CN108997009A - 一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法 - Google Patents

一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法 Download PDF

Info

Publication number
CN108997009A
CN108997009A CN201810773738.XA CN201810773738A CN108997009A CN 108997009 A CN108997009 A CN 108997009A CN 201810773738 A CN201810773738 A CN 201810773738A CN 108997009 A CN108997009 A CN 108997009A
Authority
CN
China
Prior art keywords
preparation
parts
sintering
composite material
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810773738.XA
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qidong Green Green Engineering Co Ltd
Original Assignee
Qidong Green Green Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qidong Green Green Engineering Co Ltd filed Critical Qidong Green Green Engineering Co Ltd
Priority to CN201810773738.XA priority Critical patent/CN108997009A/zh
Publication of CN108997009A publication Critical patent/CN108997009A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法,步骤如下:将碳酸钙和二水合磷酸氢钙混合,在985‑995℃烧结3.5‑4.5h,得β‑TCP;将β‑TCP粉末,ZrO2和氧化镁混合,在玛瑙研钵中用无水乙醇混合均匀后,干燥,将干燥后的物料加入到直径20mm,高度6mm的圆柱形模具内进行样品压制,压制压力为135‑145MPa;将样品置于立式电阻炉中,以5℃/min的升温速率升温至1370‑1390℃烧结1.5‑2.5h,随炉自然冷却即得。该方法简便、快捷、易操作,制备的氧化镁掺杂氧化锆/磷酸三钙复合材料具有良好的力学性能,可大规模制备。

Description

一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法
技术领域
本发明涉及一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法。
背景技术
生物陶瓷用在生物医学应用领域。生物相容性支架的生产是生物医学技术面临的挑战。磷酸三钙(β-TCP,β-Ca3(PO4)2)多年来一直被认为是一种有价值的植入材料。事实上,磷酸三钙由于其具有非常好的人体相容性和与骨质有机组成相似的化学成分,在骨缺损修复方面具有很好的潜在应用。但是β-TCP由于机械性能差,在人体的应用受到限制。惰性陶瓷氧化物如氧化锆(ZrO2)具有高的摩擦学性能,因为氧化锆可能制得具有可控显微结构的纳米晶体陶瓷,所以受到了广泛的关注。氧化锆还有其它内在的物理和化学性质,包括硬度、耐磨性、低摩擦系数、弹性模量、化学惰性、离子导电性、电性能、低导热系数和高熔点温度,这些使它成为工程材料的焦点,人们一直致力于理解并改善其机械性能。氧化锆可以与磷酸三钙混合制成生物陶瓷复合材料,结合了磷酸三钙的生物相容性和氧化锆的高摩擦性能。此外,在氧化锆基体中引入TCP可提高复合材料的机械强度并部分阻止氧化锆的逆同素异形转变。但磷酸三钙-50%(质量分数)氧化锆复合材料中存在氧化锆由四方晶相向单斜晶相的同素异形转变而呈现出较差的机械性能。
镁(Mg)的氧化物对促进早期的矿化和与生活紧密联系的许多方面都具有有益的影响。Mg是人体中含量丰富的阳离子,排名第四。镁存在于钙化的活体组织(骨骼和牙釉质中含量约0.5%,牙本质中含量超过1%)。研究表明,这种元素可以改善β-TCP的生物相容性和氧化锆的强度。基于此,选择MgO作为稳定剂加入到TCP-50%(质量分数)ZrO2复合材料中,同比例替代TCP和ZrO2
发明内容
本发明的目的在于提供一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法。
本发明通过下面技术方案实现:
一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法,包括如下步骤:将20-30份碳酸钙和10-20份二水合磷酸氢钙混合,在985-995℃烧结3.5-4.5h,得β-TCP;将15-25份β-TCP粉末,10-20份质量分数为50% 的ZrO2和25-35份氧化镁混合,在玛瑙研钵中用无水乙醇混合均匀后,于65-75℃干燥47-49h,将干燥后的物料加入到直径20mm,高度6mm的圆柱形模具内进行样品压制,压制压力为135-145MPa;将样品置于立式电阻炉中,以5℃/min的升温速率升温至1370-1390℃烧结1.5-2.5h,随炉自然冷却即得;各原料均为重量份。
优选地,所述的制备方法中,在985-995℃烧结3.5-4.5h。
优选地,所述的制备方法中,于65-75℃干燥47-49h。
优选地,所述的制备方法中,压制压力为135-145MPa。
优选地,所述的制备方法中,以5℃/min的升温速率升温至1370-1390℃烧结1.5-2.5h。
本发明技术效果:
该方法简便、快捷、易操作,制备的氧化镁掺杂氧化锆/磷酸三钙复合材料具有良好的力学性能,可大规模制备。
具体实施方式
下面结合实施例具体介绍本发明的实质性内容。
实施例1
一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法,包括如下步骤:将25份碳酸钙和15份二水合磷酸氢钙混合,在990℃烧结4h,得β-TCP;将20份β-TCP粉末,15份质量分数为50% 的ZrO2和30份氧化镁混合,在玛瑙研钵中用无水乙醇混合均匀后,于70℃干燥48h,将干燥后的物料加入到直径20mm,高度6mm的圆柱形模具内进行样品压制,压制压力为140MPa;将样品置于立式电阻炉中,以5℃/min的升温速率升温至1380℃烧结2h,随炉自然冷却即得;各原料均为重量份。
实施例12
一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法,包括如下步骤:将20份碳酸钙和10份二水合磷酸氢钙混合,在985℃烧结3.5h,得β-TCP;将15份β-TCP粉末,10份质量分数为50% 的ZrO2和25份氧化镁混合,在玛瑙研钵中用无水乙醇混合均匀后,于65℃干燥47h,将干燥后的物料加入到直径20mm,高度6mm的圆柱形模具内进行样品压制,压制压力为135MPa;将样品置于立式电阻炉中,以5℃/min的升温速率升温至1370℃烧结1.5h,随炉自然冷却即得;各原料均为重量份。
实施例3
一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法,包括如下步骤:将30份碳酸钙和20份二水合磷酸氢钙混合,在995℃烧结4.5h,得β-TCP;将25份β-TCP粉末,20份质量分数为50% 的ZrO2和35份氧化镁混合,在玛瑙研钵中用无水乙醇混合均匀后,于75℃干燥49h,将干燥后的物料加入到直径20mm,高度6mm的圆柱形模具内进行样品压制,压制压力为145MPa;将样品置于立式电阻炉中,以5℃/min的升温速率升温至1390℃烧结2.5h,随炉自然冷却即得;各原料均为重量份。
该方法简便、快捷、易操作,制备的氧化镁掺杂氧化锆/磷酸三钙复合材料具有良好的力学性能,可大规模制备。

Claims (5)

1.一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法,其特征在于包括如下步骤:将20-30份碳酸钙和10-20份二水合磷酸氢钙混合,在985-995℃烧结3.5-4.5h,得β-TCP;将15-25份β-TCP粉末,10-20份质量分数为50% 的ZrO2和25-35份氧化镁混合,在玛瑙研钵中用无水乙醇混合均匀后,于65-75℃干燥47-49h,将干燥后的物料加入到直径20mm,高度6mm的圆柱形模具内进行样品压制,压制压力为135-145MPa;将样品置于立式电阻炉中,以5℃/min的升温速率升温至1370-1390℃烧结1.5-2.5h,随炉自然冷却即得;各原料均为重量份。
2.根据权利要求1所述的制备方法,其特征在于:在985-995℃烧结3.5-4.5h。
3.根据权利要求1所述的制备方法,其特征在于:于65-75℃干燥47-49h。
4.根据权利要求1所述的制备方法,其特征在于:压制压力为135-145MPa。
5.根据权利要求1所述的制备方法,其特征在于:以5℃/min的升温速率升温至1370-1390℃烧结1.5-2.5h。
CN201810773738.XA 2018-07-15 2018-07-15 一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法 Withdrawn CN108997009A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810773738.XA CN108997009A (zh) 2018-07-15 2018-07-15 一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810773738.XA CN108997009A (zh) 2018-07-15 2018-07-15 一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN108997009A true CN108997009A (zh) 2018-12-14

Family

ID=64599985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810773738.XA Withdrawn CN108997009A (zh) 2018-07-15 2018-07-15 一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108997009A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330086A (zh) * 2020-03-05 2020-06-26 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 一种仿生人工骨支架材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330086A (zh) * 2020-03-05 2020-06-26 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 一种仿生人工骨支架材料及其制备方法

Similar Documents

Publication Publication Date Title
Shen et al. Dense hydroxyapatite–zirconia ceramic composites with high strength for biological applications
Sikder et al. Conventionally sintered hydroxyapatite–barium titanate piezo-biocomposites
Myat-Htun et al. Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material
Donadel et al. Hydroxyapatites produced by wet‐chemical methods
CN105236939A (zh) 一种高硬度耐磨氧化铝陶瓷及其制备方法
Ramesh et al. Sintering behaviour and properties of magnesium orthosilicate-hydroxyapatite ceramic
Matić et al. Sr, Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes
CN108997009A (zh) 一种氧化镁掺杂氧化锆/磷酸三钙复合材料的制备方法
Zhang et al. Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution
Yin et al. Customized reconstruction of alveolar cleft by high mechanically stable bioactive ceramic scaffolds fabricated by digital light processing
Ghosh et al. Study on the development of machinable hydroxyapatite-yttrium phosphate composite for biomedical applications
Tolouei et al. Sintering effects on the densification of nanocrystalline hydroxyapatite
US20140305344A1 (en) Magnesium phosphate biomaterials
Sariibrahimoglu et al. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute
RU2743834C1 (ru) Способ получения пористого биокерамического волластонита
Abbasi-Shahni et al. Mechanical properties and in vitro bioactivity of β-tri calcium phosphate, merwinite nanocomposites
de Lima et al. Microstructural and mechanical properties of Al2O3/HAp composites for use as bone substitute material
JP3987220B2 (ja) 速硬性リン酸カルシウムセメント
Pazarlioglu et al. Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite
Galić et al. Processing of gelatine coated composite scaffolds based on magnesium and strontium doped hydroxyapatite and yttria-stabilized zirconium oxide
CN106904954B (zh) 一种具有生物活性的陶瓷材料、制备方法及其应用
Zhang et al. Development of bioresorbable Mg-substituted tricalcium phosphate scaffolds for bone tissue engineering
KR101085935B1 (ko) 수산화인회석을 이용한 골조직 대체용 매식체의 제조방법
Waibanthao et al. Enhancing Physical-Thermal-Mechanical Properties of Biobased Ceramic Composite Utilizing Natural Beta-Tricalcium Phosphate, Glass, and Tricalcium Silicate
Albakri et al. The Effect of Manganese and Bismuth on the Properties and Behavior of Calcium Phosphate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181214

WW01 Invention patent application withdrawn after publication