CN108995665A - 一种燃料电池混合动力列车优化运行控制方法 - Google Patents

一种燃料电池混合动力列车优化运行控制方法 Download PDF

Info

Publication number
CN108995665A
CN108995665A CN201810906564.XA CN201810906564A CN108995665A CN 108995665 A CN108995665 A CN 108995665A CN 201810906564 A CN201810906564 A CN 201810906564A CN 108995665 A CN108995665 A CN 108995665A
Authority
CN
China
Prior art keywords
train
energy
fuel cell
speed
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810906564.XA
Other languages
English (en)
Other versions
CN108995665B (zh
Inventor
李奇
孟翔
陈维荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201810906564.XA priority Critical patent/CN108995665B/zh
Publication of CN108995665A publication Critical patent/CN108995665A/zh
Application granted granted Critical
Publication of CN108995665B publication Critical patent/CN108995665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/12Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units

Abstract

本发明公开一种燃料电池混合动力列车优化运行控制方法,包括步骤:输入列车信息和线路信息,进行离线分析;基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,获得速度‑位置曲线;增加线路区间限速约束,改进所述速度‑位置曲线;增加运行时间约束,通过提前惰行和多目标优化的方法进行惰行点和制动点的偏移改进,得到最终速度‑位置曲线;驾驶员通过最终速度‑位置曲线操纵控制列车运行。本发明能够有效提高列车运行全程中的能量利用率,在准点及舒适的基础上最大程度利用再生制动能量;大大减少了驾驶员工作量,提高了乘客的舒适度。

Description

一种燃料电池混合动力列车优化运行控制方法
技术领域
本发明属于燃料电池混合动力列车技术领域,特别是涉及一种燃料电池混合动力列车优化运行控制方法。
背景技术
燃料电池是一种将氢能转换为电能的发电装置,并且具有清洁环保、高效安全的特点。目前燃料电池已在交通领域得到应用,尤其在轨道交通方面,其发展前景更加广阔。
目前在轨道交通领域,国内外均已开发出相关车辆,如站场调车、机车、有轨电车、城际列车等。燃料电池轨道交通车辆的发展趋势为:客运列车化、编组化。因此需要对燃料电池混合动力列车的运行问题进行研究。分析常规供电制式或储能式供电的列车时,列车的优化操纵方法是研究的重点和热点。
而对于燃料电池混合动力列车而言,其采用的是不同于常规供电制式列车的车载供电方式,其主要动力来源于车载高压氢气,而储能系统所储存的电量仅作为辅助供电,因此相比储能式供电列车,燃料电池混合动力列车所配置的超级电容和锂电池容量均较小。现有的控制方法在控制列车全程运行时,因其储能系统的限制,无法实现能量的合同利用,使得列车运行全程中的能量利用率较低;并且而燃料电池混合动力列车的储能容量有限,对于再生制动能量能够完全回收,无法有效保证列车安全稳定运行,储能系统的稳定较差;需要通过驾驶员实时跟进列车运行现况进行经验判断后进行操控,使列车驾驶过程负载,增加了驾驶员工作量,大大降低了乘客的舒适度。
发明内容
为了解决上述问题,本发明提出了一种燃料电池混合动力列车优化运行控制方法,能够有效提高列车运行全程中的能量利用率,在准点及舒适的基础上最大程度利用再生制动能量;所提出方法容易实现,仅需列车驾驶员按辅助驾驶系统的提示操作列车惰行、制动即可,大大减少了驾驶员工作量,提高了乘客的舒适度。
为达到上述目的,本发明采用的技术方案是:一种燃料电池混合动力列车优化运行控制方法,燃料电池混合动力列车的供电系统包括燃料电池、超级电容、动力电池、单向DC/DC变换器、双向DC/DC变换器、DC/AC三相逆变器和车载主控制器,燃料电池通过单向DC/DC变换器与直流母线相连;超级电容和动力电池均通过独自的双向DC/DC变换器与直流母线相连,直流母线通过DC/AC三相逆变器逆变后形成交流电为列车供电,车载主控制器分别连接单向DC/DC变换器、双向DC/DC变换器和DC/AC三相逆变器;燃料电池为主动力源,超级电容和动力电池作为辅助储能系统,所述储能系统在列车加速时补充峰值功率和在列车制动时回收制动能量;
包括步骤:
S100,输入列车信息和线路信息,对列车牵引计算、驾驶模式能量流向和混合动力系统的在线能量管理方法进行离线分析;
S200,基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,获得燃料电池混合动力列车储能系统单区间运行能量回收率最高的速度-位置曲线;
S300,增加线路区间限速约束,改进所述速度-位置曲线;
S400,增加运行时间约束,通过提前惰行和多目标优化的方法进行惰行点和制动点的偏移改进,得到最终速度-位置曲线;
S500,驾驶员通过最终速度-位置曲线操纵控制列车运行。
进一步的是,在步骤S100中,所述列车信息包括车重、载重、储能系统配置信息和牵引电机特性曲线;所述线路信息包括站点间路程、区间运行时间、区间内曲线段信息、坡度信息和临时限速信息;所述储能系统配置信息包括超级电容和动力电池的最大容量和串并联数、系统电压、以及动力电池SOC和超级电容SOE的利用范围;所述牵引电机特性曲线应包括牵引力和制动力特性曲线,以及牵引力和制动力与速度函数关系。
进一步的是,在步骤S100中,对列车牵引计算、驾驶模式能量流向分析和混合动力系统的在线能量管理方法进行离线分析;
所述列车牵引计算,列车的牵引传动系统所需要提供的牵引力等于列车自身基本阻力、坡道阻力和加速阻力之和;
所述驾驶模式能量流向分析为列车在直道或起伏坡度的路段中以最优驾驶过程行驶,最优驾驶过程包括牵引及匀速运行、惰行运行和制动运行;
列车牵引及匀速运行时,直流母线经DC/AC三相逆变器向列车牵引传动系统输出能量,车载控制器通过在线能量管理方法,对列车负荷功率进行分配;
列车惰行运行时,列车牵引传动系统不工作,列车以惯性前进;此时,车载控制器控制燃料电池不停机工作并以最小功率运行,燃料电池电能流向储能设备,对动力电池和超级电容充电;
列车制动运行时,列车牵引电机反转,产生再生制动能量,并经DC/AC三相逆变器回馈至直流母线;同时燃料电池不停机工作并以最小功率运行,直流母线电能全部流向储能设备,对动力电池和超级电容充电;
列车惰行运行时,向储能设备充电的功率比列车制动时小,列车惰行运行时优先为动力电池充电,直至动力电池SOC已达上限时再为超级电容充电,当超级电容系统充满时,则切入制动电阻将再生制动能量消耗;列车制动运行时,直流母线对储能设备充电功率大,先由燃料电池为超级电容充电,直至超级电容充满后再对动力电池充电;设置动力电池充电电流最大不超过1.2C,若超过,则投入制动电阻消耗再生制动能量,直至再生制动功率减小至安全充电功率时再切出制动电阻且闭合动力电池充电断路器。能够有效保证动力电池充电的安全性与使用的耐久性。
进一步的是,在步骤S100中,确定在线能量管理方法:燃料电池混合动力列车在运行过程中主要动力来源于燃料电池的车载高压氢气,同时配备动力电池和超级电容作为燃料电池混合动力列车的储能设备;其中,控制超级电容在列车加速和制动阶段的高频功率波动状态下进行储能工作,而动力电池在列车各个运行阶段的低频功率波动状态下进行储能工作;所述动力电池和超级电容中所储存的电量仅作为列车的辅助供电;燃料电池混合动力列车的超级电容和动力电池的容量配置较小。
进一步的是,燃料电池混合动力列车的优化运行中的在线能量管理方法包括多种目标能量管理策略结合,与基于动态规划的能量管理运行驾驶综合优化比较,通过观察等效氢耗量和再生制动能量利用率指标偏离综合优化方法的程度,最终得出在线能量管理方法;
在所述在线能量管理方法中:通过等效氢耗最小策略:降低燃料电池混合动力系统的等效氢耗和维持动力电池SOC;通过庞特里亚金极小值原理策略:降低燃料电池混合动力系统的等效氢耗;通过功率跟随式策略:维持动力电池SOC。
进一步的是,在步骤S200中,基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,将再生制动能量全部吸收,在每个运行区间结束处将储能设备的电量充满,获得燃料电池混合动力列车储能系统单区间运行能量回收率最高的速度-位置曲线。
进一步的是,在步骤S300中,增加线路区间限速约束,包括临时限速信息和曲线段限速信息,改进所述速度-位置曲线。
进一步的是,由于实际运行时列车不能以最大巡航速度行驶完全程,在步骤S300中增加线路区间限速约束,列车在运行过程中存在速度限制包括临时限速和曲线段限速;
列车的曲线段限速公式为:其中,ρr为轨道曲线半径;
当列车在加速或匀速运行时遇到速度限制,则列车以最大加速度或最大减速度减速,若限制速度高于巡航速度时则以巡航速度运行;当列车在减速过程中遇到速度限制,则施加机械制动辅助列车进行紧急制动;改进所述速度-位置曲线。
进一步的是,在步骤S400中,使得具有独立路权的列车在一段运行区间内,尤其在惰性和制动过程下可以将再生制动能量全部吸收,并且按时达到站点,且满足线路中关于限速等的要求;增加时间约束,以列车按时出发和按时到达作为约束条件,对列车早到和迟到的情况分开进行控制:
列车早到控制:基于提前惰行方法的列车早到速度曲线改进,获得基于列车准点到达的惰行点偏移量:通过增加列车惰行运行时间延长运行总时间,使列车按时到达站点;以列车开始惰行运行的位置为起始点,记录此时的列车运行时间;将惰性点逐渐向前推移,每次前移Δx距离,计算运行时间;当运行时间满足线路运行图设定的运行时间,则惰性工况停止前移;
列车迟到控制:基于多目标优化的列车迟到速度曲线改进,获得基于再生制动能量利用率和舒适度的制动点偏移量;通过延长列车惰行运行时间并增加机械制动缩短运行总时间,使列车按时到达站点;并使用基于多目标优化的方法寻找最优惰行和制动模式切换点进行偏移改进,得到最终速度-位置曲线;以克服由于通过对列车施加机械制动以增加减速度,影响乘坐的舒适度,同时增加惰行运行时间有利于提升能量回收率。
进一步的是,通过多目标优化函数,并采用群体智能优化算法寻找最优制动点的偏移量,列车以最大能力加速并加速至巡航速度后保持匀速,后分别在寻找最优惰行和制动模式切换点进行偏移改进,得到最终速度-位置曲线;
设置列车乘坐舒适度为一段时间三个方向加速度的加权均方根值axp wd、ayp wd、azp wd综合值,则综合乘坐舒适度指标N为:
列车综合舒适度N与横向加速度axp的平方呈正相关;
计算最终速度-位置曲线下系统能量回收率,计算公式为:
上式中,E1和E2分别为在惰行和制动环节产生的再生制动能量以及燃料电池持续以最小功率运行所能提供的能量;Escmax指超级电容最多能储存的能量,Ebmax指动力电池设置的最高SOC对应的能量值;Escx和Ebx指超级电容和动力电池在惰行开始时所存储的能量;
搭建多目标优化函数:J=k1axp(x)2+k2r(x);
上式中,k1和k2为两目标的加权系数,自变量x为列车开始制动时偏离原设置点的偏移量;
通过群体智能优化算法对多目标优化函数寻优,找到目标函数的最小值,取最小值对应的位置x,即为改进后的惰行和制动模式的切换点。
采用本技术方案的有益效果:
本发明中在进行燃料电池混合动力列车的优化运行操纵上,将车载储能单元的运行情况考虑在内,而储能单元的充、放电过程和电量保持能力受电源系统能量管理策略的操纵;采用基于动态规划的能量管理运行驾驶综合优化方法以列车等效氢耗量、再生制动能量利用率为多目标的列车“速度-位置”曲线及负荷功率分配曲线联合优化方法;因动态规划方法具有全局最优性,通过该方法得到的列车等效氢耗量、再生制动能量利用率具有理论最优性。在燃料电池混合动力列车的实际操纵中采用所得到的燃料电池混合动力列车“速度-位置”曲线,能够有效提高列车运行全程中的能量利用率,在准点及舒适的基础上最大程度利用再生制动能量;
本发明所提出的操纵方法容易实现,所提出的方法适用于列车的手动驾驶系统,该方法为驾驶员提供惰行、制动模式的切换点,容易操作;仅需列车驾驶员按辅助驾驶系统的提示操作列车惰行、制动即可,大大减少了驾驶员工作量,提高了乘客的舒适度。
附图说明
图1为本发明的一种燃料电池混合动力列车优化运行控制方法流程示意图;
图2为本发明实施例中燃料电池混合动力列车供电系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步阐述。
在本实施例中,参见图1和图2所示,本发明提出了一种燃料电池混合动力列车优化运行控制方法,燃料电池混合动力列车的供电系统包括燃料电池、超级电容、动力电池、单向DC/DC变换器、双向DC/DC变换器、DC/AC三相逆变器和车载主控制器,燃料电池通过单向DC/DC变换器与直流母线相连;超级电容和动力电池均通过独自的双向DC/DC变换器与直流母线相连,直流母线通过DC/AC三相逆变器逆变后形成交流电为列车供电,车载主控制器分别连接单向DC/DC变换器、双向DC/DC变换器和DC/AC三相逆变器;燃料电池为主动力源,超级电容和动力电池作为辅助储能系统,所述储能系统在列车加速时补充峰值功率和在列车制动时回收制动能量;
包括步骤:
S100,输入列车信息和线路信息,对列车牵引计算、驾驶模式能量流向和混合动力系统的在线能量管理方法进行离线分析;
S200,基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,获得燃料电池混合动力列车储能系统单区间运行能量回收率最高的速度-位置曲线;
S300,增加线路区间限速约束,改进所述速度-位置曲线;
S400,增加运行时间约束,通过提前惰行和多目标优化的方法进行惰行点和制动点的偏移改进,得到最终速度-位置曲线;
S500,驾驶员通过最终速度-位置曲线操纵控制列车运行。
作为上述实施例的优化方案,在步骤S100中,所述列车信息包括车重、载重、储能系统配置信息和牵引电机特性曲线;所述线路信息包括站点间路程、区间运行时间、区间内曲线段信息、坡度信息和临时限速信息;所述储能系统配置信息包括超级电容和动力电池的最大容量和串并联数、系统电压、以及动力电池SOC(荷电状态)和超级电容SOE(可利用能量状态)的利用范围;所述牵引电机特性曲线应包括牵引力和制动力特性曲线,以及牵引力和制动力与速度函数关系。
在步骤S100中,对列车牵引计算、驾驶模式能量流向分析和混合动力系统的在线能量管理方法进行离线分析;
所述列车牵引计算,列车的牵引传动系统所需要提供的牵引力等于列车自身基本阻力、坡道阻力和加速阻力之和;
所述驾驶模式能量流向分析为列车在直道或起伏坡度的路段中以最优驾驶过程行驶,最优驾驶过程包括牵引及匀速运行、惰行运行和制动运行;
列车牵引及匀速运行时,直流母线经DC/AC三相逆变器向列车牵引传动系统输出能量,车载控制器通过在线能量管理方法,对列车负荷功率进行分配;
列车惰行运行时,列车牵引传动系统不工作,列车以惯性前进;此时,车载控制器控制燃料电池不停机工作并以最小功率运行,燃料电池电能流向储能设备,对动力电池和超级电容充电;
列车制动运行时,列车牵引电机反转,产生再生制动能量,并经DC/AC三相逆变器回馈至直流母线;同时燃料电池不停机工作并以最小功率运行,直流母线电能全部流向储能设备,对动力电池和超级电容充电;
列车惰行运行时,向储能设备充电的功率比列车制动时小,列车惰行运行时优先为动力电池充电,直至动力电池SOC已达上限时再为超级电容充电,当超级电容系统充满时,则切入制动电阻将再生制动能量消耗;列车制动运行时,直流母线对储能设备充电功率大,先由燃料电池为超级电容充电,直至超级电容充满后再对动力电池充电;设置动力电池充电电流最大不超过1.2C,若超过,则投入制动电阻消耗再生制动能量,直至再生制动功率减小至安全充电功率时再切出制动电阻且闭合动力电池充电断路器。能够有效保证动力电池充电的安全性与使用的耐久性。
在步骤S100中,确定在线能量管理方法:燃料电池混合动力列车在运行过程中主要动力来源于燃料电池的车载高压氢气,同时配备动力电池和超级电容作为燃料电池混合动力列车的储能设备;其中,控制超级电容在列车加速和制动阶段的高频功率波动状态下进行储能工作,而动力电池在列车各个运行阶段的低频功率波动状态下进行储能工作;所述动力电池和超级电容中所储存的电量仅作为列车的辅助供电;燃料电池混合动力列车的超级电容和动力电池的容量配置较小。
燃料电池混合动力列车的优化运行中的在线能量管理方法包括多种目标能量管理策略结合,与基于动态规划的能量管理运行驾驶综合优化比较,通过观察等效氢耗量和再生制动能量利用率指标偏离综合优化方法的程度,最终得出在线能量管理方法;
在所述在线能量管理方法中:通过等效氢耗最小策略:降低燃料电池混合动力系统的等效氢耗和维持动力电池SOC;通过庞特里亚金极小值原理策略:降低燃料电池混合动力系统的等效氢耗;通过功率跟随式策略:维持动力电池SOC。
作为上述实施例的优化方案,在步骤S200中,基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,将再生制动能量全部吸收,在每个运行区间结束处将储能设备的电量充满,获得燃料电池混合动力列车储能系统单区间运行能量回收率最高的速度-位置曲线。
在步骤S300中,增加线路区间限速约束,包括临时限速信息和曲线段限速信息,改进所述速度-位置曲线。
由于实际运行时列车不能以最大巡航速度行驶完全程,在步骤S300中增加线路区间限速约束,列车在运行过程中存在速度限制包括临时限速和曲线段限速;
列车的曲线段限速公式为:其中,ρr为轨道曲线半径;
当列车在加速或匀速运行时遇到速度限制,则列车以最大加速度或最大减速度减速,若限制速度高于巡航速度时则以巡航速度运行;当列车在减速过程中遇到速度限制,则施加机械制动辅助列车进行紧急制动;改进所述速度-位置曲线。
作为上述实施例的优化方案,在步骤S400中,使得具有独立路权的列车在一段运行区间内,尤其在惰性和制动过程下可以将再生制动能量全部吸收,并且按时达到站点,且满足线路中关于限速等的要求;增加时间约束,以列车按时出发和按时到达作为约束条件,对列车早到和迟到的情况分开进行控制:
列车早到控制:基于提前惰行方法的列车早到速度曲线改进,获得基于列车准点到达的惰行点偏移量:通过增加列车惰行运行时间延长运行总时间,使列车按时到达站点;以列车开始惰行运行的位置为起始点,记录此时的列车运行时间;将惰性点逐渐向前推移,每次前移Δx距离,计算运行时间;当运行时间满足线路运行图设定的运行时间,则惰性工况停止前移;
列车迟到控制:基于多目标优化的列车迟到速度曲线改进,获得基于再生制动能量利用率和舒适度的制动点偏移量;通过延长列车惰行运行时间并增加机械制动缩短运行总时间,使列车按时到达站点;并使用基于多目标优化的方法寻找最优惰行和制动模式切换点进行偏移改进,得到最终速度-位置曲线;以克服由于通过对列车施加机械制动以增加减速度,影响乘坐的舒适度,同时增加惰行运行时间有利于提升能量回收率。
通过多目标优化函数,并采用群体智能优化算法寻找最优制动点的偏移量,列车以最大能力加速并加速至巡航速度后保持匀速,后分别在寻找最优惰行和制动模式切换点进行偏移改进,得到最终速度-位置曲线;
设置列车乘坐舒适度为一段时间三个方向加速度的加权均方根值axp wd、ayp wd、azp wd综合值,则综合乘坐舒适度指标N为:
列车综合舒适度N与横向加速度axp的平方呈正相关;
计算最终速度-位置曲线下系统能量回收率,计算公式为:
上式中,E1和E2分别为在惰行和制动环节产生的再生制动能量以及燃料电池持续以最小功率运行所能提供的能量;Escmax指超级电容最多能储存的能量,Ebmax指动力电池设置的最高SOC对应的能量值;Escx和Ebx指超级电容和动力电池在惰行开始时所存储的能量;
搭建多目标优化函数:J=k1axp(x)2+k2r(x);
上式中,k1和k2为两目标的加权系数,自变量x为列车开始制动时偏离原设置点的偏移量;
通过群体智能优化算法对多目标优化函数寻优,找到目标函数的最小值,取最小值对应的位置x,即为改进后的惰行和制动模式的切换点。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

1.一种燃料电池混合动力列车优化运行控制方法,其特征在于,燃料电池混合动力列车的供电系统包括燃料电池、超级电容、动力电池、单向DC/DC变换器、双向DC/DC变换器、DC/AC三相逆变器和车载主控制器,燃料电池通过单向DC/DC变换器与直流母线相连;超级电容和动力电池均通过独自的双向DC/DC变换器与直流母线相连,直流母线通过DC/AC三相逆变器逆变后形成交流电为列车供电,车载主控制器分别连接单向DC/DC变换器、双向DC/DC变换器和DC/AC三相逆变器;燃料电池为主动力源,超级电容和动力电池作为辅助储能系统,所述储能系统在列车加速时补充峰值功率和在列车制动时回收制动能量;
包括步骤:
S100,输入列车信息和线路信息,对列车牵引计算、驾驶模式能量流向和混合动力系统的在线能量管理方法进行离线分析;
S200,基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,获得燃料电池混合动力列车储能系统单区间运行能量回收率最高的速度-位置曲线;
S300,增加线路区间限速约束,改进所述速度-位置曲线;
S400,增加运行时间约束,通过提前惰行和多目标优化的方法进行惰行点和制动点的偏移改进,得到最终速度-位置曲线;
S500,驾驶员通过最终速度-位置曲线操纵控制列车运行。
2.根据权利要求1所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S100中,所述列车信息包括车重、载重、储能系统配置信息和牵引电机特性曲线;所述线路信息包括站点间路程、区间运行时间、区间内曲线段信息、坡度信息和临时限速信息;所述储能系统配置信息包括超级电容和动力电池的最大容量和串并联数、系统电压、以及动力电池SOC和超级电容SOE的利用范围;所述牵引电机特性曲线应包括牵引力和制动力特性曲线,以及牵引力和制动力与速度函数关系。
3.根据权利要求2所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S100中,对列车牵引计算、驾驶模式能量流向分析和混合动力系统的在线能量管理方法进行离线分析;
所述列车牵引计算,列车的牵引传动系统所需要提供的牵引力等于列车自身基本阻力、坡道阻力和加速阻力之和;
所述驾驶模式能量流向分析为列车在直道或起伏坡度的路段中以最优驾驶过程行驶,最优驾驶过程包括牵引及匀速运行、惰行运行和制动运行;
列车牵引及匀速运行时,直流母线经DC/AC三相逆变器向列车牵引传动系统输出能量,车载控制器通过在线能量管理方法,对列车负荷功率进行分配;
列车惰行运行时,列车牵引传动系统不工作,列车以惯性前进;此时,车载控制器控制燃料电池不停机工作并以最小功率运行,燃料电池电能流向储能设备,对动力电池和超级电容充电;
列车制动运行时,列车牵引电机反转,产生再生制动能量,并经DC/AC三相逆变器回馈至直流母线;同时燃料电池不停机工作并以最小功率运行,直流母线电能全部流向储能设备,对动力电池和超级电容充电;
列车惰行运行时,向储能设备充电的功率比列车制动时小,列车惰行运行时优先为动力电池充电,直至动力电池SOC已达上限时再为超级电容充电,当超级电容系统充满时,则切入制动电阻将再生制动能量消耗;列车制动运行时,直流母线对储能设备充电功率大,先由燃料电池为超级电容充电,直至超级电容充满后再对动力电池充电;设置动力电池充电电流最大不超过1.2C,若超过,则投入制动电阻消耗再生制动能量,直至再生制动功率减小至安全充电功率时再切出制动电阻且闭合动力电池充电断路器。
4.根据权利要求3所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S100中,确定在线能量管理方法:燃料电池混合动力列车在运行过程中主要动力来源于燃料电池的车载高压氢气,同时配备动力电池和超级电容作为燃料电池混合动力列车的储能设备;其中,控制超级电容在列车加速和制动阶段的高频功率波动状态下进行储能工作,而动力电池在列车各个运行阶段的低频功率波动状态下进行储能工作;所述动力电池和超级电容中所储存的电量仅作为列车的辅助供电。
5.根据权利要求4所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,燃料电池混合动力列车的优化运行中的在线能量管理方法包括多种目标能量管理策略结合,与基于动态规划的能量管理运行驾驶综合优化比较,通过观察等效氢耗量和再生制动能量利用率指标偏离综合优化方法的程度,最终得出在线能量管理方法;
在所述在线能量管理方法中:通过等效氢耗最小策略:降低燃料电池混合动力系统的等效氢耗和维持动力电池SOC;通过庞特里亚金极小值原理策略:降低燃料电池混合动力系统的等效氢耗;通过功率跟随式策略:维持动力电池SOC。
6.根据权利要求5所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S200中,基于在线能量管理方法,在不考虑限速约束和时间约束的条件下,比较等效氢耗量和再生制动能量回收率指标,将再生制动能量全部吸收,在每个运行区间结束处将储能设备的电量充满,获得燃料电池混合动力列车储能系统单区间运行能量回收率最高的速度-位置曲线。
7.根据权利要求6所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S300中,增加线路区间限速约束,包括临时限速信息和曲线段限速信息,改进所述速度-位置曲线。
8.根据权利要求7所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S300中增加线路区间限速约束,列车在运行过程中存在速度限制包括临时限速和曲线段限速;
列车的曲线段限速公式为:其中,ρr为轨道曲线半径;
当列车在加速或匀速运行时遇到速度限制,则列车以最大加速度或最大减速度减速,若限制速度高于巡航速度时则以巡航速度运行;当列车在减速过程中遇到速度限制,则施加机械制动辅助列车进行紧急制动;改进所述速度-位置曲线。
9.根据权利要求8所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,在步骤S400中,增加时间约束,以列车按时出发和按时到达作为约束条件,对列车早到和迟到的情况分开进行控制:
列车早到控制:基于提前惰行方法的列车早到速度曲线改进,获得基于列车准点到达的惰行点偏移量:通过增加列车惰行运行时间延长运行总时间,使列车按时到达站点;以列车开始惰行运行的位置为起始点,记录此时的列车运行时间;将惰性点逐渐向前推移,每次前移Δx距离,计算运行时间;当运行时间满足线路运行图设定的运行时间,则惰性工况停止前移;
列车迟到控制:基于多目标优化的列车迟到速度曲线改进,获得基于再生制动能量利用率和舒适度的制动点偏移量;通过延长列车惰行运行时间并增加机械制动缩短运行总时间,使列车按时到达站点;并使用基于多目标优化的方法寻找最优惰行和制动模式切换点进行偏移改进,得到最终速度-位置曲线。
10.根据权利要求9所述的一种燃料电池混合动力列车优化运行控制方法,其特征在于,通过多目标优化函数,并采用群体智能优化算法寻找最优制动点的偏移量,列车以最大能力加速并加速至巡航速度后保持匀速,后分别在寻找最优惰行和制动模式切换点进行偏移改进,得到最终速度-位置曲线;
设置列车乘坐舒适度为一段时间三个方向加速度的加权均方根值axp wd、ayp wd、azp wd综合值,则综合乘坐舒适度指标N为:
列车综合舒适度N与横向加速度axp的平方呈正相关;
计算最终速度-位置曲线下系统能量回收率,计算公式为:
上式中,E1和E2分别为在惰行和制动环节产生的再生制动能量以及燃料电池持续以最小功率运行所能提供的能量;Escmax指超级电容最多能储存的能量,Ebmax指动力电池设置的最高SOC对应的能量值;Escx和Ebx指超级电容和动力电池在惰行开始时所存储的能量;
搭建多目标优化函数:J=k1axp(x)2+k2r(x);
上式中,k1和k2为两目标的加权系数,自变量x为列车开始制动时偏离原设置点的偏移量;
通过群体智能优化算法对多目标优化函数寻优,找到目标函数的最小值,取最小值对应的位置x,即为改进后的惰行和制动模式的切换点。
CN201810906564.XA 2018-08-10 2018-08-10 一种燃料电池混合动力列车优化运行控制方法 Active CN108995665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810906564.XA CN108995665B (zh) 2018-08-10 2018-08-10 一种燃料电池混合动力列车优化运行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810906564.XA CN108995665B (zh) 2018-08-10 2018-08-10 一种燃料电池混合动力列车优化运行控制方法

Publications (2)

Publication Number Publication Date
CN108995665A true CN108995665A (zh) 2018-12-14
CN108995665B CN108995665B (zh) 2019-06-25

Family

ID=64595746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810906564.XA Active CN108995665B (zh) 2018-08-10 2018-08-10 一种燃料电池混合动力列车优化运行控制方法

Country Status (1)

Country Link
CN (1) CN108995665B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109649417A (zh) * 2019-01-10 2019-04-19 北京交通大学 一种城轨列车牵引能耗一体化仿真优化系统
CN109703593A (zh) * 2019-01-07 2019-05-03 中车唐山机车车辆有限公司 一种无接触网有轨电车全区间运行能耗综合优化方法
CN109733443A (zh) * 2019-01-11 2019-05-10 中车唐山机车车辆有限公司 一种混合动力有轨电车制动优化方法及系统
CN110348162A (zh) * 2019-07-19 2019-10-18 西南民族大学 一种提升虚拟轨道电车的制动能量回收利用效率的方法
CN110549868A (zh) * 2019-09-05 2019-12-10 西南交通大学 基于动力系统实时功率的混合动力有轨电车速度调整方法
CN110549914A (zh) * 2019-09-05 2019-12-10 西南交通大学 一种燃料电池有轨电车日运行近似最优能量管理方法
CN112829607A (zh) * 2021-02-07 2021-05-25 中车青岛四方机车车辆股份有限公司 混合动力系统控制方法、系统、存储介质、设备及轨道车辆
CN113401173A (zh) * 2021-06-28 2021-09-17 通号城市轨道交通技术有限公司 列车运行控制方法、装置、电子设备及存储介质
CN113942551A (zh) * 2021-10-15 2022-01-18 交控科技股份有限公司 基于位置式数字控制的列车控制方法及装置
CN114537150A (zh) * 2022-01-25 2022-05-27 兰州交通大学 高速铁路长大坡道再生制动能量混合储能优化配置方法
CN115366953A (zh) * 2022-09-22 2022-11-22 北京工业大学 一种基于车载储能的地铁列车在线节能优化控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661434A (zh) * 2013-12-30 2014-03-26 北京交通大学 一种列车运行控制方法
CN103879412A (zh) * 2014-03-14 2014-06-25 唐山轨道客车有限责任公司 有轨电车动力系统及控制方法
CN104260759A (zh) * 2014-10-08 2015-01-07 北京交通大学 一种城市轨道交通节能优化方法及系统
CN105313710A (zh) * 2015-04-15 2016-02-10 西南交通大学 一种用于混合动力有轨电车的能量管理方法
CN106143535A (zh) * 2016-08-26 2016-11-23 广西大学 一种基于免疫算法的地铁列车运行参数优化方法
CN106585675A (zh) * 2016-11-29 2017-04-26 中国铁路总公司 列车运行优化操纵方法和装置
CN107818383A (zh) * 2017-10-31 2018-03-20 西南民族大学 一种混合动力列车能量管理策略的优化方法及系统
CN107813718A (zh) * 2017-09-30 2018-03-20 中车青岛四方机车车辆股份有限公司 一种车载燃料电池混合动力系统设计方法和装置
DE102018201746A1 (de) * 2017-02-06 2018-08-09 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeug

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661434A (zh) * 2013-12-30 2014-03-26 北京交通大学 一种列车运行控制方法
CN103879412A (zh) * 2014-03-14 2014-06-25 唐山轨道客车有限责任公司 有轨电车动力系统及控制方法
CN104260759A (zh) * 2014-10-08 2015-01-07 北京交通大学 一种城市轨道交通节能优化方法及系统
CN105313710A (zh) * 2015-04-15 2016-02-10 西南交通大学 一种用于混合动力有轨电车的能量管理方法
CN106143535A (zh) * 2016-08-26 2016-11-23 广西大学 一种基于免疫算法的地铁列车运行参数优化方法
CN106585675A (zh) * 2016-11-29 2017-04-26 中国铁路总公司 列车运行优化操纵方法和装置
DE102018201746A1 (de) * 2017-02-06 2018-08-09 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeug
CN107813718A (zh) * 2017-09-30 2018-03-20 中车青岛四方机车车辆股份有限公司 一种车载燃料电池混合动力系统设计方法和装置
CN107818383A (zh) * 2017-10-31 2018-03-20 西南民族大学 一种混合动力列车能量管理策略的优化方法及系统

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703593A (zh) * 2019-01-07 2019-05-03 中车唐山机车车辆有限公司 一种无接触网有轨电车全区间运行能耗综合优化方法
CN109649417A (zh) * 2019-01-10 2019-04-19 北京交通大学 一种城轨列车牵引能耗一体化仿真优化系统
CN109733443B (zh) * 2019-01-11 2022-06-07 中车唐山机车车辆有限公司 一种混合动力有轨电车制动优化方法及系统
CN109733443A (zh) * 2019-01-11 2019-05-10 中车唐山机车车辆有限公司 一种混合动力有轨电车制动优化方法及系统
CN110348162A (zh) * 2019-07-19 2019-10-18 西南民族大学 一种提升虚拟轨道电车的制动能量回收利用效率的方法
CN110549914B (zh) * 2019-09-05 2022-10-28 西南交通大学 一种燃料电池有轨电车日运行近似最优能量管理方法
CN110549914A (zh) * 2019-09-05 2019-12-10 西南交通大学 一种燃料电池有轨电车日运行近似最优能量管理方法
CN110549868B (zh) * 2019-09-05 2022-10-18 西南交通大学 基于动力系统实时功率的混合动力有轨电车速度调整方法
CN110549868A (zh) * 2019-09-05 2019-12-10 西南交通大学 基于动力系统实时功率的混合动力有轨电车速度调整方法
CN112829607A (zh) * 2021-02-07 2021-05-25 中车青岛四方机车车辆股份有限公司 混合动力系统控制方法、系统、存储介质、设备及轨道车辆
CN113401173A (zh) * 2021-06-28 2021-09-17 通号城市轨道交通技术有限公司 列车运行控制方法、装置、电子设备及存储介质
CN113942551A (zh) * 2021-10-15 2022-01-18 交控科技股份有限公司 基于位置式数字控制的列车控制方法及装置
CN113942551B (zh) * 2021-10-15 2024-04-26 交控科技股份有限公司 基于位置式数字控制的列车控制方法及装置
CN114537150A (zh) * 2022-01-25 2022-05-27 兰州交通大学 高速铁路长大坡道再生制动能量混合储能优化配置方法
CN114537150B (zh) * 2022-01-25 2023-09-12 兰州交通大学 高速铁路长大坡道再生制动能量混合储能优化配置方法
CN115366953A (zh) * 2022-09-22 2022-11-22 北京工业大学 一种基于车载储能的地铁列车在线节能优化控制方法

Also Published As

Publication number Publication date
CN108995665B (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
CN108995665B (zh) 一种燃料电池混合动力列车优化运行控制方法
CN105857320B (zh) 混合动力动车组牵引传动系统能量管理策略
CN104260759B (zh) 一种城市轨道交通节能优化方法及系统
CN110549868B (zh) 基于动力系统实时功率的混合动力有轨电车速度调整方法
Ogasa Application of energy storage technologies for electric railway vehicles—examples with hybrid electric railway vehicles
CN106080223A (zh) 一种锂电池与超级电容器双能源功率分配控制系统及方法
CN102951165B (zh) 轨道列车节省电能运行控制方法
CN101516701A (zh) 铁道车辆的驱动装置
Cipek et al. Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials
CN107818383A (zh) 一种混合动力列车能量管理策略的优化方法及系统
JP3924725B2 (ja) 鉄道車両の駆動装置
CN106427607A (zh) 一种电动车混合式储能系统能量分配方法
CN108790840A (zh) 一种混合动力有轨电车再生制动能量回收优化方法和系统
Ghaviha et al. Speed profile optimization of an electric train with on-board energy storage and continuous tractive effort
CN103950371A (zh) 一种插电式混合动力旅游客车
CN109649371A (zh) 一种带超级电容的混合动力重型载货汽车动力控制系统
CN206202005U (zh) 一种用于纯电动车的动力系统
Noda et al. Methodology to apply dynamic programming to the energy-efficient driving technique of lithium-ion battery trains
Sarma et al. Modelling and cost-benefit analysis of PEM fuel-cell-battery hybrid energy system for locomotive application
Gu et al. A survey on energy-saving operation of railway transportation systems
Calderaro et al. Deterministic vs heuristic algorithms for eco-driving application in metro network
Li et al. Study on Braking Energy Recovery Control Strategy for Four-Axle Battery Electric Heavy-Duty Trucks
Allen et al. Application of regenerative braking with optimized speed profiles for sustainable train operation
CN108790885A (zh) 电车应急牵引供电系统、方法及电车
Liu et al. Traffic management and energy optimization for high-speed trains: An overview of methods for saving energy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant