CN108964806B - 一种带内全双工系统无线接入与回传联合资源分配方法 - Google Patents

一种带内全双工系统无线接入与回传联合资源分配方法 Download PDF

Info

Publication number
CN108964806B
CN108964806B CN201810866046.XA CN201810866046A CN108964806B CN 108964806 B CN108964806 B CN 108964806B CN 201810866046 A CN201810866046 A CN 201810866046A CN 108964806 B CN108964806 B CN 108964806B
Authority
CN
China
Prior art keywords
base station
time slot
self
downlink
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810866046.XA
Other languages
English (en)
Other versions
CN108964806A (zh
Inventor
陈前斌
魏延南
周钰
曹睿
王兆堃
唐伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Kuaitopai Technology Co ltd
Shenzhen Wanzhida Technology Transfer Center Co ltd
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810866046.XA priority Critical patent/CN108964806B/zh
Publication of CN108964806A publication Critical patent/CN108964806A/zh
Application granted granted Critical
Publication of CN108964806B publication Critical patent/CN108964806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种带内全双工系统无线接入与回传联合资源分配方法,属于移动通信技术领域。该方法包括:S1:建立带内全双工自回传网络架构:由一个多天线宏基站和若干单天线自回传小基站构成的蜂窝异构网络;S2:在维持网络稳定的条件下,通过带内全双工自回传网络下的无线接入与回传联合资源分配方法,最大化网络时间平均下的下行用户和频谱效率,并调整控制参量的取值而实现时延与频谱效率间的动态平衡。本发明解决了低功率节点的超密集部署所带来的回传链路部署困难、运营商高额成本以及网络变得更为复杂等问题。

Description

一种带内全双工系统无线接入与回传联合资源分配方法
技术领域
本发明属于移动通信技术领域,涉及一种带内全双工系统无线接入与回传联合资源分配方法。
背景技术
在下一代网络研究中,低功率节点的超密集部署被视为进一步提升网络容量的关键技术之一。超密集部署使得接入节点之间的距离缩小,这为我们使用大量过去未曾利用的更高频段的频率资源提供了可能性。由于更高频率意味着更短波长,这也允许了接入节点配备大量天线,从而实现更大程度的空间复用。
然而,低功率节点的超密集部署意味着网络将要部署比以往更为密集的回传链路,部署这些回传链路所需的花费对运营商来说是难以承受的并且网络也会因此变得更为复杂。因此,无线回传技术的优势显现出来,其能节省运营商的费用开销并克服在一些偏远地区部署回传设备困难的问题,给用户终端提供了根本上的灵活性。但是,无线回传技术需要与前传(fronthaul)链路共享可用的频谱和功率资源等,从而限制了网络容量的进一步提高,因而无线回传网络中高效的资源分配策略则显得尤为重要。
另一方面,在过去的几十年里,物理层技术的快速发展大幅度地提升了无线通信系统的性能,无线链路的信道容量直逼香农容量。然而无线系统的可用带宽是有限的,仅仅依靠物理层技术的提升来满足未来无线通信系统的性能需求是不够的。因此,无线资源的高效管理与分配所能起到的积极作用势必会日益凸显出来,建立在成熟物理层技术上的无线资源管理将会成为提升下一代移动通信网络性能的重要手段。
关于现有技术的不足:
现有的关于无线回传技术的研究中无线回传小基站的接入与回传链路大多工作在半双工模式下,即无线回传小基站在上行或下行链路传输中,其接入链路与回传链路分别采用正交的频谱资源。这些研究既没有考虑频率复用所能带来的潜在的系统容量提升,也没有利用全双工和自干扰消除技术给无线回传小基站带来的优势。无线回传小基站可以工作在全双工模式下,即接入链路与回传链路共用全部可能的频谱资源从而实现同时同频传输,进一步提高系统容量,更好的满足用户的服务质量需求。
此外,传统的无线资源管理方案多以优化无线网络的频谱效率和能量效率为目标,忽略了用户对不同业务的时延需求情况。实际网络是为用户提供具有不同时延特性的业务服务,因此无线资源管理不仅需要以高谱效和高能效为优化目标,还应考虑各类业务在时延方面的不同需求,在满足用户服务质量(Quality of Service,QoS)的同时进行业务时延自适应的无线资源管理,从而提高整个系统的稳定性与公平性。
发明内容
有鉴于此,本发明的目的在于提供一种带内全双工系统无线接入与回传联合资源分配方法,解决低功率节点的超密集部署所带来的回传链路部署困难、运营商高额成本以及网络变得更为复杂等问题。在每个离散资源调度时隙上,通过综合考虑信道状态信息、队列状态信息以及用户需求的随机性与有限性,在维持网络稳定的条件下,为宏蜂窝用户下行接入链路,小蜂窝用户下行接入与回传链路进行联合动态功率分配,从而最大化网络时间平均下的下行用户和频谱效率,并可通过调整控制参量的取值实现时延与频谱效率之间的动态平衡。
为达到上述目的,本发明提供如下技术方案:
一种带内全双工系统无线接入与回传联合资源分配方法,具体包括以下步骤:
S1:建立带内全双工自回传网络架构:由一个多天线宏基站和若干单天线自回传小基站构成的蜂窝异构网络;
S2:在维持网络稳定的条件下,通过带内全双工自回传网络下的无线接入与回传联合资源分配方法,最大化网络时间平均下的下行用户和频谱效率,并通过调整控制参量的取值实现时延与频谱效率间的动态平衡。
进一步,步骤S1中,所述的多天线宏基站与自回传小基站共用全部可能的频谱,且其均带有一个缓存空间用以暂存还未来得及发送的数据包;所述自回传小基站配备有全双工硬件,具备全双工能力。
进一步,步骤S1中,当所述自回传小基站工作在半双工模式下,自回传小基站只能接收来自所述多天线宏基站的下行回传链路数据并将其暂存在缓存队列中,或者只能给其用户发送下行接入链路数据;当所述自回传小基站工作在全双工模式下,自回传小基站在接收所述多天线宏基站的下行回传链路数据的同时利用相同的频谱资源传输下行接入链路数据给其用户;
所述自回传小基站即为特殊的宏蜂窝用户;所述多天线宏基站在下行链路同时给所有的宏蜂窝用户以及自回传小基站传输下行数据,且采用迫零(zero-forcing)波束赋形来减小同层干扰。
进一步,步骤S1中,所述的带内全双工自回传网络中的信道包含由路径损耗和阴影衰落构成的慢衰落,以及瑞丽平坦快衰落两部分;
所述的带内全双工自回传网络中下行链路共存在如下三种干扰:
跨层干扰:所述多天线宏基站与所述各个单天线自回传小基站使用相同的频谱资源分别为各自用户提供数据传输服务,因而,宏蜂窝用户会受到来自回传小基站下行接入链路的信号干扰,反之,小蜂窝用户会受到来自所述多天线宏基站下行接入链路的信号干扰;此外,当多天线宏基站与任意一个自回传小基站进行回传链路数据传输时,该自回传小基站会受到其他正在进行下行接入链路数据传输的自回传小基站的干扰;
同层干扰:所述各自回传小基站使用相同的频谱资源,因而当这些自回传小基站同时进行下行接入链路数据传输时,每个小蜂窝用户会受到来自其他自回传小基站的信号干扰;
自干扰:由于自干扰消除技术的局限性,当自回传小基站处于全双工工作模式时,其下行回传链路会受到来自自身下行接入链路的信号干扰。
进一步,步骤S1中,所述多天线宏基站与各自回传小基站均带有一个缓存空间用以暂存还未来得及发送的数据包,包括:所述多天线宏基站处的缓存空间为所有用户(宏蜂窝用户和小蜂窝用户)分别构建一个排队队列,用以暂存各用户请求的,来自核心网的还未来得及发送的数据包;所述各自回传小基站处的缓存空间为各自的小蜂窝用户分别构建一个排队队列,用以暂存各小蜂窝用户请求的,多天线宏基站通过下行回传链路发送过来的且还未来得及发送出去的数据包。
进一步,所述多天线宏基站处所有用户排队队列各时隙的数据包到达过程服从泊松分布,且在时隙间是独立同分布的;所述多天线宏基站与各自回传小基站处的用户排队队列随时隙变化的过程,包括:
所述多天线宏基站处各宏蜂窝用户下一时隙的队列长度等于当前时隙的队列长度减去当前时隙通过下行接入链路从队列中离开的数据包数,再加上当前时隙来自核心网的新到达的数据包数;所述多天线宏基站处各小蜂窝用户下一时隙的队列长度等于当前时隙的队列长度减去当前时隙通过下行回传链路从队列中离开的数据包数,再加上当前时隙来自核心网的新到达的数据包数;
所述各自回传小基站处各小蜂窝用户下一时隙的队列长度等于当前时隙的队列长度减去当前时隙通过下行接入链路从队列中离开的数据包数,再加上当前时隙接收到的多天线宏基站通过下行回传链路发送的数据包数。
进一步,步骤S2中,所述维持网络稳定是指网络中所有排队队列时间平均下的队列长度为一个有限值,即满足:
Figure BDA0001750962040000041
其中,Q(t)表示一个离散时间的排队队列;
所述的通过调整控制参量的取值实现时延与频谱效率间的动态平衡,包括:控制参量是一个非负实数,其取值越大,在进行动态联合资源分配时,则优先考虑频谱效率的优化,反之,则优先考虑降低时延;
所述的无线接入与回传联合资源分配方法,包括:在每个资源调度时隙上,通过综合考虑信道状态信息、队列状态信息以及用户需求的随机性和有限性,在保证网络稳定的条件下,对宏蜂窝用户下行接入链路,小蜂窝用户下行接入与回传链路进行联合动态功率分配,从而最大化网络时间平均下的下行用户和频谱效率。
进一步,所述的在每个资源调度时隙上进行联合动态功率分配,具体步骤包括:
(1)对于任意小蜂窝用户,若当前时隙其在所述多天线宏基站处的队列长度小于其在对应自回传小基站处的队列长度,则令所述小蜂窝用户的下行回传链路功率为0,即不分配功率;
(2)给定近似常数,利用基于拉格朗日对偶与KKT条件的迭代优化算法获得当前最优功率分配策略;
(3)根据步骤(2)获得的当前最优功率分配策略计算利用连续凸逼近理论松弛后的目标函数;
(4)若前后两次迭代的松弛后的目标函数值之差的绝对值小于等于给定的最大允许误差,或已达到最大迭代次数,则终止迭代过程,并取最后一次迭代所得的功率分配结果作为当前时隙的最优功率分配策略,否则,利用当前最优功率分配策略更新近似常数的值,并执行下一次迭代。
进一步,步骤(2)中,所述给定近似常数,利用基于拉格朗日对偶与KKT条件的迭代优化算法获得当前最优功率分配策略的具体步骤,包括:
1)给定近似常数,按下式计算拉格朗日函数:
Figure BDA0001750962040000042
其中,
Figure BDA0001750962040000043
为宏蜂窝用户k时隙t在多天线宏基站处的排队队列长度;T为每个时隙的长度;V为权重因子;
Figure BDA0001750962040000044
为宏蜂窝用户k在时隙t的下行接入链路近似频谱效率;Qn(t)为小蜂窝用户n时隙t在所述多天线宏基站处的排队队列长度;Dn(t)为小蜂窝用户n时隙t在对应的自回传小基站处的排队队列长度;
Figure BDA0001750962040000051
为小蜂窝用户n在时隙t的下行回传链路近似频谱效率;
Figure BDA0001750962040000052
为小蜂窝用户n在时隙t的下行接入链路近似频谱效率;
Figure BDA0001750962040000053
为小蜂窝用户n在时隙t的下行接入链路功率,且
Figure BDA0001750962040000054
Figure BDA0001750962040000055
为所述自回传小基站的最大发射功率;
Figure BDA0001750962040000056
为宏蜂窝用户k在时隙t的下行接入链路功率,且
Figure BDA0001750962040000057
Figure BDA0001750962040000058
为小蜂窝用户n在时隙t的下行回传链路功率,且
Figure BDA0001750962040000059
Figure BDA00017509620400000510
为多天线宏基站的最大发射功率;K为宏蜂窝用户数,N为小蜂窝用户数;αn,β为拉格朗日乘子;
2)用拉格朗日函数分别对参量
Figure BDA00017509620400000511
以及
Figure BDA00017509620400000512
求导,令得到的式子为零,求得当前迭代的最优功率分配策略;
3)根据获得的所述当前迭代的最优功率分配策略计算拉格朗日函数值;
4)若前后两次迭代的拉格朗日函数值之差的绝对值小于等于给定的最大允许误差,或已达到最大迭代次数,则终止迭代过程并取最后一次迭代所得的功率分配结果作为最优功率分配策略,否则,利用梯度下降法更新拉格朗日乘子,并执行下一次迭代。
进一步,步骤(4)中,所述利用当前最优功率分配策略更新近似常数的值,包括:
根据当前最优功率分配策略重新计算各用户在相应的下行链路上的信干噪比,并按下式更新近似常数:
Figure BDA00017509620400000513
Figure BDA00017509620400000514
其中,c、μ为近似常数,ε为信干噪比。
本发明的有益效果在于:本发明针对未来低功率节点的超密集部署所带来的回传链路部署困难、运营商高额成本以及网络变得更为复杂等问题,公开了一种带内全双工自回传网络架构,并进而设计了一种所述带内全双工自回传网络下的无线接入与回传联合资源分配方法。在每个离散资源调度时隙上,通过综合考虑信道状态信息、队列状态信息以及用户需求的随机性与有限性,在维持网络稳定的条件下,为宏蜂窝用户下行接入链路,小蜂窝用户下行接入与回传链路进行联合动态功率分配,从而最大化网络时间平均下的下行用户和频谱效率,并可通过调整控制参量的取值实现时延与频谱效率之间的动态平衡。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为带内全双工系统场景示意图;
图2为带内全双工系统自回传策略示意图;
图3为带内全双工系统下行链路干扰示意图;
图4为无线接入与回传联合资源分配算法流程图;
图5为基于拉格朗日对偶与KKT条件的迭代优化算法流程图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
参见图1,图1为本发明的带内全双工系统场景示意图。在本发明实例中,考虑一个两层动态异构蜂窝网络的下行传输场景,网络由一个配备有多天线的宏基站和其覆盖范围内若干单天线自回传小基站构成,且所述的所有基站共用全部可能的频谱。自回传小基站均配备有全双工硬件,具备全双工能力。无线信道包含由路径损耗和阴影衰落构成的慢衰落,以及瑞丽平坦快衰落两部分。图中MUE与SUE分别表示宏蜂窝用户和小蜂窝用户,MBS与SBS分别为多天线宏基站和单天线自回传小基站。
参见图2,图2为带内全双工系统自回传策略示意图。在本发明实例中,MBS与SBSs均带有一个缓存空间用以暂存还未来得及发送的数据包。当SBSs工作在半双工模式下,SBSs只能接收来自MBS的下行回传链路数据并将其暂存在缓存队列中,或者只能给其SUEs发送下行接入链路数据。当SBSs工作在全双工模式下,SBSs可以在接收MBS的下行回传链路数据的同时利用相同的频谱资源传输下行接入链路数据给其SUEs。此外,SBSs可被看作是特殊的MUEs,MBS在下行链路同时给所有的MUEs以及SBSs传输下行数据,且采用迫零(zero-forcing)波束赋形来减小同层干扰。
参见图3,图3为带内全双工系统下行链路干扰示意图,其中一共存在三种干扰:
跨层干扰:MBS与SBSs使用相同的频谱资源分别为各自用户传输数据,因而,MUEs会受到来自SBSs下行接入链路的信号干扰,反之,SUEs会受到来自MBS下行接入链路的信号干扰。此外,当MBS对某个SBS进行回传链路数据传输时,该SBS会受到其他正在进行下行接入链路数据传输的SBSs的干扰。
同层干扰:所述SBSs使用相同的频谱资源,因而当SBSs同时进行下行接入链路数据传输时,每个SUE会受到来自其他SBSs的信号干扰。
自干扰:由于自干扰消除技术的局限性,当SBS处于全双工工作模式时,其下行回传链路会受到来自自身下行接入链路的信号干扰。
参见图4,图4为无线接入与回传联合资源分配算法流程图,具体步骤如下。
步骤401:初始化系统参数及拉格朗日乘子,其中所述系统参数包括控制参量V、所有用户排队队列长度、算法执行最大时隙数Tmax等。进一步,令t=0。
步骤402:根据队列长度判断每个SUE在当前时隙下行回传链路所分配的功率,包括:
对于任意SUE,若当前时隙其在MBS处的队列长度小于其在对应SBS处的队列长度,则令该SUE的下行回传链路功率为0,即不分配功率。
步骤403:给定近似常数,利用基于拉格朗日对偶与KKT条件的迭代优化算法获得当前最优功率分配策略。
步骤404:根据获得的当前最优功率分配策略计算如下所示的利用连续凸逼近理论松弛后的目标函数;
Figure BDA0001750962040000071
其中,
Figure BDA0001750962040000072
为MUEk时隙t在所述MBS处的排队队列长度;T为每个时隙的长度;V为权重因子;
Figure BDA0001750962040000073
为MUEk在时隙t的下行接入链路近似频谱效率;Qn(t)为SUEn时隙t在所述MBS处的排队队列长度;Dn(t)为SUEn时隙t在对应的SBS处的排队队列长度;
Figure BDA0001750962040000074
为SUEn在时隙t的下行回传链路近似频谱效率;
Figure BDA0001750962040000075
为SUEn在时隙t的下行接入链路近似频谱效率;K为宏蜂窝用户数,N为小蜂窝用户数。
所述近似频谱效率
Figure BDA0001750962040000076
Figure BDA0001750962040000077
均仿照下式计算:
Figure BDA0001750962040000078
其中,所述
Figure BDA0001750962040000079
为近似频谱效率,c,μ为近似常数,ε为信干噪比。
步骤405:判断是否满足迭代终止条件,具体包括:
若前后两次迭代的所述松弛后的目标函数值之差的绝对值小于等于给定的最大允许误差,或已达到最大迭代次数,则终止迭代过程并取最后一次迭代所得的功率分配结果作为当前时隙的最优功率分配策略,接着执行步骤406。否则,利用当前最优功率分配策略按下式更新近似常数的值,并跳转到步骤403进行下一次迭代:
Figure BDA00017509620400000710
Figure BDA0001750962040000081
步骤406:利用所述获得的当前时隙的最优功率分配策略更新用户排队队列,包括:
Figure BDA0001750962040000082
Figure BDA0001750962040000083
Figure BDA0001750962040000084
其中,
Figure BDA0001750962040000085
为时隙t内MUEk在所述MBS处的排队队列新到达的数据包数;
Figure BDA0001750962040000086
为MUEk在时隙t的下行接入链路频谱效率;αn(t)为时隙t内SUEn在所述MBS处的排队队列新到达的数据包数;
Figure BDA0001750962040000087
为SUEn在时隙t的下行回传链路频谱效率;
Figure BDA0001750962040000088
为SUEn在时隙t的下行接入链路频谱效率。
步骤407:判断算法执行时隙数是否达到最大时隙数Tmax,若不满足,则令t=t+1,并跳转到步骤402继续执行,否则算法结束。
参见图5,图5为基于拉格朗日对偶与KKT条件的迭代优化算法流程图,具体步骤如下:
步骤501:给定近似常数,按下式计算拉格朗日函数:
Figure BDA0001750962040000089
其中,
Figure BDA00017509620400000810
为SUEn在时隙t的下行接入链路功率,且
Figure BDA00017509620400000811
Figure BDA00017509620400000812
为所述SBSs的最大发射功率;
Figure BDA00017509620400000813
为MUEk在时隙t的下行接入链路功率,且
Figure BDA00017509620400000814
Figure BDA00017509620400000815
为SUEn在时隙t的下行回传链路功率,且
Figure BDA00017509620400000816
Figure BDA00017509620400000817
为所述MBS的最大发射功率;αn,β为拉格朗日乘子。
步骤502:用所述拉格朗日函数分别对待优化参量
Figure BDA00017509620400000818
以及
Figure BDA00017509620400000819
求导,令得到的式子为零,求得当前迭代的最优功率分配策略。
步骤503:根据获得的所述当前迭代的最优功率分配策略计算拉格朗日函数值;
步骤504:判断是否满足迭代终止条件,具体包括:
若前后两次迭代的所述拉格朗日函数值之差的绝对值小于等于给定的最大允许误差,或已达到最大迭代次数,则终止迭代过程并取最后一次迭代所得的功率分配结果作为最优功率分配策略,算法结束。否则,利用梯度下降法更新所述拉格朗日乘子,并跳转到步骤501执行下一次迭代。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (7)

1.一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于,该方法具体包括以下步骤:
S1:建立带内全双工自回传网络架构:由一个多天线宏基站和若干单天线自回传小基站构成的蜂窝异构网络;
S2:在维持网络稳定的条件下,通过带内全双工自回传网络下的无线接入与回传联合资源分配方法,最大化网络时间平均下的下行用户和频谱效率,并通过调整控制参量的取值实现时延与频谱效率间的动态平衡;
所述的通过调整控制参量的取值实现时延与频谱效率间的动态平衡,包括:控制参量是一个非负实数,其取值越大,在进行动态联合资源分配时,则优先考虑频谱效率的优化,反之,则优先考虑降低时延;
所述的无线接入与回传联合资源分配方法,包括:在每个资源调度时隙上,通过综合考虑信道状态信息、队列状态信息以及用户需求的随机性和有限性,在保证网络稳定的条件下,对宏蜂窝用户下行接入链路,小蜂窝用户下行接入与回传链路进行联合动态功率分配,从而最大化网络时间平均下的下行用户和频谱效率;
所述的在每个资源调度时隙上进行联合动态功率分配,具体步骤包括:
(1)对于任意小蜂窝用户,若当前时隙其在所述多天线宏基站处的队列长度小于其在对应自回传小基站处的队列长度,则令所述小蜂窝用户的下行回传链路功率为0,即不分配功率;
(2)给定近似常数,利用基于拉格朗日对偶与KKT条件的迭代优化算法获得当前最优功率分配策略,具体包括:
1)给定近似常数,按下式计算拉格朗日函数:
Figure FDA0002885731710000011
其中,
Figure FDA0002885731710000012
为宏蜂窝用户k时隙t在多天线宏基站处的排队队列长度;T为每个时隙的长度;V为权重因子;
Figure FDA0002885731710000013
为宏蜂窝用户k在时隙t的下行接入链路近似频谱效率;Qn(t)为小蜂窝用户n时隙t在所述多天线宏基站处的排队队列长度;Dn(t)为小蜂窝用户n时隙t在对应的自回传小基站处的排队队列长度;
Figure FDA0002885731710000014
为小蜂窝用户n在时隙t的下行回传链路近似频谱效率;
Figure FDA0002885731710000015
为小蜂窝用户n在时隙t的下行接入链路近似频谱效率;
Figure FDA0002885731710000016
为小蜂窝用户n在时隙t的下行接入链路功率,且
Figure FDA0002885731710000021
Figure FDA0002885731710000022
为所述自回传小基站的最大发射功率;
Figure FDA0002885731710000023
为宏蜂窝用户k在时隙t的下行接入链路功率,且
Figure FDA0002885731710000024
Figure FDA0002885731710000025
为小蜂窝用户n在时隙t的下行回传链路功率,且
Figure FDA0002885731710000026
Figure FDA0002885731710000027
为多天线宏基站的最大发射功率;K为宏蜂窝用户数,N为小蜂窝用户数;αn,β为拉格朗日乘子;
2)用拉格朗日函数分别对参量
Figure FDA0002885731710000028
Figure FDA0002885731710000029
以及
Figure FDA00028857317100000210
求导,令得到的式子为零,求得当前迭代的最优功率分配策略;
3)根据获得的所述当前迭代的最优功率分配策略计算拉格朗日函数值;
4)若前后两次迭代的拉格朗日函数值之差的绝对值小于等于给定的最大允许误差,或已达到最大迭代次数,则终止迭代过程并取最后一次迭代所得的功率分配结果作为最优功率分配策略,否则,利用梯度下降法更新拉格朗日乘子,并执行下一次迭代;
(3)根据步骤(2)获得的当前最优功率分配策略计算利用连续凸逼近理论松弛后的目标函数;
(4)若前后两次迭代的松弛后的目标函数值之差的绝对值小于等于给定的最大允许误差,或已达到最大迭代次数,则终止迭代过程,并取最后一次迭代所得的功率分配结果作为当前时隙的最优功率分配策略,否则,利用当前最优功率分配策略更新近似常数的值,并执行下一次迭代;
所述利用当前最优功率分配策略更新近似常数的值,包括:根据当前最优功率分配策略重新计算各用户在相应的下行链路上的信干噪比,并按下式更新近似常数:
Figure FDA00028857317100000211
Figure FDA00028857317100000212
其中,c、μ为近似常数,ε为信干噪比。
2.根据权利要求1所述的一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于:步骤S1中,所述的多天线宏基站与自回传小基站共用全部可能的频谱,且其均带有一个缓存空间用以暂存还未来得及发送的数据包;所述自回传小基站配备有全双工硬件,具备全双工能力。
3.根据权利要求1所述的一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于:步骤S1中,当所述自回传小基站工作在半双工模式下,自回传小基站只能接收来自所述多天线宏基站的下行回传链路数据并将其暂存在缓存队列中,或者只能给其用户发送下行接入链路数据;当所述自回传小基站工作在全双工模式下,自回传小基站在接收所述多天线宏基站的下行回传链路数据的同时利用相同的频谱资源传输下行接入链路数据给其用户;
所述自回传小基站即为特殊的宏蜂窝用户;所述多天线宏基站在下行链路同时给所有的宏蜂窝用户以及自回传小基站传输下行数据,且采用迫零波束赋形来减小同层干扰。
4.根据权利要求1所述的一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于:步骤S1中,所述的带内全双工自回传网络中的信道包含由路径损耗和阴影衰落构成的慢衰落,以及瑞丽平坦快衰落两部分;
所述的带内全双工自回传网络中下行链路共存在如下三种干扰:
跨层干扰:所述多天线宏基站与各个单天线自回传小基站使用相同的频谱资源分别为各自用户提供数据传输服务,因而,宏蜂窝用户会受到来自回传小基站下行接入链路的信号干扰,反之,小蜂窝用户会受到来自所述多天线宏基站下行接入链路的信号干扰;此外,当多天线宏基站与任意一个自回传小基站进行回传链路数据传输时,该自回传小基站会受到其他正在进行下行接入链路数据传输的自回传小基站的干扰;
同层干扰:各自回传小基站使用相同的频谱资源,因而当这些自回传小基站同时进行下行接入链路数据传输时,每个小蜂窝用户会受到来自其他自回传小基站的信号干扰;
自干扰:由于自干扰消除技术的局限性,当自回传小基站处于全双工工作模式时,其下行回传链路会受到来自自身下行接入链路的信号干扰。
5.根据权利要求1所述的一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于:步骤S1中,所述多天线宏基站与各自回传小基站均带有一个缓存空间用以暂存还未来得及发送的数据包,包括:所述多天线宏基站处的缓存空间为宏蜂窝用户和小蜂窝用户分别构建一个排队队列,用以暂存各用户请求的,来自核心网的还未来得及发送的数据包;所述各自回传小基站处的缓存空间为各自的小蜂窝用户分别构建一个排队队列,用以暂存各小蜂窝用户请求的,多天线宏基站通过下行回传链路发送过来的且还未来得及发送出去的数据包。
6.根据权利要求5所述的一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于:所述多天线宏基站处所有用户排队队列各时隙的数据包到达过程服从泊松分布,且在时隙间是独立同分布的;所述所有用户包括宏蜂窝用户和小蜂窝用户;
所述多天线宏基站与各自回传小基站处的用户排队队列随时隙变化的过程,包括:
所述多天线宏基站处各宏蜂窝用户下一时隙的队列长度等于当前时隙的队列长度减去当前时隙通过下行接入链路从队列中离开的数据包数,再加上当前时隙来自核心网的新到达的数据包数;所述多天线宏基站处各小蜂窝用户下一时隙的队列长度等于当前时隙的队列长度减去当前时隙通过下行回传链路从队列中离开的数据包数,再加上当前时隙来自核心网的新到达的数据包数;
所述各自回传小基站处各小蜂窝用户下一时隙的队列长度等于当前时隙的队列长度减去当前时隙通过下行接入链路从队列中离开的数据包数,再加上当前时隙接收到的多天线宏基站通过下行回传链路发送的数据包数。
7.根据权利要求1所述的一种带内全双工系统无线接入与回传联合资源分配方法,其特征在于:步骤S2中,所述维持网络稳定是指网络中所有排队队列时间平均下的队列长度为一个有限值,即满足:
Figure FDA0002885731710000041
其中,Q(t)表示一个离散时间的排队队列。
CN201810866046.XA 2018-08-01 2018-08-01 一种带内全双工系统无线接入与回传联合资源分配方法 Active CN108964806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810866046.XA CN108964806B (zh) 2018-08-01 2018-08-01 一种带内全双工系统无线接入与回传联合资源分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810866046.XA CN108964806B (zh) 2018-08-01 2018-08-01 一种带内全双工系统无线接入与回传联合资源分配方法

Publications (2)

Publication Number Publication Date
CN108964806A CN108964806A (zh) 2018-12-07
CN108964806B true CN108964806B (zh) 2021-03-16

Family

ID=64467023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810866046.XA Active CN108964806B (zh) 2018-08-01 2018-08-01 一种带内全双工系统无线接入与回传联合资源分配方法

Country Status (1)

Country Link
CN (1) CN108964806B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110225524B (zh) * 2019-05-29 2022-11-11 暨南大学 一种基于5g下行链路数据传输的方法
CN111726813B (zh) * 2020-05-29 2023-04-28 西安邮电大学 一种空中微基站无线回传方法及无线通信系统
FR3112264A1 (fr) * 2020-07-02 2022-01-07 Sagemcom Broadband Sas Procede de configuration d’au moins une ressource radio d’un reseau de communication, dispositif noeud, et reseau de communication.
CN112020146B (zh) * 2020-08-12 2023-05-26 北京遥感设备研究所 考虑回传约束的多用户联合调度和功率分配方法及系统
CN112188497B (zh) * 2020-08-23 2023-06-09 南京工业大学 一种空地一体化车辆网频谱资源优化方法
CN112260749B (zh) * 2020-10-22 2022-04-05 东南大学 一种毫米波卫星自回传的波束赋型方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307511A (zh) * 2018-03-07 2018-07-20 重庆邮电大学 无线自回传小基站接入控制与资源分配联合优化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106604300B (zh) * 2016-11-10 2020-01-10 北京邮电大学 一种基于全双工和大规模天线技术的小小区基站自供能自回传方法
CN107682935B (zh) * 2017-09-30 2020-09-22 重庆邮电大学 一种基于系统稳定性的无线自回传资源调度方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307511A (zh) * 2018-03-07 2018-07-20 重庆邮电大学 无线自回传小基站接入控制与资源分配联合优化方法

Also Published As

Publication number Publication date
CN108964806A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108964806B (zh) 一种带内全双工系统无线接入与回传联合资源分配方法
Li et al. Radio resource management considerations for 5G millimeter wave backhaul and access networks
Gazestani et al. A survey on implementation and applications of full duplex wireless communications
RU2420038C2 (ru) Способ управления доступом к беспроводному каналу tdma из узлов сети линейной или древовидной топологии
Zhong et al. Traffic matching in 5G ultra-dense networks
CN106714093B (zh) 一种蜂窝d2d通信联合用户接入及切片划分方法
Khoryaev et al. Performance analysis of dynamic adjustment of TDD uplink-downlink configurations in outdoor picocell LTE networks
Yadav et al. Full-duplex communications: Performance in ultradense mm-wave small-cell wireless networks
Goyal et al. Full duplex operation for small cells
Vu et al. Joint in-band backhauling and interference mitigation in 5G heterogeneous networks
Swetha et al. Selective overlay mode operation for D2D communication in dense 5G cellular networks
CN111615202A (zh) 基于noma与波束成型的超密集网络无线资源分配方法
Bergren Design considerations for a 5g network architecture
Zhuang et al. Joint access and backhaul resource management for ultra-dense networks
Hao et al. Beam alignment for MIMO-NOMA millimeter wave communication systems
Wang et al. Beamforming optimization and power allocation for user-centric MIMO-NOMA IoT networks
Łukowa et al. Dynamic self-backhauling in 5G networks
Liu et al. Statistical resource allocation based on cognitive interference estimation in ultra-dense hetnets
Zhang et al. Co-optimizing performance and fairness using weighted pf scheduling and iab-aware flow control
Chen et al. Multi-cell interference coordinated scheduling in mmWave 5G cellular systems
CN106102173A (zh) 基于多播波束成形的无线回传及基站分簇联合优化方法
Berraki et al. Codebook based beamforming and multiuser scheduling scheme for mmWave outdoor cellular systems in the 28, 38 and 60GHz bands
Maltsev et al. Performance evaluation of the isolated mmWave small cell
Rony et al. Cooperative spectrum sharing in 5G access and backhaul networks
Habiba et al. Backhauling 5G Small Cells with Massive‐MIMO‐Enabled mmWave Communication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230828

Address after: 518000, No. 809, 1st Lane, Zone 1, Haibin New Village, Gushu Community, Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen kuaitopai Technology Co.,Ltd.

Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000

Patentee before: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd.

Effective date of registration: 20230828

Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000

Patentee after: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd.

Address before: 400065 Chongqing Nan'an District huangjuezhen pass Chongwen Road No. 2

Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS

TR01 Transfer of patent right