CN108989148A - A kind of relaying multipath flow allocation method that propagation delay time minimizes - Google Patents
A kind of relaying multipath flow allocation method that propagation delay time minimizes Download PDFInfo
- Publication number
- CN108989148A CN108989148A CN201810783246.9A CN201810783246A CN108989148A CN 108989148 A CN108989148 A CN 108989148A CN 201810783246 A CN201810783246 A CN 201810783246A CN 108989148 A CN108989148 A CN 108989148A
- Authority
- CN
- China
- Prior art keywords
- path
- paths
- traffic
- transmission
- node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000005540 biological transmission Effects 0.000 claims abstract description 57
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000013441 quality evaluation Methods 0.000 claims description 4
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000006855 networking Effects 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 238000006731 degradation reaction Methods 0.000 abstract description 4
- 238000001303 quality assessment method Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0823—Errors, e.g. transmission errors
- H04L43/0829—Packet loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/123—Evaluation of link metrics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/24—Multipath
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种传输时延最小化的中继多路径流量分配方法。传统流量分配方法直接对网络子流进行端到端流量分配,会引起传输时延性能下降。本发明方法在路径非独立情况下,根据汇聚节点拆分路径,进行中继多路径流量分配。该方法首先进行信息收集、路径拆分,然后进行网络路径建模、质量评估,传输流量分配计算路径的排队时延,求解时延最小的流量分配,耦合流量分配结果,使数据分组到达目的节点的平均传输时延最小化。本发明方法从提升直播时延性能角度出发,考虑多路径传输中存在汇聚节点的情况,实时监测链路信息,进行中继多路径流量分配以获得最小传输时延,避免了传统流量分配方法中子流竞争共享链路资源所造成的传输性能下降。
The invention discloses a relay multi-path flow distribution method for minimizing transmission time delay. Traditional traffic distribution methods directly distribute end-to-end traffic on network sub-flows, which will cause transmission delay performance degradation. In the case of non-independent paths, the method of the invention splits the paths according to the convergence node, and performs relay multi-path flow distribution. This method first collects information and splits paths, then performs network path modeling and quality assessment, transmits traffic distribution and calculates the queuing delay of the path, solves the traffic distribution with the smallest delay, couples the traffic distribution results, and makes the data packets reach the destination node The average transmission delay is minimized. From the perspective of improving live broadcast delay performance, the method of the present invention considers the existence of convergence nodes in multi-path transmission, monitors link information in real time, and performs relay multi-path traffic distribution to obtain the minimum transmission delay, avoiding the traditional traffic distribution method. Transmission performance degradation caused by sub-flows competing for shared link resources.
Description
技术领域technical field
本发明属于网络通信技术领域,具体涉及一种传输时延最小化的中继多路径流量分配方法。The invention belongs to the technical field of network communication, and in particular relates to a relay multi-path flow distribution method for minimizing transmission time delay.
背景技术Background technique
随着网络技术的发展和各种新媒体、自媒体的不断涌现,视频流媒体行业取得了长足的发展,行业对直播延迟和交互性的要求越来越高。互动直播技术已经是直播行业的标准配置。通常情况下,延迟低于800毫秒才能够在直播中做一些比较高频的互动,比如谈话节目和直播连线。若提升到400毫秒,则能够有足够的余量以抵抗网络波动,实现互动直播。因此,如何更好地提升网络延迟性能,成为实时视频应用保证用户交互体验质量、跻身行业领先水平的关键因素。With the development of network technology and the continuous emergence of various new media and self-media, the video streaming industry has made great progress, and the industry has higher and higher requirements for live broadcast delay and interactivity. Interactive live broadcast technology is already a standard configuration in the live broadcast industry. Under normal circumstances, the delay is less than 800 milliseconds to be able to do some relatively high-frequency interaction in the live broadcast, such as talk shows and live connections. If it is increased to 400 milliseconds, there will be enough margin to resist network fluctuations and realize interactive live broadcast. Therefore, how to better improve network delay performance has become a key factor for real-time video applications to ensure the quality of user interaction experience and rank among the industry's leading levels.
随着多接入技术的发展,终端设备通常具备多种不同的网络接口,支持不同的接入技术。在带宽充足条件下,采用单一网络接入不利于资源利用,手动切换接入方式将引起服务瞬时的中断。为解决这些问题,关于多路径传输技术(Concurrent MultipathTransmission,CMT)受到广泛关注。With the development of multiple access technologies, terminal devices usually have multiple different network interfaces and support different access technologies. Under the condition of sufficient bandwidth, using a single network access is not conducive to resource utilization, and manual switching of access methods will cause instantaneous interruption of services. To solve these problems, a multipath transmission technology (Concurrent Multipath Transmission, CMT) has received extensive attention.
多路径传输技术应用过程中通常采用分割/聚合的传输模式,当有汇聚节点存在时,源节点到目的节点的端到端路径并不独立,不同路径可能共享某些链路资源,存在竞争关系。现有流量分配方法通常只对端到端流量分配进行建模分析,通过流量分配使不同路径的时延差最小化,减少数据分组的延时抖动,缓解乱序问题;根据子流状况动态调整分配到子流的流量,实现吞吐量的最大化;对传输过程中的用户体验质量建模评估,通过流量分配优化用户体验质量。In the application process of multi-path transmission technology, the transmission mode of segmentation/aggregation is usually adopted. When there is a sink node, the end-to-end path from the source node to the destination node is not independent. Different paths may share some link resources, and there is a competitive relationship. . Existing traffic allocation methods usually only model and analyze end-to-end traffic allocation. Through traffic allocation, the delay difference between different paths can be minimized, the delay jitter of data packets can be reduced, and the problem of out-of-sequence can be alleviated; dynamically adjusted according to the status of sub-flows The traffic allocated to sub-flows maximizes the throughput; the user experience quality modeling and evaluation during the transmission process optimizes the user experience quality through traffic allocation.
然而,在对非独立路径进行流量分配时,已分配流量会对共享链路上其他子流的传输造成影响,按原有方式进行流量分配会引起传输性能下降。因此,如何更好地在路径非独立情况下,对多路径传输进行合理的流量分配以获得最小的平均传输时延具有重要意义。本发明考虑多路径传输存在汇聚节点的情况,根据汇聚节点拆分路径,进行中继多路径流量分配,使数据分组到达目的节点的平均传输时延最小化。However, when traffic is allocated to non-independent paths, the allocated traffic will affect the transmission of other sub-flows on the shared link, and traffic allocation in the original way will cause transmission performance degradation. Therefore, it is of great significance how to better allocate traffic for multi-path transmission to obtain the minimum average transmission delay when the paths are not independent. The present invention considers the situation that there are converging nodes in multi-path transmission, divides paths according to the converging nodes, and performs relay multi-path flow distribution, so as to minimize the average transmission delay of data packets reaching destination nodes.
发明内容Contents of the invention
本发明的目的就是针对现有技术的不足,提供一种传输时延最小化的中继多路径流量分配方法。The purpose of the present invention is to provide a relay multi-path flow distribution method with minimum transmission time delay for the deficiencies of the prior art.
本发明方法在路径非独立情况下,根据汇聚节点拆分路径,进行中继多路径流量分配,使数据分组到达目的节点的平均传输时延最小化,具体步骤如下:In the case of non-independent paths, the method of the present invention splits the paths according to the aggregation node, and performs relay multi-path traffic distribution, so as to minimize the average transmission delay of the data packet reaching the destination node, and the specific steps are as follows:
步骤1.信息收集:Step 1. Information Collection:
监测网络流量,收集并估计链路信息;根据收集到的链路信息,生成从源节点经过汇聚节点到目的节点的路径集合;Monitor network traffic, collect and estimate link information; generate a set of paths from the source node to the destination node through the sink node according to the collected link information;
把网络看作有向图G=(V,E),其中表示节点的集合,E={eij},表示节点间链路的集合;s表示源节点,d表示目的节点,nij表示第i条路径上第j个网络节点,N表示一般网络节点,N={1,2,...},eij表示第i条路径上第j条网络链路;源节点s和目的节点d之间的简单无循环可用路径集合为P,P={P1,P2,...,PK},K为路径数。Think of the network as a directed graph G=(V,E), where Represents the collection of nodes, E={e ij }, represents the collection of links between nodes; s represents the source node, d represents the destination node, n ij represents the jth network node on the i-th path, N represents a general network node, N={1,2,...}, e ij represents the j-th network link on the i-th path; the simple cycle-free path set between the source node s and the destination node d is P, P={P 1 ,P 2 ,...,P K }, K is the number of paths.
步骤2.路径拆分:Step 2. Path splitting:
将源节点s到目的节点d的路径根据汇聚节点c拆分成多个部分,并重新定义各个部分的逻辑路径集合,P={P′:P″:...}={(P1′,P2′,P3′,P4′,...):(P1″,P2″,...):...},其中P′表示拆分后的第一个逻辑路径集合,P″表示拆分后的第二个逻辑路径集合,Pi′={e′i1,e′i2,...},Pi″={e″i1,e″i2,...}表示第i条路径上各节点间的相互独立链路,e′i1表示第一个逻辑路径集合中,第i条路径上的第一条链路,e″i1表示第二个逻辑路径集合中,第i条路径上的第一条链路。Split the path from the source node s to the destination node d into multiple parts according to the sink node c, and redefine the logical path set of each part, P={P′:P″:...}={(P 1 ′ ,P 2 ′,P 3 ′,P 4 ′,...):(P 1 ″,P 2 ″,...):...}, where P′ represents the first logical path after splitting Set, P″ represents the second logical path set after splitting, P i ′={e′ i1 , e′ i2 ,...}, P i ″={e″ i1 , e″ i2 ,... } represents the mutually independent links between nodes on the i-th path, e′ i1 represents the first link on the i-th path in the first logical path set, and e″ i1 represents the second logical path set , the first link on the i-th path.
步骤3.网络路径建模:Step 3. Network path modeling:
选取一个逻辑路径集合,获取并更新路径网络参数:路径Pi上的丢包率 表示链路eij上的丢包率,最大可用带宽ai,传播时延pdi,平均传输速率ri,定义路径Pi上的传输可用带宽wi=ri+ai;定义路径Pi上的趋势带宽为当前时刻t与前q个时刻传输可用带宽变化趋势的预测值:其中参数φ1,φ2,φ3...,φq为自回归系数,εt为相互独立的白噪声序列。Select a set of logical paths, obtain and update path network parameters: packet loss rate on path Pi Indicates the packet loss rate on the link e ij , the maximum available bandwidth a i , the propagation delay pd i , and the average transmission rate r i , define the transmission available bandwidth on the path P i w i = ri +a i ; define the path P trend bandwidth on i For the current time t and the forecast value of the change trend of available bandwidth transmission at the previous q time: Among them, the parameters φ 1 , φ 2 , φ 3 ..., φ q are autoregressive coefficients, and ε t is an independent white noise sequence.
步骤4.质量评估:Step 4. Quality assessment:
根据路径Pi上的传输可用带宽wi,丢包率pi,结合时间序列模型,计算质量评估后的评估带宽:其中和θ为加权系数,分别表示丢包率权重与趋势带宽权重,0<θ<1,满足 According to the available transmission bandwidth w i on the path P i and the packet loss rate p i , combined with the time series model, calculate the evaluation bandwidth after quality evaluation: in and θ are weighting coefficients, respectively representing the weight of the packet loss rate and the weight of the trend bandwidth, 0<θ<1, satisfy
步骤5.传输流量分配:Step 5. Transmit traffic distribution:
所有数据分组到达的发送端的平均速率为λ分组/秒,到达源节点后,发送端将数据分组分配到K条路径上传输;每个数据分组以概率γi分配到第i条路径上,被请求的数据分组以速率γiλ到达路径Pi进行发送。The average rate at which all data packets arrive at the sender is λpackets/second. After reaching the source node, the sender assigns the data packets to K paths for transmission; each data packet is assigned to the i-th path with probability γ i , and is Requested data packets arrive at path P i at rate γ i λ for transmission.
步骤6.计算路径Pi的排队时延,求解时延最小的流量分配:Step 6. Calculate the queuing delay of the path Pi , and solve the traffic distribution with the minimum delay:
根据排队论,给出路径Pi的平均传输时延:源节点在Pi上发送数据分组的平均时间构建传输时延最小的流量分配问题,并求解最优化流量分配向量γ=(γ1,γ2,...,γK);λi表示分配到第i条路径的速率,表示第i条路径上的评估带宽,pdi表示第i条路径上的传播时延;According to the queuing theory, the average transmission delay of the path P i is given: the average time for the source node to send data packets on P i Construct the traffic allocation problem with the minimum transmission delay, and solve the optimal traffic allocation vector γ=(γ 1 ,γ 2 ,...,γ K ); λ i represents the rate assigned to the i-th path, Indicates the evaluation bandwidth on the i-th path, and pd i indicates the propagation delay on the i-th path;
约束条件C1限制了发送端在每条路径上的发送速率不超过最大可用带宽,约束条件C2是对数据分组分配的规范性和非负性要求;Constraint C1 restricts the sending rate of the sender on each path to not exceed the maximum available bandwidth, and constraint C2 is a normative and non-negativity requirement for data packet allocation;
定义拉格朗日函数μ、v、α为拉格朗日乘子,根据KKT条件求解:Define the Lagrange function μ, v, α are Lagrangian multipliers, Solve according to KKT conditions:
其中m为路径集合中被选取进行流量分配的路径数目,各条路径上分配的流量为: Where m is the number of paths selected for traffic allocation in the path set, and the traffic allocated on each path is:
步骤7.若各条路径的传播时延差小于设定时间,视为传播时延相近,进入步骤8;若各条路径的传播时延差大于等于设定时间,视为传播时延相差较大,进入步骤9;所述的设定时间为3~8毫秒;Step 7. If the propagation delay difference of each path is less than the set time, it is considered that the propagation delay is similar, and proceed to step 8; if the propagation delay difference of each path is greater than or equal to the set time, it is considered that the propagation delay difference is relatively small. Large, go to step 9; the set time is 3-8 milliseconds;
步骤8.各条路径子流的传播时延相近,求解流量分配的闭式解:Step 8. The propagation delays of the sub-flows of each path are similar, and the closed-form solution of the flow distribution is solved:
进入步骤10; Go to step 10;
步骤9.各条路径子流的传播时延相差较大,采用二分搜索,确定搜索的上下界,求α近似解得到流量分配结果;具体如下:Step 9. The propagation delays of the sub-flows of each path are quite different, use the binary search to determine the upper and lower bounds of the search, and find the α approximate solution Get the flow distribution result; the details are as follows:
步骤9.1.设置搜索精度σ,确定二分搜索的上下界:Step 9.1. Set the search accuracy σ, and determine the upper and lower bounds of the binary search:
步骤9.2.更新二分搜索的中间值 Step 9.2. Update the median value of the binary search
步骤9.3.计算判决:Step 9.3. Calculate the verdict:
若调整搜索下界,返回步骤9.2;若调整二分搜索的上界,返回步骤9.2;若求得精度为σ下的近似解 like Adjust the search lower bound, Return to step 9.2; if Adjust the upper bound of the binary search, Return to step 9.2; if Get an approximate solution with accuracy σ
步骤9.4.将求得的代入得到流量分配结果:Step 9.4. The obtained substitute Get the traffic distribution result:
步骤10.若存在未进行流量分配的逻辑路径集合,则对下一个逻辑路径集合进行流量分配,进入步骤3;否则,进入步骤11。Step 10. If there is a logical path set without traffic allocation, perform traffic allocation on the next logical path set, and go to step 3; otherwise, go to step 11.
步骤11.耦合流量分配结果:Step 11. Coupling Traffic Distribution Results:
对各部分流量分配结果进行耦合,生成源节点到目的节点的传输路径P={P′:P″:...}和流量分配{γ′+γ″,...}结果,进行数据发送;若发送完成后有新的数据分组到达,进入步骤3,对新一轮数据传输进行传输时延最小的中继多路径流量分配;否则,结束并退出。Coupling the traffic distribution results of each part, generating the transmission path P={P′:P″:...} and traffic distribution {γ′+γ″,...} results from the source node to the destination node, and sending data ; If a new data packet arrives after the transmission is completed, enter step 3, and perform relay multi-path traffic distribution with minimum transmission delay for a new round of data transmission; otherwise, end and exit.
本发明方法从提升直播时延性能角度出发,考虑多路径传输中存在汇聚节点的情况,实时监测链路信息,进行中继多路径流量分配以获得最小传输时延。与传统流量分配方法相比,其优点体现在:From the perspective of improving live broadcast delay performance, the method of the present invention considers the existence of convergence nodes in multi-path transmission, monitors link information in real time, and performs relay multi-path traffic distribution to obtain minimum transmission delay. Compared with traditional traffic distribution methods, its advantages are reflected in:
传统流量分配方法通常直接对网络子流进行端到端流量分配。当网络子流在中间节点发生汇聚时,已分配流量会对共享链路上其他子流的传输造成影响,按原有方式进行流量分配会引起传输性能下降。而本发明方法通过路径拆分、传输时延最小化流量分配以及对流量分配结果的耦合,避免了传统流量分配方法中子流竞争共享链路资源所造成的传输性能下降,使数据分组到达目的节点的平均传输时延最小化。Traditional traffic distribution methods usually perform end-to-end traffic distribution directly on network sub-flows. When network subflows converge at intermediate nodes, the allocated traffic will affect the transmission of other subflows on the shared link, and traffic distribution in the original way will cause transmission performance degradation. However, the method of the present invention avoids the decline in transmission performance caused by sub-flow competition for shared link resources in the traditional flow distribution method through path splitting, transmission delay minimization, flow distribution, and coupling of flow distribution results, so that data packets can reach the destination. The average transmission delay of nodes is minimized.
附图说明Description of drawings
图1为本发明方法的流程图;Fig. 1 is the flowchart of the inventive method;
图2为有一个汇聚节点的多路径传输网络拓扑。Figure 2 shows a multi-path transmission network topology with a sink node.
具体实施方式Detailed ways
以下结合附图并举例对本发明做进一步详细说明,方法流程如图1所示。The present invention will be further described in detail below with reference to the accompanying drawings and examples, and the method flow is shown in FIG. 1 .
本发明以一个汇聚节点为例,对中继多路径流量分配方法进行说明,多路径传输网络拓扑如图2所示。源节点s到目的节点d间存在一个汇聚节点c。各条链路的传输时延均设置为10ms,瓶颈链路e′11,e′21,e′31的可用带宽分别设置为6Mbps,4Mbps和5Mbps,丢包率设为0.1%,其他链路的可用带宽设置为10Mbps,丢包率设为0。The present invention takes a converging node as an example to illustrate the relay multipath traffic distribution method, and the topology of the multipath transmission network is shown in FIG. 2 . There is a sink node c between the source node s and the destination node d. The transmission delay of each link is set to 10ms, the available bandwidth of the bottleneck link e′ 11 , e′ 21 , and e′ 31 is set to 6Mbps, 4Mbps and 5Mbps respectively, and the packet loss rate is set to 0.1%. The available bandwidth is set to 10Mbps, and the packet loss rate is set to 0.
1.信息收集。监测网络流量,收集并估计链路信息;根据收集到的链路信息,生成从源节点经过汇聚节点到目的节点的路径集合。把网络看作有向图G=(V,E),其中表示节点的集合,E={eij},表示节点间链路的集合;s表示源节点,d表示目的节点,nij表示第i条路径上第j个网络节点,N表示一般网络节点,N={1,2,...},eij表示第i条路径上第j条网络链路;源节点s和目的节点d之间的简单无循环可用路径集合为P,P={P1,P2,P3,P4,P5,P6},路径数目为6。1. Information collection. Monitor network traffic, collect and estimate link information; generate a set of paths from the source node through the sink node to the destination node based on the collected link information. Think of the network as a directed graph G=(V,E), where Represents the collection of nodes, E={e ij }, represents the collection of links between nodes; s represents the source node, d represents the destination node, n ij represents the jth network node on the i-th path, N represents a general network node, N={1,2,...}, e ij represents the j-th network link on the i-th path; the simple cycle-free path set between the source node s and the destination node d is P, P={P 1 ,P 2 ,P 3 ,P 4 ,P 5 ,P 6 }, the number of paths is 6.
2.路径拆分。将源节点s到目的节点d的路径根据汇聚节点c拆分成2个部分,并重新定义各个部分的逻辑路径集合,P={P′:P″}={(P1′,P2′,P3′):(P1″,P2″)},其中P′和P″表示拆分后各部分的逻辑路径,Pi′={e′i1,e′i2},Pi″={e″i1,e″i2}表示第i条路径上各节点间相互独立的链路;2. Path splitting. Split the path from the source node s to the destination node d into two parts according to the sink node c, and redefine the logical path set of each part, P={P′:P″}={(P 1 ′,P 2 ′ ,P 3 ′):(P 1 ″,P 2 ″)}, where P′ and P″ represent the logical path of each part after splitting, P i ′={e′ i1 ,e′ i2 }, P i ″ ={e″ i1 ,e″ i2 } represents the independent links among the nodes on the i-th path;
3.网络路径建模。选取逻辑路径集合P′,获取并更新路径Pi上的网络参数:3. Network path modeling. Select the logical path set P′, obtain and update the network parameters on the path P i :
丢包率:pi=0.1%,i=1,2,3;Packet loss rate: p i =0.1%, i=1,2,3;
最大可用带宽:a1=6Mbps,a2=4Mbps,a3=5Mbps;Maximum available bandwidth: a 1 =6Mbps, a 2 =4Mbps, a 3 =5Mbps;
传播时延:pdi=20ms,i=1,2,3;Propagation delay: pd i = 20ms, i = 1, 2, 3;
平均传输速率:ri=0,i=1,2,3;Average transmission rate: r i = 0, i = 1, 2, 3;
传输可用带宽:w1=6Mbps,w2=4Mbps,w3=5Mbps;Available bandwidth for transmission: w 1 =6Mbps, w 2 =4Mbps, w 3 =5Mbps;
趋势带宽: Trend Bandwidth:
4.质量评估。取丢包率权重趋势带宽权重θ=0.9为例,根据路径Pi上的传输可用带宽wi,丢包率pi,计算质量评估后的评估带宽: 4. Quality assessment. Take the packet loss rate weight Take the trend bandwidth weight θ=0.9 as an example, according to the transmission available bandwidth w i and packet loss rate p i on the path P i , calculate the evaluation bandwidth after quality evaluation:
5.传输流量分配。以12.32Mbps的发送速率为例,每个数据分组大小设置为1400字节,数据分组到达的平均速率为1100分组/秒。5. Transmission traffic distribution. Taking the sending rate of 12.32Mbps as an example, the size of each data packet is set to 1400 bytes, and the average rate of arrival of data packets is 1100 packets/second.
6.计算路径Pi的排队时延,求逻辑路径集合P′流量分配的闭式解γ′=(γ′1,γ′2,γ′3)。6. Calculate the queuing delay of the path P i , and find the closed-form solution γ′=(γ′ 1 , γ′ 2 , γ′ 3 ) of the logical path set P′ flow distribution.
7.各条路径的传播时延pdi差别较小,进入步骤8;7. The difference in the propagation delay pd i of each path is small, go to step 8;
8.求得逻辑路径集合P′流量分配的闭式解γ′:8. Obtain the closed-form solution γ' of logical path set P' flow distribution:
γ′1=0.41,γ′2=0.26,γ′3=0.33。 γ' 1 =0.41, γ' 2 =0.26, and γ' 3 =0.33.
9.对逻辑路径集合P″重复上述过程,求解得到逻辑路径集合P″的流量分配结果γ″,γ″1=0.5,γ″2=0.5。9. Repeat the above process for the logical path set P″, and obtain the flow distribution result γ″ of the logical path set P″, where γ″ 1 =0.5, γ″ 2 =0.5.
10.耦合流量分配结果。对各部分流量分配结果进行耦合,生成源节点到目的节点的传输路径集合P={P′:P″:...}和流量分配{γ′+γ″,...}结果,进行数据发送:10. Coupling flow distribution results. Coupling the traffic distribution results of each part, generating the transmission path set P={P′:P″:...} and traffic distribution {γ′+γ″,...} results from the source node to the destination node, and performing data send:
P1={e′11,e′12,e″11,e″12},γ1=0.205;P 1 = {e′ 11 , e′ 12 , e″ 11 , e″ 12 }, γ 1 = 0.205;
P2={e′11,e′12,e″21,e″22},γ2=0.205;P 2 = {e′ 11 , e′ 12 , e″ 21 , e″ 22 }, γ 2 = 0.205;
P3={e′21,e′22,e″11,e″12},γ3=0.13;P 3 = {e′ 21 , e′ 22 , e″ 11 , e″ 12 }, γ 3 = 0.13;
P4={e′21,e′22,e″21,e″22},γ4=0.13;P 4 ={e′ 21 , e′ 22 , e″ 21 , e″ 22 }, γ 4 =0.13;
P5={e′31,e′32,e″11,e″12},γ5=0.165;P 5 = {e′ 31 , e′ 32 , e″ 11 , e″ 12 }, γ 5 = 0.165;
P6={e′31,e′32,e″21,e″22},γ6=0.165;P 6 = {e′ 31 , e′ 32 , e″ 21 , e″ 22 }, γ 6 = 0.165;
11.返回进入步骤3,对新一轮数据传输进行传输时延最小的中继多路径流量分配,直至发送完成。11. Go back to step 3, and perform relay multi-path traffic distribution with minimum transmission delay for a new round of data transmission until the transmission is completed.
12.若各条路径的传播时延pdi差别较大,pd1=20ms,pd2=40ms,pd3=30ms,采用二分搜索计算流量分配。12. If the propagation delay pd i of each path is quite different, pd 1 =20ms, pd 2 =40ms, pd 3 =30ms, use binary search to calculate traffic distribution.
13.确定上下界设置搜索精度σ=1。13. Determine the upper and lower bounds Set search precision σ=1.
14.更新二分搜索的中间值 14. Update the intermediate value of the binary search
14.计算判决,调整搜索下界, 14. Calculation of judgments, Adjust the search lower bound,
16.更新二分搜索的中间值 16. Update the intermediate value of the binary search
17.计算判决,调整搜索下界, 17. Calculation of judgments, Adjust the search lower bound,
18.重复二分搜索过程,直到求得满足的近似解 18. Repeat the binary search process until a satisfying Approximate solution of
19.根据近似解进行流量分配:19. According to the approximate solution For traffic distribution:
γ′1=0.4126,γ′2=0.2545,γ′3=0.3329。 γ′ 1 =0.4126, γ′ 2 =0.2545, and γ′ 3 =0.3329.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810783246.9A CN108989148B (en) | 2018-07-17 | 2018-07-17 | A Relay Multipath Traffic Allocation Method with Minimized Transmission Delay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810783246.9A CN108989148B (en) | 2018-07-17 | 2018-07-17 | A Relay Multipath Traffic Allocation Method with Minimized Transmission Delay |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108989148A true CN108989148A (en) | 2018-12-11 |
CN108989148B CN108989148B (en) | 2020-07-21 |
Family
ID=64549861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810783246.9A Active CN108989148B (en) | 2018-07-17 | 2018-07-17 | A Relay Multipath Traffic Allocation Method with Minimized Transmission Delay |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108989148B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110490322A (en) * | 2019-08-14 | 2019-11-22 | 北京中科寒武纪科技有限公司 | Method for splitting and device, the electronic equipment and storage medium of operation node |
CN110503199A (en) * | 2019-08-14 | 2019-11-26 | 北京中科寒武纪科技有限公司 | Method for splitting and device, the electronic equipment and storage medium of operation node |
CN111628942A (en) * | 2020-05-28 | 2020-09-04 | 燕山大学 | Resource allocation method in time-sensitive network |
CN113852571A (en) * | 2021-08-20 | 2021-12-28 | 阿里巴巴(中国)有限公司 | Method and device for distributing flow |
US12301467B2 (en) | 2022-10-18 | 2025-05-13 | Cisco Technology, Inc. | Differential path routing of multiple sub-flows split from larger bandwidth traffic flow |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102594703A (en) * | 2012-03-19 | 2012-07-18 | 广州华多网络科技有限公司 | Relay-node-based Internet communication system and communication path selection method |
CN104540182A (en) * | 2014-12-16 | 2015-04-22 | 浙江工业大学 | Time delay minimization route selecting method for wireless sensor network with energy capture characteristic |
US20150281074A1 (en) * | 2014-03-28 | 2015-10-01 | Fujitsu Limited | Data transfer control device and data transfer control method |
CN106899503A (en) * | 2015-12-18 | 2017-06-27 | 华为技术有限公司 | The route selection method and network manager of a kind of data center network |
-
2018
- 2018-07-17 CN CN201810783246.9A patent/CN108989148B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102594703A (en) * | 2012-03-19 | 2012-07-18 | 广州华多网络科技有限公司 | Relay-node-based Internet communication system and communication path selection method |
US20150281074A1 (en) * | 2014-03-28 | 2015-10-01 | Fujitsu Limited | Data transfer control device and data transfer control method |
CN104540182A (en) * | 2014-12-16 | 2015-04-22 | 浙江工业大学 | Time delay minimization route selecting method for wireless sensor network with energy capture characteristic |
CN106899503A (en) * | 2015-12-18 | 2017-06-27 | 华为技术有限公司 | The route selection method and network manager of a kind of data center network |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110490322A (en) * | 2019-08-14 | 2019-11-22 | 北京中科寒武纪科技有限公司 | Method for splitting and device, the electronic equipment and storage medium of operation node |
CN110503199A (en) * | 2019-08-14 | 2019-11-26 | 北京中科寒武纪科技有限公司 | Method for splitting and device, the electronic equipment and storage medium of operation node |
CN111628942A (en) * | 2020-05-28 | 2020-09-04 | 燕山大学 | Resource allocation method in time-sensitive network |
CN111628942B (en) * | 2020-05-28 | 2022-03-25 | 燕山大学 | Resource allocation method in time-sensitive network |
CN113852571A (en) * | 2021-08-20 | 2021-12-28 | 阿里巴巴(中国)有限公司 | Method and device for distributing flow |
CN113852571B (en) * | 2021-08-20 | 2023-11-28 | 阿里巴巴(中国)有限公司 | Method and device for distributing flow |
US12301467B2 (en) | 2022-10-18 | 2025-05-13 | Cisco Technology, Inc. | Differential path routing of multiple sub-flows split from larger bandwidth traffic flow |
Also Published As
Publication number | Publication date |
---|---|
CN108989148B (en) | 2020-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108989148B (en) | A Relay Multipath Traffic Allocation Method with Minimized Transmission Delay | |
CN112313910B (en) | Multi-path selection system and method for data center centric metropolitan area networks | |
CN106341346B (en) | A Routing Algorithm to Guarantee QoS in Data Center Network Based on SDN | |
CN104661260B (en) | A kind of Wireless Mesh intelligent grid method for routing of QoS perception and load balancing | |
Shetiya et al. | Algorithms for routing and centralized scheduling to provide QoS in IEEE 802.16 mesh networks | |
CN115460130A (en) | A Multipath Joint Scheduling Method in Time Sensitive Network | |
CN105897575A (en) | Path computing method based on multi-constrained path computing strategy under SDN | |
CN105208624B (en) | The multi-access network based on business selects system and method in a kind of heterogeneous wireless network | |
Wang et al. | Time-sensitive scheduling mechanism based on end-to-end collaborative latency tolerance for low-earth-orbit satellite networks | |
CN104994033A (en) | Method for guaranteeing QoS (quality of service) of SDN (software defined network) by means of dynamic resource management | |
CN107911856B (en) | A split multiple access method based on matching game in ultra-dense heterogeneous networks | |
CN108183823A (en) | More resource multiplexes and the method for configuration in a kind of data center network | |
Li et al. | Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing | |
CN101729430A (en) | Dynamic resource allocation system and allocation method used for supporting end-to-end time delay warranty | |
CN106953742A (en) | A kind of wireless isomer network bandwidth safeguard method based on SDN | |
CN105871745A (en) | Mixed-service-based dispatching method in SDN network | |
CN109617819B (en) | Software-defined backhaul network routing method based on traffic classification | |
Cheng et al. | Application-aware routing scheme for sdn-based cloud datacenters | |
Zhang et al. | Ta2ls: A traffic-aware multipath scheduler for cost-effective qoe in dynamic hetnets | |
WO2025025786A1 (en) | Cross-domain deterministic network, scheduling method and apparatus, and cross-domain control orchestrator | |
Kalan et al. | Design of a layer-based video streaming system over software-defined networks | |
JP7625777B2 (en) | Method for calculating TSN capability of a wireless bridge, communication system and wireless bridge - Patents.com | |
Wang et al. | A QoE-based jointly subcarrier and power allocation for multiuser multiservice networks | |
Mazhar et al. | Quality of service (QoS) performance analysis in a traffic engineering model for next-generation wireless sensor networks. Symmetry. 2023; 15: 513 | |
CN103685064B (en) | Heterogeneous cascade network QoS closed-loop mutual coupling system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |