcctcctg ccttacaatc 60

ggaagccttg cacttaccgg cacccccttc ttagcagggt ttttctctaa agatgctatt 120ggaagccttg cacttaccgg cacccccttc ttagcagggt ttttctctaa agatgctatt 120

attgaagcct taaacacctc ccacctcaac gcctgggccc tcactcttac cttactagcc 180attgaagcct taaacacctc ccacctcaac gcctgggccc tcactcttac cttactagcc 180

acctcattca ctgccattta cagcctccga gttatctttt tcgtctctat gggacacccc 240acctcattca ctgccattta cagcctccga gttatctttt tcgtctctat gggacacccc 240

cgctttacga caacggcccc tattaatgaa aataacccat ccgtaattaa cccaatcaag 300cgctttacga caacggcccc tattaatgaa aataacccat ccgtaattaa cccaatcaag 300

cggctagcct gggggagcat cattgcagga ctactaatta catcgaattt cctccctacc 360cggctagcct gggggagcat cattgcagga ctactaatta catcgaattt cctccctacc 360

aacacacccg taataactat gcccacccac ttgaaattag ccgctctcct ggttaccatc 420aacacacccg taataactat gcccacccac ttgaaattag ccgctctcct ggttaccatc 420

ttaggtcttc tcattgcatt agaacttgcg tcactaacta gcaagcaatt taaaactaca 480ttaggtcttc tcattgcatt agaacttgcg tcactaacta gcaagcaatt taaaactaca 480

cccaacatta tcacacacaa cttctccaac atgctaggat tcttccccgc tatcatccac 540cccaacatta tcacacacaa cttctccaac atgctaggat tcttccccgc tatcatccac 540

cgattaattc ctaaactaaa cttaactcta ggacaaacca ttgccagcca aatggttgat 600cgattaattc ctaaactaaa cttaactcta ggacaaacca ttgccagcca aatggttgat 600

caaacatgat ttgaaaaagt cggcccgaaa ggaattattt caacgcacct acccatagtc 660caaacatgat ttgaaaaagt cggcccgaaa ggaattattt caacgcacct acccatagtc 660

acaacgacaa gtaacatcca acaaggcata attaaaacat acctcactct atttttcctt 720acaacgacaa gtaacatcca acaaggcata attaaaacat acctcactct atttttcctt 720

tcaacaactc tagctgttct actgacatta acctag 756tcaacaactc tagctgttct actgacatta acctag 756

Claims (9)

1.一种剪切DNA分子的方法,其特征在于,所述方法为先将手性半导体纳米粒子与待剪切DNA分子混合后进行孵育,然后将孵育好的手性半导体纳米粒子与待剪切DNA分子混合物在波长为405nm的圆偏振光下进行照射,即得剪切后的DNA分子;所述手性半导体纳米粒子是以D型半胱氨酸或L型半胱氨酸为手性配体合成的,所述待剪切的DNA分子为序列上含有GATATC特异性片段的DNA分子;具体步骤如下:1. a method for shearing DNA molecule, it is characterized in that, described method is to hatch after mixing chiral semiconductor nanoparticle and DNA molecule to be sheared first, then hatch the chiral semiconductor nanoparticle to be sheared. The cut DNA molecule mixture is irradiated under circularly polarized light with a wavelength of 405 nm to obtain the cut DNA molecule; the chiral semiconductor nanoparticles are chiral with D-cysteine or L-cysteine Ligand synthesis, the DNA molecule to be sheared is a DNA molecule containing GATATC-specific fragments in sequence; the specific steps are as follows: (1)前驱体的合成:在氮气的保护下,将H2SO4加入到Al2Te3溶液中,得到前驱气体;(1) Synthesis of precursor: under the protection of nitrogen, H 2 SO 4 was added to the Al 2 Te 3 solution to obtain the precursor gas; (2)将Cd(ClO4)2·6H2O和D型半胱氨酸或L型半胱氨酸加入到水中后,通入步骤(1)得到的前驱气体,将溶液边搅拌边加热得到纳米粒子溶液,向得到的纳米粒子溶液中加入异丙醇后离心过滤得到沉淀物,将沉淀物重悬在PBS缓冲液中,得到手性半导体纳米粒子;(2) After adding Cd(ClO 4 ) 2 ·6H 2 O and D-cysteine or L-cysteine into water, pass the precursor gas obtained in step (1), and heat the solution while stirring Obtaining a nanoparticle solution, adding isopropanol to the obtained nanoparticle solution, centrifugal filtration to obtain a precipitate, and resuspending the precipitate in a PBS buffer to obtain chiral semiconductor nanoparticles; (3)将待剪切的DNA分子与步骤(2)得到的手性半导体纳米粒子充分混合后静置,得到孵育后的手性半导体纳米粒子与DNA分子的混合液;(3) fully mixing the DNA molecules to be sheared and the chiral semiconductor nanoparticles obtained in step (2), and then standing to obtain a mixed solution of the incubated chiral semiconductor nanoparticles and DNA molecules; (4)将步骤(3)中得到的混合液加入到具塞比色皿中,采用405nm的激光作为光源,通过圆偏振光对混合液进行照射得到剪切后的DNA分子。(4) adding the mixed solution obtained in step (3) into a cuvette with a stopper, using a 405 nm laser as a light source, and irradiating the mixed solution with circularly polarized light to obtain sheared DNA molecules. 2.如权利要求1所述的一种剪切DNA分子的方法,其特征在于,步骤(3)中,所述待剪切的DNA分子与所述手性半导体纳米粒子的摩尔比为45-55:1。2. The method for shearing DNA molecules according to claim 1, wherein in step (3), the molar ratio of the DNA molecules to be sheared to the chiral semiconductor nanoparticles is 45- 55:1. 3.如权利要求1或2所述的一种剪切DNA分子的方法,其特征在于,步骤(3)中,所述静置的时间为0.5-1.5h。3 . The method for shearing DNA molecules according to claim 1 or 2 , wherein, in step (3), the standing time is 0.5-1.5 h. 4 . 4.如权利要求1或2所述的一种剪切DNA分子的方法,其特征在于,步骤(4)中,所述照射的时间为1-3h。4 . The method for shearing DNA molecules according to claim 1 or 2 , wherein, in step (4), the irradiation time is 1-3 h. 5 . 5.如权利要求1所述的一种剪切DNA分子的方法,其特征在于,步骤(3)中,所述静置的时间为0.5-1.5h;步骤(4)中,所述照射的时间为1-3h。5 . The method for shearing DNA molecules according to claim 1 , wherein in step (3), the standing time is 0.5-1.5 h; in step (4), the irradiated The time is 1-3h. 6.如权利要求1或2或5所述的一种剪切DNA分子的方法,其特征在于,所述圆偏振光为左圆偏振光和/或右圆偏振光。6. The method for shearing DNA molecules according to claim 1, 2 or 5, wherein the circularly polarized light is left circularly polarized light and/or right circularly polarized light. 7.如权利要求1所述的一种剪切DNA分子的方法,其特征在于,其特征在于,步骤(3)中,所述静置的时间为0.5-1.5h,所述圆偏振光为左圆偏振光和/或右圆偏振光。7 . The method for shearing DNA molecules according to claim 1 , wherein, in step (3), the standing time is 0.5-1.5 h, and the circularly polarized light is Left circularly polarized light and/or right circularly polarized light. 8.如权利要求1所述的一种剪切DNA分子的方法,其特征在于,其特征在于,步骤(4)中,所述照射的时间为1-3h,所述圆偏振光为左圆偏振光和/或右圆偏振光。8 . The method for shearing DNA molecules according to claim 1 , wherein, in step (4), the irradiation time is 1-3 hours, and the circularly polarized light is a left circular light. 9 . Polarized light and/or right circularly polarized light. 9.权利要求1-5任一所述的一种剪切DNA分子的方法在基因工程方面的应用。9. Application of the method for shearing DNA molecules according to any one of claims 1-5 in genetic engineering.
CN201810808657.9A 2018-07-17 2018-07-17 A kind of method for shearing DNA molecule and its application Active CN108998442B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810808657.9A CN108998442B (en) 2018-07-17 2018-07-17 A kind of method for shearing DNA molecule and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810808657.9A CN108998442B (en) 2018-07-17 2018-07-17 A kind of method for shearing DNA molecule and its application

Publications (2)

Publication Number Publication Date
CN108998442A CN108998442A (en) 2018-12-14
CN108998442B true CN108998442B (en) 2020-12-29

Family

ID=64597281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810808657.9A Active CN108998442B (en) 2018-07-17 2018-07-17 A kind of method for shearing DNA molecule and its application

Country Status (1)

Country Link
CN (1) CN108998442B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326680B (en) * 2020-02-27 2023-04-07 京东方科技集团股份有限公司 Light-emitting structure, preparation method thereof and display panel
CN117363607B (en) * 2023-10-07 2024-12-17 清华大学深圳国际研究生院 Application of low-dimensional nanomaterial in recognition and shearing of DNA specific sites

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472031B2 (en) * 2010-05-25 2013-06-25 Valerio Pruneri Apparatus and method for optical interrogation
CN102127445B (en) * 2010-12-23 2013-02-27 江南大学 A preparation method of self-assembled nanomaterials with chiral signals
CN105366652A (en) * 2015-11-23 2016-03-02 温州生物材料与工程研究所 Chiral one-dimensional semiconductor nano-material self-assembly preparation method
CN106635023B (en) * 2016-12-09 2018-12-18 江南大学 A kind of synthetic method of the chiral quantum rod based on circularly polarized light
CN107375930A (en) * 2017-08-11 2017-11-24 无锡迪腾敏生物科技有限公司 A kind of construction method of the plasma chirality gold nanorods dimer based on circularly polarized light optical dynamic therapy
CN108254343B (en) * 2017-12-29 2021-05-07 南方科技大学 A detection probe and its preparation method and application

Also Published As

Publication number Publication date
CN108998442A (en) 2018-12-14

Similar Documents

Publication Publication Date Title
JP7402289B2 (en) Representative diagnostic method
Zhang et al. Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids
Lodewijk et al. Liquid biopsy biomarkers in bladder cancer: a current need for patient diagnosis and monitoring
Djalali et al. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates
US12153013B2 (en) Detection methods for epitachophoresis workflow automation
CN108998442B (en) A kind of method for shearing DNA molecule and its application
JP7456637B2 (en) Lipid-modified oligonucleotides and methods of use thereof
Reymond et al. Standardized characterization of gene expression in human colorectal epithelium by two‐dimensional electrophoresis
US11306299B2 (en) Simultaneous multiplex genome editing in yeast
JP2022532607A (en) Equipment and methods for sample analysis
Chatel et al. Ultra scale‐down characterization of the impact of conditioning methods for harvested cell broths on clarification by continuous centrifugation—Recovery of domain antibodies from rec E. coli
Weizenmann et al. Chemical ligation of an entire DNA origami nanostructure
CN106544322A (en) A kind of reporting system and its construction method for studying Kiss1 gene expression regulations
Li et al. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications
Tulluri et al. Role of antizyme inhibitor proteins in cancers and beyond
Nacev et al. Cancer-associated Histone H3 N-terminal arginine mutations disrupt PRC2 activity and impair differentiation
Guo et al. Translational progress on tumor biomarkers
Shen et al. Decoding the colorectal cancer ecosystem emphasizes the cooperative role of cancer cells, TAMs and CAFsin tumor progression
US11215622B2 (en) Generation of cfDNA reference material
WO2024138626A1 (en) Helicase topif 1, and preparation method therefor and use thereof in high-throughput sequencing
Saintilnord et al. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs
Chang et al. The application of differential display as a gene profiling tool
Cheng et al. In situ caging of biomolecules in graphene hybrids for light modulated bioactivity
WO2022155381A1 (en) Use of immune content scores diagnostically to predict responsiveness of prostate cancer patients to immunotherapy
Sarthak et al. Single-molecule identification of folded proteins from nanopore ionic current signatures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant