CN108968702B - Non-stick coating, preparation method thereof, cooker and cooking equipment - Google Patents

Non-stick coating, preparation method thereof, cooker and cooking equipment Download PDF

Info

Publication number
CN108968702B
CN108968702B CN201710405531.2A CN201710405531A CN108968702B CN 108968702 B CN108968702 B CN 108968702B CN 201710405531 A CN201710405531 A CN 201710405531A CN 108968702 B CN108968702 B CN 108968702B
Authority
CN
China
Prior art keywords
stick coating
fluorine
containing resin
powder
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710405531.2A
Other languages
Chinese (zh)
Other versions
CN108968702A (en
Inventor
李兴航
曹达华
李康
李洪伟
杨玲
屈雪平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co Ltd
Original Assignee
Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co Ltd filed Critical Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co Ltd
Priority to CN201710405531.2A priority Critical patent/CN108968702B/en
Priority to KR1020180046009A priority patent/KR102090639B1/en
Priority to JP2018083976A priority patent/JP6641411B2/en
Publication of CN108968702A publication Critical patent/CN108968702A/en
Application granted granted Critical
Publication of CN108968702B publication Critical patent/CN108968702B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/025Vessels with non-stick features, e.g. coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies

Abstract

The invention relates to the technical field of electric heating appliances, and discloses a non-stick coating, a preparation method thereof, a cooker and cooking equipment. The method comprises the following steps: (1) pretreating a substrate; (2) Carrying out optional preheating treatment on the surface of the substrate obtained in the step (1); (3) Ceramic powder and fluorine-containing resin powder are used as raw materials, and a non-stick coating is formed on the surface of a substrate through plasma spraying treatment; wherein, in the step of plasma spraying treatment, a flame flow formed by a plasma spray gun is adopted, ceramic powder is fed in the formed flame flow at a position which is far from a spray gun outlet D1, and fluorine-containing resin powder is fed in at a position which is far from a spray gun outlet D2, wherein D2 is larger than D1. The non-stick coating has the advantages of high surface hardness, high coating binding force, good scratch resistance, good corrosion resistance, good wettability, long service life and the like.

Description

Non-stick coating, preparation method thereof, cooker and cooking equipment
Technical Field
The invention relates to the technical field of electric heating appliances, in particular to a non-stick coating, a preparation method thereof, a cooker and cooking equipment.
Background
The conventional forming mode of the existing non-stick coating is mainly to adopt an air pressure spraying and electrostatic spraying mode and then sintering and solidifying at high temperature, the service life of the coating is generally only half a year to one year, the hardness of the coating is low (the Vickers hardness of the PTFE non-stick coating is 100-200HV, the Vickers hardness of the ceramic non-stick coating is 200-350 HV), the adhesive force of the coating is small (the bonding force of the PTFE non-stick coating is 2-10MPa, the bonding force of the ceramic non-stick coating is 2-5 MPa), the thickness of the coating is small (the thickness of the PTFE non-stick coating is 20-50 mu m, the thickness of the ceramic non-stick coating is 20-40 mu m), the acid-alkali resistance and the salt resistance are also generally, the coating can not be scraped, worn and corroded in the long-term use process, the coating can not fall off and fail, and the non-stick coating is not provided after the surface coating fails, so that the service life and application of the coating are limited to a great extent.
The existing cooking appliances, including frying pans, electric cookers, pressure cooker liners and the like, have widely used non-stick coatings, so that the coatings which are durable and non-stick and have excellent performance become key problems in the cooker industry.
Disclosure of Invention
The invention aims to overcome the problems in the prior art and provide a non-stick coating, a preparation method thereof, a pot and cooking equipment.
The inventors of the present invention conducted a great deal of studies on the raw materials and the forming method of the non-stick coating layer in order to improve the performance of the non-stick coating layer, found that there are various advantages to each of the two materials, namely, the ceramic powder and the fluorine-containing resin powder, if the two materials can be combined together to prepare the non-stick coating layer, it would be expected to improve the comprehensive effect of the non-stick coating layer, based on this, the inventors conducted a great deal of studies again, found that the fluorine-containing resin material has a low melting point and is easily atomized under heating, and when the fluorine-containing resin material is atomized, the molten droplets of the ceramic particles pass through the atomized matter of the fluorine-containing resin material and strike the surface of the substrate, the coated particles of the ceramic particles coated with the fluorine-containing resin material can be formed. The particle-packed layer (non-stick coating layer of the present invention) formed by such coated particles has good hardness due to the inclusion of ceramic particles in the coated particles, and also has good functional properties such as hydrophobic non-stick property (large wetting angle of the coating surface) due to the coating of the surface of the coated particles with the fluorine-containing resin material; meanwhile, the non-stick coating is formed by adopting a special mode of plasma spraying, so that the bonding strength of the non-stick coating is improved greatly; in addition, the scratch resistance, corrosion resistance, coating compactness (low porosity) and service life of the non-stick coating can be simultaneously improved by combining specific equipment and specific technology.
Accordingly, in order to achieve the above object, the present invention provides, in one aspect, a method of preparing a non-stick coating, the method comprising:
(1) Pretreating a matrix;
(2) Carrying out optional preheating treatment on the surface of the substrate obtained in the step (1);
(3) Ceramic powder and fluorine-containing resin powder are used as raw materials, and a non-stick coating is formed on the surface of a substrate through plasma spraying treatment;
wherein, in the step of plasma spraying treatment, a flame flow formed by a plasma spray gun is adopted, ceramic powder is fed in the formed flame flow at a position which is far from a spray gun outlet D1, and fluorine-containing resin powder is fed in at a position which is far from a spray gun outlet D2, wherein D2 is larger than D1.
The second aspect of the invention provides a non-stick coating prepared by the method of the invention.
In a third aspect, the invention provides a pan comprising a substrate and a non-stick coating formed on the substrate, the non-stick coating being a stacked layer of particles having a flat structure, and the particles comprising a ceramic particle core and a fluorine-containing resin material coating.
According to a fourth aspect of the present invention, there is provided a cooking apparatus comprising a pan according to the present invention.
According to the method for preparing the non-stick coating, the ceramic powder and the fluorine-containing resin powder are fed at different positions of flame flow formed by a plasma spray gun, so that molten drops of ceramic particles pass through atomized matters of the fluorine-containing resin material and then strike the surface of a substrate, and then particles of the fluorine-containing resin material coated with the ceramic particles are formed, and the non-stick coating is formed based on accumulation of the particles; the non-stick coating formed by the method has the following beneficial effects:
1) In the formed non-stick coating, the particles contain ceramic particles and fluorine-containing resin materials at the same time, so that the hardness and the hydrophobic non-stick property of the non-stick coating are ensured at the same time;
2) In the process of forming the coating layer by plasma spraying (i.e. the process of accumulating the molten particles), the particles are connected together in a molten state, so that the coating layer is compact (small in porosity) and the bonding between the particles is very firm (high in bonding force); the non-stick coating and the substrate form mechanical bonding on the rough surface through high-speed melting particles, and the bonding strength of the coating is far higher than that of the coating formed by sintering after air spraying;
3) In the formed non-stick coating, the particles have a structure that the fluorine-containing resin material coats the ceramic particles, so that the non-stick coating has better scratch resistance and corrosion resistance, and the service life of the non-stick coating is prolonged;
4) The formed non-stick coating is formed by stacking flat particles with a coating structure, so that the formed non-stick coating is uniform and stable in structure from inside to outside, and even if the surface is locally worn in the use process, the inner layer structure is consistent with the surface layer structure, the hardness, the hydrophobicity, the non-stick property, the binding force, the scratch resistance and the corrosion resistance of the non-stick coating can be still kept, and the service life of the non-stick coating is prolonged.
Drawings
FIG. 1 is a schematic view of a pan of the present invention;
FIG. 2 is a side cross-sectional view of a non-stick coating of the present invention;
FIG. 3 is a top cross-sectional view of the non-stick coating of the present invention;
fig. 4 is a schematic view of the structure of particles constituting the non-stick coating of the present invention.
Description of the reference numerals
1 is a non-stick coating, 2 is a matrix, 10 is particulate matter, 11 is a ceramic particle core, and 12 is a fluorine-containing resin material coating layer.
Detailed Description
The endpoints and any values of the ranges disclosed herein are not limited to the precise range or value, and are understood to encompass values approaching those ranges or values. For numerical ranges, one or more new numerical ranges may be found between the endpoints of each range, between the endpoint of each range and the individual point value, and between the individual point value, in combination with each other, and are to be considered as specifically disclosed herein.
In order to improve the surface hardness, coating binding force, and hydrophobic non-tackiness of the non-stick coating, there is provided in the present invention a method of preparing a non-stick coating, the method comprising: (1) pretreating a substrate; (2) Carrying out optional preheating treatment on the surface of the substrate obtained in the step (1); (3) Ceramic powder and fluorine-containing resin powder are used as raw materials, and a non-stick coating is formed on the surface of a substrate through plasma spraying treatment; wherein, in the step of plasma spraying treatment, a flame flow formed by a plasma spray gun is adopted, ceramic powder is fed in the formed flame flow at a position which is far from a spray gun outlet D1, and fluorine-containing resin powder is fed in at a position which is far from a spray gun outlet D2, wherein D2 is larger than D1.
According to the method of the present invention, preferably, 1/6.ltoreq.D2-D1.ltoreq.1/2 of the flame flow length, more preferably, 1/4.ltoreq.D2-D1.ltoreq.1/3 of the flame flow length, wherein the flame flow length is preferably 14-18cm.
According to the method of the present invention, preferably, in the step of the plasma spraying treatment, the spraying power is 30-50kW, and the spraying current is 600-650A; the flow rate of the main gas (such as argon) in the working gas is 35-55L/min, and the flow rate of the auxiliary gas (such as hydrogen) is 2-6L/min; the D1 is 1/4-1/3 of the flame flow length, and the D2 is 1/2-2/3 of the flame flow length. More preferably, in the step of the plasma spraying treatment, the spraying power is 35-45kW, and the spraying current is 620-630A; the main air flow in the working gas is 40-50L/min, and the auxiliary air flow is 3-5L/min.
Preferably, in the step of the plasma spraying treatment, the spraying angle is 70-90 degrees;
according to the method of the present invention, preferably, in the step of the plasma spraying treatment, the spraying distance is 60 to 100mm, preferably 75 to 85mm; the speed of movement of the lance is 60-100mm/s, preferably 75-85mm/s.
According to the method of the present invention, preferably, the ceramic powder is fed in an amount of 3.5 to 5g/min; the powder feeding amount of the fluorine-containing resin powder is 2.5-3.5g/min. In the plasma spraying process, in the process of atomizing and attaching the fluorine-containing resin particles on the surface of the ceramic particle core, part of the fluorine-containing resin raw material is lost, and as can be seen from the measurement of the prepared non-stick coating by a chemical analysis method, the prepared non-stick coating comprises, based on the total weight thereof, by controlling the powder feeding amount in the above range: 55-90 wt% of ceramic particles and 10-45 wt% of fluorine-containing resin material.
According to the method of the present invention, preferably, the fluorine-containing resin powder has a particle diameter D50 of 5 to 80. Mu.m, preferably 20 to 50. Mu.m, and a fluidity of 10 to 30s/50g; the particle diameter D50 of the fluorine-containing resin powder is 20 to 100. Mu.m, preferably 40 to 100. Mu.m, more preferably 45 to 60. Mu.m; the fluidity of the fluorine-containing resin powder is less than 30s/50g, preferably 10 to 25s/50g, more preferably 10 to 20s/50g. Wherein the particle diameter D50 is a volume average diameter, which means an equivalent diameter of the largest particle in the particle size distribution curve when the cumulative distribution is 50 vol%.
According to the method of the present invention, when a fluorine-containing resin powder is selected, if the fluidity of a commercially available fluorine-containing resin powder cannot meet the requirement, the fluorine-containing resin powder may be modified to obtain a fluorine-containing resin powder having the fluidity meeting the requirement, and in a preferred case, the modified fluorine-containing resin powder is produced by a method comprising the steps of: (a) Mixing fluorine-containing resin powder, a binder, a lubricant and water to prepare slurry; (b) subjecting the slurry to spray drying treatment.
Preferably, in the step (a), the content of the fluorine-containing resin powder is 30 to 60% by weight, more preferably 38 to 55% by weight, based on the weight of the slurry; the content of the binder is 0.2 to 2 wt%, more preferably 0.2 to 0.5 wt%; the content of the lubricant is 0.5 to 3 wt%, further preferably 1 to 3 wt%; the water content is 35 to 68% by weight, more preferably 42 to 60% by weight.
Preferably, in step (a), the binder is at least one of polyvinyl alcohol, polyvinyl chloride and polyacrylate.
Preferably, in step (a), the lubricant is at least one of glycerin, paraffin wax and graphite.
Preferably, in step (b), the spray drying treatment is air-flow atomization drying, and the conditions of the air-flow atomization drying include: the atomization pressure is 0.3-0.6MPa, more preferably 0.3-0.5MPa; the flow rate of the atomized air flow is 1-4m 3 Preferably 1 to 3m 3 /h; the inlet temperature is 200-400 ℃, and more preferably 300-350 ℃; the temperature of the air outlet is 50-200 ℃, and more preferably 50-150 ℃.
According to the method of the present invention, preferably, the ceramic powder is alumina and/or titania, the fluorine-containing resin powder is Polytetrafluoroethylene (PTFE) and/or tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer (PFA), and preferably, the fluorine-containing resin powder has a melting point of 350 to 420 ℃, and more preferably, 400 to 420 ℃.
According to the method of the invention, the substrate can be a metal substrate such as a stainless steel substrate, an aluminum alloy substrate, a titanium alloy substrate and the like or a multi-layer (including double layers and more than three layers) metal composite substrate. Wherein, the multilayer metal composite matrix can be a stainless steel/aluminum matrix, a stainless steel/copper matrix, a stainless steel/aluminum/copper matrix, etc. Preferably, the thickness of the substrate is 0.5-6mm.
According to the method of the present invention, the pretreatment method of step (1) may preferably include a blasting treatment and a degreasing treatment, and the method of the blasting treatment and the degreasing treatment is not particularly limited, and may be various methods commonly used in the art, respectively. For example, the method of blasting includes: the air jet pressure is controlled to be 0.2-0.9MPa by adopting 60-150 mesh sand grains (such as glass sand, brown steel sand, black brown jade, white corundum, carborundum and the like), and the obtained roughness is about Ra2-8 mu m. After the blasting treatment, the fine powder particles and the like remaining on the inner surface of the substrate are removed, and the method of removal is not particularly limited, and may be either cleaned by high-pressure air flow or removed by water washing, which are well known to those skilled in the art and will not be described in detail herein. For example, the degreasing treatment may include alkali washing, acid washing, water washing and high-temperature drying (e.g., drying at 200-450 ℃ C. For 10-15 min) in this order.
According to the process of the present invention, the substrate surface obtained in step (1) is preferably preheated in step (2) to a temperature of 80-150 ℃, preferably 100-120 ℃.
In a second aspect, the invention provides a non-stick coating prepared by the method described above.
In a third aspect, as shown in fig. 1 to 4, the present invention provides a pot, which includes a base 2 and a non-stick coating 1 formed on the base 2, the non-stick coating 1 is a stacked layer of particles 10 having a flat structure, the particles 10 include a ceramic particle core 11, and a fluorine-containing resin material coating layer 12 coated on the outer periphery of the ceramic particle core 11;
preferably, the particulate matters 10 have a flat structure, and the thickness direction of each particulate matter is substantially perpendicular to the plane of the non-stick coating 1.
Preferably, the non-stick coating comprises, based on the total weight of the non-stick coating: 55-90 wt% of ceramic particles and 10-45 wt% of fluorine-containing resin material;
preferably, the thickness of the particulate matter 10 is 1-10 μm, and the transverse diameter of the largest cross section perpendicular to the thickness direction of the particulate matter is 50-120 μm;
preferably, the single-side thickness of the fluorine-containing resin material coating layer 12 is 0.2-2 μm;
preferably, the ceramic particles in the ceramic particle core 11 are alumina and/or titania;
preferably, the fluorine-containing resin material in the fluorine-containing resin material coating layer 12 is PTFE and/or PFA;
preferably, the substrate 2 may be a metal substrate such as a stainless steel substrate, an aluminum alloy substrate, or a titanium alloy substrate, or a multi-layer (including a double layer and three or more layers) metal composite substrate. Wherein, the multilayer metal composite matrix can be a stainless steel/aluminum matrix, a stainless steel/copper matrix, a stainless steel/aluminum/copper matrix, etc.
Preferably, the thickness of the substrate 2 is 0.5-6mm.
Preferably, the thickness of the non-stick coating 1 is 50-2000 μm, more preferably 100-300 μm;
preferably, the non-stick coating 1 is a non-stick coating according to the present invention.
In a fourth aspect, the present invention provides a cooking apparatus comprising a pan according to the present invention. Preferably, the cooking device is a frying pan, air frying pan, frying and baking machine, bread machine, electric rice cooker, electric pressure cooker or soymilk machine.
Hereinafter, the non-stick coating according to the present invention and the method of preparing the same will be described in detail by way of examples. In the following examples, unless otherwise indicated, the materials used are all commercially available and the methods used are all conventional in the art.
In the following examples, the measurement methods involved are described below:
particle diameter D50 of the PFA powder was measured by a laser particle size analyzer (model KW510, available from Xiamen King electronics Co., ltd.).
The flowability of the PFA powder was determined according to GB1482-84 using a Hall flowmeter.
The purity of the PFA powder was determined using an automatic polarimeter (available from Aituo China, model number AP-300).
The melting point of the PFA powder was determined using a micro-melting point tester (available from Jinan Heinai instruments Co., ltd., model MP-300).
The surface roughness Ra of the PFA powder was measured by a surface roughness meter (model TIME3201, available from peak technology limited in beijing age).
The contact angle measurement instrument (available from Shenzhen Xin Heng Sen trade Co., ltd., model XHSCZA-2) was used to measure the original contact angle and the post-friction contact angle, and the measurement range was 0-180 degrees.
In the following examples, the raw materials involved are described below:
alumina powder was purchased from Beijing mulberry Yao technology development Co., ltd, particle size D50 of 25 μm and flowability of 12s/50g.
Titanium oxide powder was purchased from Beijing mulberry Yao technology development Co., ltd, particle size D50 of 22 μm and flowability of 18s/50g.
The normal PFA powder was purchased from Dajinfu paint (Shanghai) Co., ltd, particle size D50 of 15 μm, sphericity of 95% powder of 18%, fluidity of 78s/50g, purity of 94%, melting point of 345℃and surface roughness of Ra0.6μm.
The preparation method of the modified PFA powder A1 comprises the following steps: (1) 47.6kg of ordinary PFA powder, 0.4kg of polyvinyl alcohol (model PVA1788 from Shanghai Fusi spring technology Co., ltd.), 2kg of glycerin and 50kg of water were mixed to prepare a slurry; (2) Carrying out airflow atomization drying treatment on the slurry, wherein the airflow atomization drying conditions comprise: the atomization pressure is 0.4MPa, and the flow rate of the atomization airflow is 2m 3 And/h, the inlet temperature is 320 ℃, the air outlet temperature is 100 ℃, and the modified PFA powder A1 is obtained. The particle diameter D50 of the modified PFA powder A1 was measured to be 52. Mu.m, the fluidity was 15s/50g, the purity was 99.9%, the melting point was 410℃and the surface roughness was Ra0.2. Mu.m.
The preparation method of the modified PFA powder A2 comprises the following steps: (1) A slurry was prepared by mixing 54.8kg of ordinary PFA powder, 0.2kg of polyvinyl chloride (available from shanghai Ji Ning, model number K55-59), 3kg of paraffin wax and 42kg of water; (2) Carrying out airflow atomization drying treatment on the slurry, wherein the airflow atomization drying conditions comprise: the atomization pressure is 0.3MPa, and the flow rate of the atomization airflow is 1m 3 And/h, the inlet temperature is 300 ℃, the air outlet temperature is 60 ℃, and the modified PFA powder A2 is obtained. The particle diameter D50 of the modified PFA powder was determined to be 46. Mu.m, the fluidity was determined to be 13s/50g, the purity was determined to be 99.5%, the melting point was determined to be 405℃and the surface roughness was determined to be Ra 0.15. Mu.m.
Example 1
This example illustrates a method for preparing a non-stick coating using a plasma spray process.
(1) Pretreating an aluminum pot substrate (with the thickness of 2.5 mm), wherein the pretreatment method comprises the following steps: a) Deoiling at 55deg.C for 8 min; b) Washing with deionized water; c) Drying at 100deg.C for 5min; d) Adopting 60-80 mesh brown steel sand, carrying out sand blasting treatment on the inner surface of the aluminum pot body under the air jet pressure of 0.6MPa to ensure that the surface roughness of the inner surface is Ra3 mu m, and then blowing out residual powder particles on the inner surface of the pot body by using air flow (air); e) Alkaline washing with 40 wt% NaOH solution at 80℃for 1 minute; f) Neutralizing with 20 wt% nitric acid solution for 3 min; g) Washing with deionized water, and drying at 300 ℃ for 12 minutes;
(2) Preheating the surface of the substrate obtained in the step (1) to 120 ℃;
(3) Taking aluminum oxide powder and modified PFA powder A1 as raw materials, and forming a non-stick coating on the surface of a substrate through plasma spraying treatment; wherein, the conditions of the plasma spraying treatment include: the spraying power of the plasma spray gun is 40kW, the spraying current is 625A, the flow rate of argon in the working gas is 45L/min, and the flow rate of hydrogen is 4L/min; the spraying distance of the plasma spray gun from the substrate is 80mm, the spraying angle is 80 degrees+/-1 degrees, and the moving speed of the spray gun is 80mm/s; feeding aluminum oxide powder into a flame flow formed by a plasma spray gun at a position which is away from a spray gun outlet D1 (1/4 of the flame flow length), wherein the feeding amount is 4.2g/min, and feeding modified PFA powder A1 at a position which is away from the spray gun outlet D2 (1/2 of the flame flow length), and the feeding amount is 2.8g/min; a non-stick coating having a thickness of 200 μm was formed and designated as S1.
The transverse section and the longitudinal section of the prepared non-stick coating S1 are observed under different magnification by a scanning electron microscope, so that the non-stick coating is formed by stacking particles, and each particle comprises a core and a coating; the transverse diameter and thickness of the particles in the non-stick coating are counted by a partition measurement method (10 particles are counted in each area, 5 different areas are randomly selected for counting), the transverse diameter of the particles in the non-stick coating S1 is counted to be distributed in the range of 48-65 mu m, the thickness is distributed in the range of 3.2-3.6 mu m, and the thickness distribution of one side of the fluorine-containing resin material coating layer is 0.5-0.8 mu m.
Example 2
This example illustrates a method for preparing a non-stick coating using a plasma spray process.
(1) Pretreatment of an aluminum pan substrate (thickness of 2.5 mm) was performed according to the method of example 1;
(2) Preheating the surface of the substrate obtained in the step (1) to 100 ℃;
(3) Titanium oxide powder and modified PFA powder A2 are used as raw materials, and a non-stick coating is formed on the surface of a substrate through plasma spraying treatment; wherein, the conditions of the plasma spraying treatment include: the spraying power of the plasma spray gun is 35kW, the spraying current is 620A, the flow rate of argon in the working gas is 40L/min, and the flow rate of hydrogen is 3L/min; the spraying distance of the plasma spray gun from the substrate is 85mm, the spraying angle is 80 degrees+/-1 degrees, and the moving speed of the spray gun is 85mm/s; feeding titanium oxide powder into a flame flow formed by a plasma spray gun at a position which is away from a spray gun outlet D1 (1/3 of the flame flow length), wherein the feeding amount is 5g/min, and feeding modified PFA powder A2 at a position which is away from a spray gun outlet D2 (2/3 of the flame flow length), and the feeding amount is 2.5g/min; a non-stick coating with a thickness of 200 μm was formed, designated S2.
The transverse diameter of the particles in the non-stick coating S2 is measured and counted to be distributed in the range of 40-62 mu m, the thickness is distributed in the range of 3.4-4.0 mu m, and the thickness of one side of the fluorine-containing resin material coating layer is distributed in the range of 0.3-0.5 mu m.
Example 3
This example illustrates a method for preparing a non-stick coating using a plasma spray process.
(1) Pretreatment of an aluminum pan substrate (thickness of 2.5 mm) was performed according to the method of example 1;
(2) Preheating the surface of the substrate obtained in the step (1) to 150 ℃;
(3) Taking aluminum oxide powder and modified PFA powder A1 as raw materials, and forming a non-stick coating on the surface of a substrate through plasma spraying treatment; wherein, the conditions of the plasma spraying treatment include: the spraying power of the plasma spray gun is 45kW, the spraying current is 630A, the flow rate of argon in the working gas is 50L/min, and the flow rate of hydrogen is 5L/min; the spraying distance between the plasma spray gun and the substrate is 75mm, the spraying angle is 80 degrees+/-1 degrees, and the moving speed of the spray gun is 75mm/s; feeding aluminum oxide powder into a flame flow formed by a plasma spray gun at a position which is away from a spray gun outlet D1 (1/4 of the flame flow length), wherein the powder feeding amount is 3.5g/min, and feeding modified PFA powder A1 at a position which is away from a spray gun outlet D2 (1/2 of the flame flow length), and the powder feeding amount is 3.5g/min; a non-stick coating having a thickness of 200 μm was formed and designated S3.
The transverse diameter of the particles in the non-stick coating S3 is measured and counted to be distributed in the range of 56-75 microns, the thickness is distributed in the range of 2.2-2.8 microns, and the thickness distribution of one side of the fluorine-containing resin material coating layer is 0.2-0.3 microns.
Example 4
According to the method of example 1, except that in step (3), alumina powder was fed at a distance D1 (1/4 of the flame flow length) from the gun outlet D1 and modified PFA powder A1 was fed at a distance D2 (2/3 of the flame flow length) from the gun outlet D1 in the flame flow formed by the plasma gun; a non-stick coating with a thickness of 200 μm was formed.
Example 5
According to the method of example 1, except that in step (3), alumina powder is fed in a flame flow formed by the plasma torch at a distance of D1 (1/3 of the flame flow length) from the torch outlet, and modified PFA powder A1 is fed in a distance of D2 (1/2 of the flame flow length) from the torch outlet; a non-stick coating with a thickness of 200 μm was formed.
Example 6
According to the method of example 1, except that in step (3), alumina powder was fed at a distance D1 (1/4 of the flame flow length) from the gun outlet in the flame flow formed by the plasma gun, and modified PFA powder A1 was fed at a distance D2 (5/6 of the flame flow length) from the gun outlet; a non-stick coating with a thickness of 200 μm was formed.
Example 7
According to the method of example 1, except that in the step (3), the spraying power of the plasma spray gun was 30kW, the spraying current was 600A, the flow rate of hydrogen in the working gas was 2L/min, the flow rate of argon was 35L/min, and a non-stick coating layer having a thickness of 200 μm was formed.
Example 8
According to the method of example 1, except that in the step (3), the spraying power of the plasma spray gun was 50kW, the spraying current was 650A, the flow rate of hydrogen in the working gas was 6L/min, the flow rate of argon was 55L/min, and a non-stick coating layer having a thickness of 200 μm was formed.
Comparative example 1
The procedure of example 1 was followed, except that the modified PFA powder A1 was not added in step (3), to form a non-tacky coating having a thickness of 200. Mu.m.
Comparative example 2
The procedure of example 1 was followed except that the non-stick coating was formed in steps (3) - (4) as follows: performing electrostatic spraying treatment by adopting common PFA powder to form a PFA non-stick coating D1 on the surface of a substrate, wherein the conditions of the electrostatic spraying treatment comprise: powder spraying is carried out by adopting an electrostatic spray gun, the voltage is 35kV, the electrostatic current is 15 mu A, the flow speed pressure is 0.45MPa, the atomization pressure is 0.4MPa, the thickness of a sprayed coating is 40 mu m, the powder is dried in an infrared furnace after the spraying is finished, the powder is dried for 10min at a low temperature section of 120 ℃, and the powder is insulated for 20min at a high temperature section of 400 ℃.
Comparative example 3
Spraying a PTFE non-stick coating by adopting an air pressure spraying mode, wherein the coating comprises a bottom layer and a surface layer; the base oil comprises fluororesin, binder, pigment and auxiliary agent, and the surface oil comprises fluororesin, wear-resistant particles and film-forming auxiliary agent. The method comprises the following specific steps:
(1) Pretreating an aluminum pot substrate according to the step (1) of the embodiment 1;
(2) Preheating the surface of the substrate obtained in the step (1) to 85 ℃;
(3) And (3) spraying base oil: the spraying pressure is 0.3MPa, the spraying angle is 70 degrees, the spraying distance is 30cm, the thickness of the film layer is 20 mu m, the drying temperature is 130 ℃, and the heat preservation is carried out for 12min;
(4) Spraying surface oil: the spraying pressure is 0.4MPa, the spraying angle is 70 degrees, the spraying distance is 35 mu m, the film thickness is 30 mu m, the drying and curing temperature is 420 ℃, and the heat preservation is carried out for 15min.
Comparative example 4
Spraying a ceramic non-stick coating by adopting an air pressure spraying mode, wherein the coating comprises a bottom layer and a surface layer; the primer includes a binder, a pigment, and an auxiliary agent, and the topcoat includes silica and alumina. The method comprises the following specific steps:
(1) Pretreating an aluminum pot substrate according to the step (1) of the embodiment 1;
(2) Preheating the surface of the substrate obtained in the step (1) to 60 ℃;
(3) And (3) spraying base oil: the spraying pressure is 0.3MPa, the spraying angle is 70 degrees, the spraying distance is 25cm, the thickness of a film layer is 25 mu m, the pre-drying temperature is 70 ℃, and the heat preservation is carried out for 10min;
(4) Spraying surface oil: the spraying pressure is 0.3MPa, the spraying distance is 25cm, the spraying angle is 70 degrees, the thickness of the film layer is 10 mu m, and the film layer is sintered at 280 ℃ after the spraying is finished and is kept for 15min.
Test examples
1. Coating surface hardness: the Vickers hardness of each coating was determined according to GB/T9790-1988 using a Vickers hardness tester (available from Shanghai rectangular optics, inc., model HX-1000). The results are shown in Table 1.
2. Coating binding force: coating binding force was measured according to G98642-88. The results are shown in Table 1.
3. Coating porosity: the porosity of the coating was determined according to the mechanical industry standard JB/T7509-94 of the people's republic of China. The results are shown in Table 1.
4. Coating spraying efficiency: according to the formula: spraying efficiency= (weight of workpiece after spraying-weight of workpiece before spraying)/(powder feeding amount, deposition rate), wherein the deposition rate was fixed at 70%. The calculation results are shown in Table 1.
5. Scratch resistance of the coating: the cleaning liquid is used for preparing the cleaning water with the concentration of 5 weight percent, the 3M (7447C) scouring pad bears a load of 2.5kgf, the scouring pad is swung left and right for 1 time once, the scouring pad is replaced for 250 times each time, whether the coating falls off or a substrate is exposed after each scraping or not is checked (the exposure of more than 10 lines is taken as a termination test), and the wear-resisting times are recorded. The results are shown in Table 1.
6. Acid, alkali, salt:
acid resistance: adding acetic acid solution with the concentration of 5 wt% into the inner pot until reaching the maximum scale water level of the inner wall of the inner pot, putting the inner pot into a corresponding pot, electrifying the inner pot, closing the cover, continuously heating and boiling (keeping the boiling state) for 10 minutes, then preserving heat at 100 ℃ and soaking for 24 hours, cleaning the inner pot after the test is finished, visually checking the surface change condition of the coating, and the result is shown in table 2.
Alkali resistance: adding 0.5 wt% sodium hydroxide solution into the inner pot until reaching the maximum scale water level of the inner wall of the inner pot, putting the inner pot into a corresponding pot, electrifying the cover, continuously heating and boiling (keeping boiling state) for 10 minutes, then preserving heat at 100 ℃ and soaking for 24 hours, cleaning the inner pot after the test is finished, and visually checking the surface change condition of the coating, wherein the result is shown in Table 2.
Salt resistance: adding sodium chloride solution with the concentration of 5 wt% into an inner pot until the maximum scale water level of the inner wall of the inner pot, putting the inner pot into a corresponding pot, electrifying a sealing cover, continuously heating and boiling for 8 hours (supplementing water 1 time every 2 hours, keeping the liquid level at the position at the beginning of the test), keeping the temperature at 80 ℃ for 16 hours as a period, visually checking the surface change condition of the coating after each period test, and recording the period number of the bad phenomena such as foaming, protruding points and the like of the coating, wherein the result is shown in Table 2.
7. Abrasion resistance and wettability: the frictional wear test was performed according to GB/T1768-79 (89), the contact angle (the original contact angle and the post-frictional contact angle, respectively) and the weight before and after the frictional wear test were measured and weighed, and the weight loss ratio was calculated according to the formula, wherein the weight loss ratio= (weight before friction-weight after friction)/weight before friction, and the results are shown in table 3. Wherein, the test result shows that: the non-stick coating of the invention has good wettability inside after surface abrasion, and the wettability is kept good as long as the substrate is not exposed, and the friction abrasion test is carried out on three samples, namely the PTFE non-stick coating, the ceramic non-stick coating and the non-stick coating of the invention, so that the following can be found: the non-stick coating of the invention only has partial powder falling off in the friction and abrasion process, the usability is not affected, and the PTFE non-stick coating and the ceramic non-stick coating are both flaky falling off between layers, and the difference is larger.
TABLE 1
TABLE 2
Acid-resistant Alkali-proof Salt tolerance
Example 1 No whitening and foaming phenomena No whitening and foaming phenomena 20 cycles of
Example 2 No whitening and foaming phenomena No whitening and foaming phenomena 20 cycles of
Example 3 No whitening and foaming phenomena No whitening and foaming phenomena 20 cycles of
Example 4 No whitening and foaming phenomena No whitening and foaming phenomena 20 cycles of
Example 5 No whitening and foaming phenomena No whitening and foaming phenomena 18 cycles
Example 6 No whitening and foaming phenomena No whitening and foaming phenomena 20 cycles of
Example 7 No whitening and foaming phenomena No whitening and foaming phenomena 12 cycles
Example 8 No whitening and foaming phenomena No whitening and foaming phenomena 20 cycles of
Comparative example 1 No whitening and foaming phenomena No whitening and foaming phenomena 10 cycles of
Comparative example 2 No whitening and foaming phenomena No whitening and foaming phenomena 6 cycles of
Comparative example 3 No whitening and foaming phenomena No whitening and foaming phenomena 4 cycles of
Comparative example 4 No whitening and foaming phenomena No whitening and foaming phenomena 2 periods of
TABLE 3 Table 3
Number of rubs Loss ratio (%) Original contact angle (°) Contact angle after rubbing (°)
Example 1 1000 1.3 112 108
Example 1 2000 2.1 112 105
Example 1 3000 3.2 112 103
Example 2 1000 1.6 116 110
Example 3 1000 1.2 108 103
Example 4 1000 1.7 114 109
Example 5 1000 1.5 106 94
Example 6 1000 1.4 117 112
Example 7 1000 2.5 113 107
Example 8 1000 1.0 99 90
Comparative example 1 1000 0.8 20 20
Comparative example 2 1000 6.0 125 90
Comparative example 3 1000 8.9 121 87
Comparative example 4 1000 4.8 110 78
As can be seen from the results in tables 1 to 3, in the method for preparing the non-stick coating by adopting the plasma spraying technology, the mixture of the PFA powder and the ceramic powder can be sprayed with a layer of non-stick coating on the surface of the substrate, the non-stick coating with excellent performance can be obtained, and the obtained non-stick coating has the advantages of high surface hardness, high coating binding force, good scratch resistance, good corrosion resistance, good wettability, long service life and the like.
Wherein, comparing the results of example 1 with those of examples 4-6, it is found that the addition of ceramic powder and fluorine-containing resin powder within a specific interval (i.e., 1/6.ltoreq.D2-D1.ltoreq.flame flow length 1/2, preferably 1/4.ltoreq.D2-D1.ltoreq.flame flow length 1/3) is advantageous for further achieving comprehensive optimization of the surface hardness and wettability of the non-stick coating.
Comparing the results of the embodiment 1 with the results of the embodiment 7-8, it is known that under the specific plasma spraying treatment condition (namely, the spraying power is 35-45kW, the spraying current is 620-630A, the flow rate of the main gas in the working gas is 40-50L/min, and the flow rate of the auxiliary gas is 3-5L/min), the surface hardness, the coating binding force, the scratch resistance, the corrosion resistance, the wettability and the service life of the non-adhesive coating can be further improved.
The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited thereto. Within the scope of the technical idea of the invention, a number of simple variants of the technical solution of the invention are possible, including combinations of the individual technical features in any other suitable way, which simple variants and combinations should likewise be regarded as being disclosed by the invention, all falling within the scope of protection of the invention.

Claims (24)

1. A method of preparing a non-stick coating, the method comprising:
(1) Pretreating a matrix;
(2) Preheating the surface of the substrate obtained in the step (1) to 80-150 ℃;
(3) Ceramic powder and fluorine-containing resin powder are used as raw materials, and a non-stick coating is formed on the surface of a substrate through plasma spraying treatment;
in the plasma spraying treatment step, a flame flow formed by a plasma spray gun is adopted, ceramic powder is fed into the formed flame flow at a position which is far from a spray gun outlet D1, fluorine-containing resin powder is fed into the formed flame flow at a position which is far from a spray gun outlet D2, wherein D2 is larger than D1, and the flame flow length is 1/6-D2-D1-1/2.
2. The method of claim 1, wherein 1/4.ltoreq.d2-d1.ltoreq.1/3 of the flame flow length.
3. The method according to claim 2, wherein in the step of the plasma spraying treatment, the spraying power is 30-50kW and the spraying current is 600-650A; the flow rate of the main gas in the working gas is 35-55L/min, and the flow rate of the auxiliary gas is 2-6L/min; the D1 is 1/4-1/3 of the flame flow length, and the D2 is 1/2-2/3 of the flame flow length.
4. A method according to claim 3, wherein in the step of the plasma spraying treatment, the spraying power is 35-45kW and the spraying current is 620-630A; the flow rate of the main gas in the working gas is 40-50L/min, and the flow rate of the auxiliary gas is 3-5L/min.
5. The method according to claim 1, wherein in the step of the plasma spraying treatment, a spraying distance is 60-100mm; the moving speed of the spray gun is 60-100mm/s.
6. The method according to claim 5, wherein in the step of plasma spraying treatment, a spraying distance is 75-85mm; the moving speed of the spray gun is 75-85mm/s.
7. The method according to claim 1, wherein the ceramic powder is fed in an amount of 3.5-5g/min; the powder feeding amount of the fluorine-containing resin powder is 2.5-3.5g/min.
8. The method according to claim 1, wherein the ceramic powder has a particle diameter D50 of 5-80 μm and a flowability of 10-30s/50g; the particle diameter D50 of the fluorine-containing resin powder is 20-100 mu m; the fluidity of the fluorine-containing resin powder is less than 30s/50g.
9. The method according to claim 8, wherein the ceramic powder has a particle size D50 of 20-50 μm; the particle diameter D50 of the fluorine-containing resin powder is 40-100 mu m; the fluidity of the fluorine-containing resin powder is 10-25s/50g.
10. The method according to claim 9, wherein the fluorine-containing resin powder has a particle diameter D50 of 45 to 60 μm; the fluidity of the fluorine-containing resin powder is 10-20s/50g.
11. The method according to any one of claims 1 to 10, wherein the ceramic powder is alumina and/or titania and the fluorine-containing resin powder is PTFE and/or PFA.
12. A non-stick coating prepared by the method of any one of claims 1-11.
13. The pan is characterized by comprising a base body (2) and a non-stick coating (1) formed on the base body (2), wherein the non-stick coating (1) is a stacking layer of particles (10), and the particles (10) comprise ceramic particle cores (11) and fluorine-containing resin material coating layers (12) coated on the peripheries of the ceramic particle cores (11); the non-stick coating (1) is the non-stick coating of claim 12.
14. Pan according to claim 13, wherein the particles (10) have a flat structure and the thickness direction of each of the particles is substantially perpendicular to the plane of the non-stick coating (1).
15. Pan according to claim 13, wherein the non-stick coating (1) comprises, based on its total weight: 55-90 wt% of ceramic particles and 10-45 wt% of fluorine-containing resin material.
16. Pan according to claim 13, wherein the particles (10) have a thickness of 1-10 μm and the particles have a diameter of 50-120 μm of the largest cross section perpendicular to the thickness direction.
17. Pan according to claim 13, wherein the single-sided thickness of the coating layer (12) of fluorine-containing resin material is 0.2-2 μm.
18. Pan according to claim 13, wherein the ceramic particles in the ceramic particle core (11) are alumina and/or titania.
19. Pan according to claim 13, wherein the fluororesin material in the fluororesin material coating layer (12) is PTFE and/or PFA.
20. Pan according to claim 13, wherein the thickness of the base body (2) is 0.5-6mm.
21. Pan according to claim 13, wherein the non-stick coating (1) has a thickness of 50-2000 μm.
22. Pan according to claim 21, wherein the non-stick coating (1) has a thickness of 100-300 μm.
23. A cooking device, characterized in that it comprises a pan according to claim 13.
24. The cooking apparatus of claim 23, wherein the cooking apparatus is a wok, a fryer, an air fryer, a roaster, a bread maker, an electric rice cooker, an electric pressure cooker, or a soymilk machine.
CN201710405531.2A 2017-04-25 2017-06-01 Non-stick coating, preparation method thereof, cooker and cooking equipment Active CN108968702B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710405531.2A CN108968702B (en) 2017-06-01 2017-06-01 Non-stick coating, preparation method thereof, cooker and cooking equipment
KR1020180046009A KR102090639B1 (en) 2017-04-25 2018-04-20 Cookware and cooking equipment
JP2018083976A JP6641411B2 (en) 2017-04-25 2018-04-25 Method of manufacturing pot utensil and method of manufacturing cookware

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710405531.2A CN108968702B (en) 2017-06-01 2017-06-01 Non-stick coating, preparation method thereof, cooker and cooking equipment

Publications (2)

Publication Number Publication Date
CN108968702A CN108968702A (en) 2018-12-11
CN108968702B true CN108968702B (en) 2023-11-28

Family

ID=64502370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710405531.2A Active CN108968702B (en) 2017-04-25 2017-06-01 Non-stick coating, preparation method thereof, cooker and cooking equipment

Country Status (1)

Country Link
CN (1) CN108968702B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112137419B (en) * 2019-06-28 2024-03-01 武汉苏泊尔炊具有限公司 Non-stick master batch, method for producing non-stick master batch, non-stick material, and cooking utensil
CN114085562B (en) * 2021-12-17 2022-11-29 武汉苏泊尔炊具有限公司 Corrosion-resistant material, method for producing same, and corrosion-resistant coating formed therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323283A (en) * 1997-05-27 1998-12-08 Matsushita Electric Ind Co Ltd Heat cooker
TWI296640B (en) * 2001-07-26 2008-05-11
WO2010130954A1 (en) * 2009-05-15 2010-11-18 Seb Sa Cooking utensil comprising a hard base made from a ceramic and/or metal and/or polymer material and a nonstick coating containing a fluorocarbon resin
CN105316619A (en) * 2015-10-29 2016-02-10 中国科学院宁波材料技术与工程研究所 Method for preparing abrasion-resistant super-hydrophobic ceramic coating through thermal spraying technology and product
CN106086766A (en) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 A kind of preparation method of high wear-resistant low-friction coefficient thermal Sperayed Ceramic Coatings
CN106544618A (en) * 2016-11-04 2017-03-29 中国兵器科学研究院宁波分院 Stainless steel surfaces carry out the preparation method of ice-covering-proof coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387896B1 (en) * 2001-05-05 2005-01-05 Linde Aktiengesellschaft Cooking utensils with thermally sprayed coating and method for the production of said coating
CN207294874U (en) * 2017-06-01 2018-05-01 佛山市顺德区美的电热电器制造有限公司 Cookware and the equipment of cooking for including it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323283A (en) * 1997-05-27 1998-12-08 Matsushita Electric Ind Co Ltd Heat cooker
TWI296640B (en) * 2001-07-26 2008-05-11
WO2010130954A1 (en) * 2009-05-15 2010-11-18 Seb Sa Cooking utensil comprising a hard base made from a ceramic and/or metal and/or polymer material and a nonstick coating containing a fluorocarbon resin
CN105316619A (en) * 2015-10-29 2016-02-10 中国科学院宁波材料技术与工程研究所 Method for preparing abrasion-resistant super-hydrophobic ceramic coating through thermal spraying technology and product
CN106086766A (en) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 A kind of preparation method of high wear-resistant low-friction coefficient thermal Sperayed Ceramic Coatings
CN106544618A (en) * 2016-11-04 2017-03-29 中国兵器科学研究院宁波分院 Stainless steel surfaces carry out the preparation method of ice-covering-proof coating

Also Published As

Publication number Publication date
CN108968702A (en) 2018-12-11

Similar Documents

Publication Publication Date Title
CN109706419B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN109957750B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN108977747B (en) Non-stick coating, preparation method thereof, pot and cooking equipment
CN108977748B (en) Non-stick coating, preparation method thereof, pot and cooking equipment
CN108728784B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
JP6641411B2 (en) Method of manufacturing pot utensil and method of manufacturing cookware
CN108968702B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN108720620B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN109136817B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN108977750B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN109930103B (en) Heating appliance and preparation method thereof
CN110129713B (en) Heating appliance and preparation method thereof
CN207294874U (en) Cookware and the equipment of cooking for including it
CN108977749B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN111455303A (en) Method for manufacturing non-stick utensils
CN207159333U (en) Pan and equipment of cooking
CN208104514U (en) Cookware and equipment of cooking
CN108720547B (en) Non-stick coating, preparation method thereof, cooker and cooking equipment
CN207949654U (en) Cookware and equipment of cooking
CN108968701B (en) Non-stick coating, preparation method thereof, pot and cooking equipment
CN108720621B (en) Non-stick coating, preparation method thereof, pot and cooking equipment
CN108912563B (en) Modified PFA powder, preparation method thereof, non-stick coating, pot and cooking equipment
CN207575006U (en) Cookware and equipment of cooking
CN207532283U (en) Cookware and equipment of cooking
CN108968628B (en) Screw and cooking equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant