CN108985649A - 基于风电设备异常分析数据的时序模糊层次分析评估方法 - Google Patents

基于风电设备异常分析数据的时序模糊层次分析评估方法 Download PDF

Info

Publication number
CN108985649A
CN108985649A CN201810863862.5A CN201810863862A CN108985649A CN 108985649 A CN108985649 A CN 108985649A CN 201810863862 A CN201810863862 A CN 201810863862A CN 108985649 A CN108985649 A CN 108985649A
Authority
CN
China
Prior art keywords
equipment
wind turbines
wind power
matrix
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810863862.5A
Other languages
English (en)
Inventor
袁凌
褚景春
李博强
王飞
潘磊
于天笑
索春明
赵冰
何昆
谢海峡
郭俊涛
王佳
高静方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guodian United Power Technology Co Ltd
Original Assignee
Guodian United Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guodian United Power Technology Co Ltd filed Critical Guodian United Power Technology Co Ltd
Priority to CN201810863862.5A priority Critical patent/CN108985649A/zh
Publication of CN108985649A publication Critical patent/CN108985649A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本发明公开了一种基于风电设备异常分析数据的时序模糊层次分析评估方法,包括:采集风机各设备的异常分析结果数据,对其归一化处理;结合风机机理关系建立层次分析树;采用1‑9级标度规则根据层次分析法对第一层设备进行统计,构建判断矩阵B,同时对各设备第二层指标元素进行统计,构建判断矩阵B1、B2……Bx;根据各判断矩阵计算最大特征根λBmax、特征向量δB和权重值wB;设定风机设备健康等级;组建各设备异常分析指标的隶属度向量β;进行第一层模糊层级分析和综合模糊层次评估,得到风机的健康评价结果。本发明基于风电设备异常分析结果通过时间序列的模糊层次分析评估,得到风电设备的整体健康程度排序,指导维护人员对风电设备进行高效维护。

Description

基于风电设备异常分析数据的时序模糊层次分析评估方法
技术领域
本发明涉及风电技术领域,特别是涉及一种基于风电设备异常分析数据的时序模糊层次分析评估方法。
背景技术
随着AlphaGo和AlphaGo zero战胜围棋界顶级高手,智能交通、智能餐饮、智能家居等一系列的大数据、人工智能科技已逐步进入人们的生活当中,为人们生活提供了轻便的智能服务。
随着国家下发的人工智能规划、中国制造2025、互联网+行动计划等一系列重大政策,能源行业的大数据也悄然将至。能源大数据理念是将电力、石油、燃气等能源领域数据进行综合采集、处理、分析与应用的相关技术与思想。能源大数据不仅是大数据技术在能源领域的深入应用,也是能源生产、消费及相关技术革命与大数据理念的深度融合,将加速推进能源产业发展及商业模式创新。
风力发电作为能源行业是十三五规划的重点规划发展绿色能源之一,融合能源大数据理念已是必然趋势。风力发电设备维护从最初的依靠人力定期维护,到在线监视以故障为依据的维护,再到如今设备预测性维护已经历了巨大的变革。然而,如今的预测性维护仍处于初级阶段,仅能对设备有大概的预判性,如:大数据异常检测技术等,却不能细化设备需要维护的程度,导致维护工作复杂程度较高。
由此可见,上述现有的针对风电设备预测性维护方法显然仍存在有不便与缺陷,而亟待加以进一步改进。如何能创设一种新的基于风电设备异常分析数据的时序模糊层次分析评估方法,使其能排列出风力发电设备异常设备的需要维护程度,指导维护人员有选择的对风力发电设备部件进行高效维护,实属当前重要研发课题之一。
发明内容
本发明要解决的技术问题是提供一种基于风电设备异常分析数据的时序模糊层次分析评估方法,使其能排列出风力发电设备异常设备的需要维护程度,指导维护人员有选择的对风力发电设备设备进行高效维护,从而克服现有的针对风电设备预测性维护方法的不足。
为解决上述技术问题,本发明提供一种基于风电设备异常分析数据的时序模糊层次分析评估方法,所述方法包括如下步骤:
S1、采集风电机组各设备的异常分析结果数据,并将所述异常分析结果数据进行归一化处理;
S2、结合风电机组的机理关系,建立层次分析树,所述层次分析树的第一层为风电机组的各设备部件,标记为B1、B2……Bx,第二层为影响各设备异常的各指标元素,标记为C11、C12、……C101、C102
S3、采用1-9级标度规则,根据层次分析法对层次分析树中的第一层设备进行统计,构建判断矩阵B,同时对层次分析树中各设备的第二层指标元素进行统计,构建判断矩阵B1、B2……Bx
S4、根据判断矩阵B计算该矩阵B的最大特征根λBmax、特征向量δB和权重值wB,再根据判断矩阵B1、B2……Bx分别计算最大特征根λB1max、λB2max...λBxmax以及相应的特征向量δB1、δB2...δBx和权重值wB1、wB2...wBx
S5、设定风电机组设备健康等级,分别为非常健康、健康、亚健康、不健康、非常不健康五个等级;
S6、根据风电机组各设备第二层指标元素对应的分析元素,在设备健康等级上评价隶属度,组建评价隶属度向量,得到各设备第二层指标元素的隶属度向量β;
S7、根据步骤S4得到的各设备权重值wBx和步骤S6得到的各设备第二层指标元素的隶属度向量β,利用公式计算出风电机组各设备影响风电机组模糊评估向量γBx,再组成风电机组整体评估矩阵γB=[γB1,γB2,γB3,γB4,γB5,...,γBx];
S8、利用综合模糊层次评估法对风电机组整体健康进行评估,根据公式计算出风电机组各设备处在的健康等级ε,得到所述风电机组的健康评价结果。
作为本发明的一种改进,所述步骤S1中所述异常分析结果数据归一化处理的方法为:将所述异常分析结果数据在时间尺度、数据尺度和数据分类命名方面进行归一化处理。
进一步改进,所述步骤S4中矩阵的最大特征根λmax的计算公式为:
其中,i和j为矩阵中的因素,i代表行,j代表列,aij为因素i与因素j的重要性之比,n为因素个数,Wi和Wj为判断矩阵各行各列因素的标准化。
进一步改进,所述步骤S4中还包括对层次分析法的一致性检验,根据公式:
计算随机一致性比率CR,其中CI为一致性指标,RI为平均随机一致性指标,m为判断矩阵的阶数,若满足CR<0.1,表明该判断矩阵符合一致性检验,若不满足CR<0.1,表明该判断矩阵不符合一致性检验,需调整该判断矩阵。
采用这样的设计后,本发明至少具有以下优点:
本发明基于风力发电设备的异常分析结果和其他分析结果,通过时间序列的模糊层次分析评估,得到风电机组各个设备所代表的因素权重,进而得到风力发电设备的整体健康程度排序,根据健康程度有效推断需要维护的程度,有利于指导维护人员有选择的对风力发电设备进行高效维护;并通过各设备的异常程度,对风机指定设备进行维护,有效降低维护时间,有效协助增强预测型维护,节省维护成本,提高经济效益。
附图说明
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。
图1是本发明基于风电设备异常分析数据的时序模糊层次分析评估方法的流程示意图。
图2是本发明分析评估方法中建立的层次分析树的实例示意图。
具体实施方式
目前风电机组设备已逐步进入数字化精细管理,通常采用风电机组设备的运行数据等进行异常分析和其他异常分析,但其输出的结果采用不同的方式记录,导致原始数据不一致,时间序列间隔不一致。因此,首先需要将各类分析结果数据源归一化,然后以该归一化的数据作为数据分析基础,采用基于时间序列的模糊层次分析法与机组评估分析结合的方式评估风电机组设备整体健康情况。
该模糊层次分析法是层次分析法和模糊综合评价法相结合的方法,采用此方法能够更合理的评估事务的权重。其中,层次分析法(Analytic Hierarchy Process)是一种定性和定量相结合的、系统化、层次化的分析方法,该方法是由系统工程理论发展而来的;它把一个多准则决策问题分解成若干个目标,再进而分解成对应层次的多指标元素,按每个元素的属性自上而下进行分层排序,同一层中的元素隶属于上层元素或可影响上层元素,同时又可支配下层元素或受下层元素影响;然后通过判断和计算,确定各元素、各层次的相对权重并对其进行排序;最后将得到的每个层次相对总目标的总排序作为决策依据。
该模糊综合评价法是运用模糊数学的基本原理和方法,将某些边界模糊,不易定的问题清晰化、定量化而进行综合评价的一种方法。它是对受多个因素影响的目标问题,按一定的标准进行评价并给出该问题的评价结论。
参照附图1所示,本实施例基于风电设备异常分析数据的时序模糊层次分析评估方法的具体实现步骤如下:
首先,采集风电机组各设备的异常分析结果数据,并将该异常分析结果数据在时间尺度、数据尺度和数据分类命名等方面进行归一化处理。
例如:异常分析结果可能包括:C11齿轮箱油压异常、C12齿轮箱油温异常,...;C31发电机风扇异常、C32发电机轴承温度异常,...;C51变频器柜内温度异常、C52变频器IGBT异常,...;C71风速仪1异常、C72风向标1异常,...;C91主轴前轴承异常、C92主轴后轴承异常,...;其他分析结果还可能包括:C21齿轮箱其他异常分析结果1、C22齿轮箱其他异常分析结果2,...;C41发电机其他异常分析结果1、C42发电机其他异常分析结果2,...;C61变频器其他异常分析结果1、C62变频器其他异常分析结果2,...;C81测风系统其他异常分析结果1、C82齿轮箱其他异常分析结果2,...;C101主轴承其他异常分析结果1、C102主轴承其他异常分析结果2,...。
第二步,结合风电机组的机理关系,建立层次分析树作为模糊层次分析法的输入。如附图2所示,该层次分析树的第一层为风电机组的各设备部件,标记为B1、B2……Bx,第二层为影响各设备异常的各指标元素,标记为C11、C12、……C101、C102
第三步,根据层次分析法将B1-Bx采用1-9级标度规则进行统计,构建判断矩阵,如下列矩阵B。
注:其中1-9级标度及含义如下表1所示:
表1矩阵中1-9级标度及含义表
一般对于n个因素来说,根据上表所属对元素两两比较后,得到相应的判断矩阵A=(aij)n*n,会有以下性质:(1)aij>0;(2)aij=1/aji;(3)aij=1(i=j)。
第四步,根据判断矩阵计算各层的权重。
第一层:B矩阵为:
(1)计算B矩阵的最大特征根λmax
其中,Wi的推导过程为:
对判断B矩阵的每一行元素求积,标记为Mi,其计算公式为:
再计算Mi的n次方根:
然后再对标准化,得Wi
同理,Wj的计算公式为:
(2)再计算出B矩阵的特征向量δB=[δ1,δ2,...δn],以及权重值wB。其中,wB1=δ1/(δ1+δ2+...+δn),wB2=δ2/(δ1+δ2+...+δn),...wBn=δn/(δ1+δ2+...+δn),且wB1+wB2+...+wBn=1,则可以得到权重值WB1-WBn
(3)再进行层次分析法的一致性检验,根据下式计算随机一致性比率CR,并满足CR<0.1,验证判断矩阵合适的一致性,若不满足,需调整判断矩阵;其中CR根据下式计算,
其中,CI为一致性指标,RI为平均随机一致性指标,m为判断矩阵的阶数,如下表2。
表2判断矩阵的阶数表
m 1 2 3 4 5 6 7 8 9 10 11
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.14 1.45 1.49 1.51
第二层:计算B1-Bx的指标权重
如:判断矩阵B1包含的因素评判结果表如下:
(1)计算B1矩阵最大特征根λB1max
(2)计算B1矩阵的特征向量δB1和权重值wB1
(3)进行一致性检验。
还有,判断矩阵B2包含的因素评判结果表如下:
相似的,在满足合适的一致性的前提下,计算出λB1max、λB2max、λB3max、λB4max、λB5max...λBxmax以及相应的特征向量δB1、δB2、δB2、δB3、δB4...δBx和权重值wB1、wB2、wB3、wB4、wB5...wBx
第五步,设定风电机组设备健康等级,分别为非常健康、健康、亚健康、不健康、非常不健康五个等级。
第六步,根据风电机组各设备异常分析点对应的分析元素,在设备健康等级上评价隶属度,组建评价隶属度向量。
例如:C12齿轮箱油温异常这个点的分析元素包括:齿轮箱油温、齿轮箱入口油温、发电机转速、发电机转矩给定、发电机转矩值、齿轮箱前轴承温度、齿轮箱后轴承温度。评价方法如下表:
按照健康等级评价出C12这个点的隶属度向量β12=(3/7,1/7,0,1/7,2/7)。
相同的,分别得出C11,...,C21,C22,...,...,C101,C102,...的隶属向量,分别表示为:β11,...,β21,β22,...,...,β101,β102,...。
第七步,第一层模糊层级分析。
根据风电设备不同设备对风电机组设备的健康影响,计算风电设备各设备影响风电机组模糊评估向量γB1,γB2,γB3,γB4,γB5,...,γBx。计算公式为:
β=[β11,...,β21,β22,…]。
根据得到的风电设备各设备影响风电机组模糊评估向量γB1,γB2,γB3,γB4,γB5,...,γBx,组成风电机组整体评估矩阵γB=[γB1,γB2,γB3,γB4,γB5,...,γBx]。
第八步,综合模糊层次评估。
对风电机组整体健康进行评估,计算出风电机组各设备处在的健康等级ε,得到各等级ε的评价情况。
例如,计算出的风电机组各设备处在的健康等级ε结果为ε=[0.1152,0.6781,0.1053,0.0532,0.0482]T,即评价结果为:
最终结果为该风电机组的评价结果,其中健康占比为67.81%,整体处于健康状态。
本发明基于风力发电设备的异常分析结果和其他分析结果,通过时间序列的模糊层次分析评估,可以得到风力发电设备整体健康程度,根据健康程度有效推断需要维护的程度,能够指导维护人员有选择的对风力发电设备维护;并通过各设备的异常程度,对风机指定设备进行维护,有效降低维护时间,有效协助增强预测型维护,节省维护成本,提高经济效益。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。

Claims (4)

1.一种基于风电设备异常分析数据的时序模糊层次分析评估方法,其特征在于,所述方法包括如下步骤:
S1、采集风电机组各设备的异常分析结果数据,并将所述异常分析结果数据进行归一化处理;
S2、结合风电机组的机理关系,建立层次分析树,所述层次分析树的第一层为风电机组的各设备部件,标记为B1、B2……Bx,第二层为影响各设备异常的各指标元素,标记为C11、C12、……C101、C102
S3、采用1-9级标度规则,根据层次分析法对层次分析树中的第一层设备进行统计,构建判断矩阵B,同时对层次分析树中各设备的第二层指标元素进行统计,构建判断矩阵B1、B2……Bx
S4、根据判断矩阵B计算该矩阵B的最大特征根λBmax、特征向量δB和权重值wB,再根据判断矩阵B1、B2……Bx分别计算最大特征根λB1max、λB2max...λBxmax以及相应的特征向量δB1、δB2...δBx和权重值wB1、wB2...wBx
S5、设定风电机组设备健康等级,分别为非常健康、健康、亚健康、不健康、非常不健康五个等级;
S6、根据风电机组各设备第二层指标元素对应的分析元素,在设备健康等级上评价隶属度,组建评价隶属度向量,得到各设备第二层指标元素的隶属度向量β;
S7、根据步骤S4得到的各设备权重值wBx和步骤S6得到的各设备第二层指标元素的隶属度向量β,利用公式计算出风电机组各设备影响风电机组模糊评估向量γBx,再组成风电机组整体评估矩阵γB=[γB1,γB2,γB3,γB4,γB5,...,γBx];
S8、利用综合模糊层次评估法对风电机组整体健康进行评估,根据公式计算出风电机组各设备处在的健康等级ε,得到所述风电机组的健康评价结果。
2.根据权利要求1所述的基于风电设备异常分析数据的时序模糊层次分析评估方法,其特征在于,所述步骤S1中所述异常分析结果数据归一化处理的方法为:将所述异常分析结果数据在时间尺度、数据尺度和数据分类命名方面进行归一化处理。
3.根据权利要求1所述的基于风电设备异常分析数据的时序模糊层次分析评估方法,其特征在于,所述步骤S4中矩阵的最大特征根λmax的计算公式为:
其中,i和j为矩阵中的因素,i代表行,j代表列,aij为因素i与因素j的重要性之比,n为因素个数,Wi和Wj为判断矩阵各行各列因素的标准化。
4.根据权利要求1所述的基于风电设备异常分析数据的时序模糊层次分析评估方法,其特征在于,所述步骤S4中还包括对层次分析法的一致性检验,根据公式:
计算随机一致性比率CR,其中CI为一致性指标,RI为平均随机一致性指标,m为判断矩阵的阶数,若满足CR<0.1,表明该判断矩阵符合一致性检验,若不满足CR<0.1,表明该判断矩阵不符合一致性检验,需调整该判断矩阵。
CN201810863862.5A 2018-08-01 2018-08-01 基于风电设备异常分析数据的时序模糊层次分析评估方法 Pending CN108985649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810863862.5A CN108985649A (zh) 2018-08-01 2018-08-01 基于风电设备异常分析数据的时序模糊层次分析评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810863862.5A CN108985649A (zh) 2018-08-01 2018-08-01 基于风电设备异常分析数据的时序模糊层次分析评估方法

Publications (1)

Publication Number Publication Date
CN108985649A true CN108985649A (zh) 2018-12-11

Family

ID=64551034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810863862.5A Pending CN108985649A (zh) 2018-08-01 2018-08-01 基于风电设备异常分析数据的时序模糊层次分析评估方法

Country Status (1)

Country Link
CN (1) CN108985649A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111178725A (zh) * 2019-12-24 2020-05-19 贵州电网有限责任公司 一种基于层次分析法的保护设备状态预警方法
CN111507490A (zh) * 2020-05-09 2020-08-07 武汉数字化设计与制造创新中心有限公司 基于多源数据驱动的数控机床主轴预测性维护方法及系统
CN111563693A (zh) * 2020-05-20 2020-08-21 深圳达实智能股份有限公司 轨道交通设备健康值的评分方法、设备和存储介质
CN112257608A (zh) * 2020-10-23 2021-01-22 成都希盟泰克科技发展有限公司 一种牦牛养殖健康状态监测方法
CN112381110A (zh) * 2020-10-10 2021-02-19 神华北电胜利能源有限公司 基于模糊规则的煤矿生产多维度数据异常概率预测方法
CN112433519A (zh) * 2020-11-09 2021-03-02 温州大学大数据与信息技术研究院 一种无人驾驶检测系统及车辆行驶检测方法
CN112541673A (zh) * 2020-12-08 2021-03-23 国家电网有限公司 抽水蓄能电站过渡过程性能评价方法及装置
CN112711842A (zh) * 2020-12-24 2021-04-27 华能国际电力股份有限公司 基于设备监理的电站设备质量数据处理方法及装置
CN114065220A (zh) * 2021-11-25 2022-02-18 国网四川省电力公司成都供电公司 一种基于分布式系统的双重层次分析态势评估方法
WO2022133889A1 (zh) * 2020-12-24 2022-06-30 华能国际电力股份有限公司 基于设备监理的电站设备质量数据处理方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
孙忠强 等: "模糊层次分析法在国际工程项目投标中的应用", 《水利经济》 *
张进 等: "风电机组传动系统可监测性设计分配方法研究", 《现代制造工程》 *
王洪兵 等: "基于层次分析法进行边坡治理方案优化研究", 《中外公路》 *
赵洪山 等: "基于最优权重和隶属云的风电机组状态模糊综合评估", 《中国电力》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111178725A (zh) * 2019-12-24 2020-05-19 贵州电网有限责任公司 一种基于层次分析法的保护设备状态预警方法
CN111507490A (zh) * 2020-05-09 2020-08-07 武汉数字化设计与制造创新中心有限公司 基于多源数据驱动的数控机床主轴预测性维护方法及系统
CN111507490B (zh) * 2020-05-09 2024-02-20 武汉数字化设计与制造创新中心有限公司 基于多源数据驱动的数控机床主轴预测性维护方法及系统
CN111563693B (zh) * 2020-05-20 2023-10-31 深圳达实智能股份有限公司 轨道交通设备健康值的评分方法、设备和存储介质
CN111563693A (zh) * 2020-05-20 2020-08-21 深圳达实智能股份有限公司 轨道交通设备健康值的评分方法、设备和存储介质
CN112381110A (zh) * 2020-10-10 2021-02-19 神华北电胜利能源有限公司 基于模糊规则的煤矿生产多维度数据异常概率预测方法
CN112257608A (zh) * 2020-10-23 2021-01-22 成都希盟泰克科技发展有限公司 一种牦牛养殖健康状态监测方法
CN112433519A (zh) * 2020-11-09 2021-03-02 温州大学大数据与信息技术研究院 一种无人驾驶检测系统及车辆行驶检测方法
CN112541673A (zh) * 2020-12-08 2021-03-23 国家电网有限公司 抽水蓄能电站过渡过程性能评价方法及装置
WO2022133889A1 (zh) * 2020-12-24 2022-06-30 华能国际电力股份有限公司 基于设备监理的电站设备质量数据处理方法及装置
CN112711842B (zh) * 2020-12-24 2023-08-29 华能国际电力股份有限公司 基于设备监理的电站设备质量数据处理方法及装置
CN112711842A (zh) * 2020-12-24 2021-04-27 华能国际电力股份有限公司 基于设备监理的电站设备质量数据处理方法及装置
CN114065220B (zh) * 2021-11-25 2022-11-22 国网四川省电力公司成都供电公司 一种基于分布式系统的双重层次分析态势评估方法
CN114065220A (zh) * 2021-11-25 2022-02-18 国网四川省电力公司成都供电公司 一种基于分布式系统的双重层次分析态势评估方法

Similar Documents

Publication Publication Date Title
CN108985649A (zh) 基于风电设备异常分析数据的时序模糊层次分析评估方法
CN106384210B (zh) 一种基于检修风险收益的输变电设备检修优先级排序方法
CN105512448B (zh) 一种配电网健康指数的评估方法
CN109740863A (zh) 基于大电源接入系统的综合评价方法
CN102184465A (zh) 一种变电站能效评估方法
CN106203867A (zh) 基于配电网评价指标体系和聚类分析的电网区域划分方法
CN103761690A (zh) 基于电网系统中电压无功控制系统的评估方法
CN108428045A (zh) 一种配电网运行健康状态评估方法
CN109118067A (zh) 一种可再生能源发展潜力评估方法
CN106447205A (zh) 一种基于层次分析法的配电自动化终端状态评价方法
CN104952000A (zh) 基于马尔科夫链的风电机组运行状态模糊综合评价方法
CN104331773A (zh) 一种电网规划方案综合评估方法
CN109784755A (zh) 一种基于层次分析法的电网智能化水平评估方法
Chengjiang et al. A quantitative judgement method for safety admittance of facilities in chemical industrial parks based on G1-variation coefficient method
CN107909277A (zh) 一种基于模糊层次分析法的变电站环保水平评估方法
CN107437135A (zh) 一种新型储能选型方法
CN109685296A (zh) 计及历史状态的用电信息采集系统模糊综合评价方法
CN107895068A (zh) 基于变权重和组合隶属度函数的gis气体绝缘状态评估方法
CN110705887A (zh) 一种基于神经网络模型的低压台区运行状态综合评价方法
CN105574632A (zh) 一种交直流混合城市配电网综合效益评估方法
Zheng et al. Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model
Niu et al. Operation performance evaluation of elevators based on condition monitoring and combination weighting method
CN110096723A (zh) 基于运维检测大数据的高压开关柜绝缘状态分析方法
CN104462787A (zh) 基于rst/iahp的航空维修人因可靠性评估方法
CN108288122A (zh) 一种多区域互联系统的评估方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181211

RJ01 Rejection of invention patent application after publication