CN108963452A - 双向辐射宽带微带天线 - Google Patents

双向辐射宽带微带天线 Download PDF

Info

Publication number
CN108963452A
CN108963452A CN201810843270.7A CN201810843270A CN108963452A CN 108963452 A CN108963452 A CN 108963452A CN 201810843270 A CN201810843270 A CN 201810843270A CN 108963452 A CN108963452 A CN 108963452A
Authority
CN
China
Prior art keywords
layer
medium substrate
layer medium
antenna
radiating curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810843270.7A
Other languages
English (en)
Inventor
李龙
易浩
王杨子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810843270.7A priority Critical patent/CN108963452A/zh
Publication of CN108963452A publication Critical patent/CN108963452A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开一种双向辐射宽带微带天线,主要解决现有技术中微带天线只能单向辐射,且带宽窄的问题。其包括顶层辐射阵列(1)、三层介质基板(2,4,6)、两层金属地板(3,5)和底层辐射阵列(7)。顶层辐射阵列位于第一层介质基板上表面,由N×M个方形贴片(11)组成,每个方形贴片上刻有左右对称的两个矩形缝隙,第一层介质板上设有N×M个金属化过孔(21),每个过孔的上底面圆心与方形贴片的中心一一对应,辐射阵列通过金属化过孔与金属地板相连,上层金属地板位于第一层介质基板和第二层介质基板之间,第二层介质基板的内部设有带状馈线,外侧设有馈电点,带状馈线与馈电点相连。本发明具有双向辐射、宽带的特点,可用于无线通信系统。

Description

双向辐射宽带微带天线
技术领域
本发明属于天线技术领域,更进一步涉及一种双向辐射宽带微带天线,可用于无线通信系统。
背景技术
随着无线通信系统的发展,人们对于天线功能的需求与日俱增。微带天线由于具有体积小、重量轻、低剖面、易集成和制造成本低等优点,被广泛应用于无线通信和雷达系统等领域。微带天线是在带有导体接地板的介质基片上贴加导体薄片而形成的天线,利用馈线馈电,在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。
射频识别RFID技术,是无线通信领域的一个分支,主要包括读写器、电子标签、系统软件等三部分组成,其工作原理是读写器通过读写器天线来发射和接收电磁波,读取附着在物品上的电子标签内部数据信息,并将数据传递到计算机或者后台系统,从而实现对物品的数据收集和管理。RFID应用范围广,在多通道门禁系统如图书馆、商场、档案馆等。在此类系统中,读写器天线多采用微带天线,实现对电磁信号的发射与接收。传统微带天线最大辐射方向在天线一侧,在多通道门禁中,如果想要实现双向辐射,往往需要在两个门的公共端架设两套微带天线,增加了空间和成本,且操作起来不方便,结构相对复杂。
同时,传统微带天线由于品质因数过高,限制了其频带的扩展,相对带宽一般只有0.7%-7%,限制了微带天线的实际应用范围。展宽天线频带的方法主要有以下几种:增加介质的厚度;采用低介电常数的厚介质层;贴片表面开槽;附加阻抗匹配网络;附加寄生贴片等。这些方法虽然能够展宽天线带宽,但是可能会导致天线辐射方向图恶化,并给馈电带来一些问题。
发明内容
本发明的目的在于针对上述现有技术的不足,提出了一种双向辐射宽带微带天线,以提高微带天线的工作带宽,实现微带天线双向辐射。
为实现上述目的,本发明从天线本身的结构设计着手,整个天线包括:
顶层辐射阵列、三层介质基板、两层金属地板和底层辐射阵列,顶层辐射阵列位于第一层介质基板的上表面,上层金属地板位于第一层介质基板和第二层介质基板之间;第二层介质基板的内部设有带状馈线,外侧设有馈电点,该带状馈线与馈电点相连;下层金属地板位于第二层介质基板和第三层介质基板之间,底层辐射阵列位于第三层介质基板的下表面,其特征在于:
所述顶层辐射阵列由N×M个方形贴片组成,每个方形贴片上蚀刻有左右对称的两个矩形缝隙,其中,N为偶数,2≤N≤8,M为整数,3≤M≤8;
所述第一层介质基板上设有N×M个金属化过孔,每个金属化过孔的上底面圆心与方形贴片的中心一一对应,辐射阵列通过金属化过孔与上层金属地板相连;
所述带状馈线通过上层金属地板和下层金属地板同时激励顶层辐射阵列和底层辐射阵列,以实现双向辐射。
本发明与现有技术相比具有以下优点:
第一,本发明由于将两层辐射阵列分置于带状馈线的上下两侧,使得带状馈线可同时激励顶层辐射阵列和底层辐射阵列,从而实现双向辐射;
第二,本发明由于在金属地板上蚀刻有矩形缝隙,带状馈线通过该矩形缝隙耦合电磁能量给辐射阵列馈电,并同时激励辐射阵列和金属地板,使得天线可工作在多个谐振模式下,展宽了天线的带宽。
附图说明
图1为本发明的整体结构示意图;
图2为图1的左视图;
图3为图1的俯视图;
图4为本发明中第一层介质基板的结构示意图;
图5为本发明中上层金属地板的结构示意图;
图6为本发明中第二层介质基板的结构示意图;
图7为本发明实施例1的回波损耗特性曲线;
图8为本发明实施例1的辐射方向图;
图9为本发明实施例2的回波损耗特性曲线;
图10为本发明实施例2的辐射方向图。
具体实施方式
下面结合附图对本发明做进一步详述:
参照图1、图2、图3,本发明包括顶层辐射阵列1、第一层介质基板2、上层金属地板3、第二层介质基板4、下层金属地板5、第三层介质基板6和底层辐射阵列7。顶层辐射阵列1位于第一层介质基板2的上表面,上层金属地板3位于第一层介质基板2和第二层介质基板4之间;第二层介质基板4的内部设有带状馈线41,外侧设有馈电点42,该带状馈线41与馈电点42相连;下层金属地板5位于第二层介质基板4和第三层介质基板6之间,底层辐射阵列7位于第三层介质基板6的下表面。
所述第一层介质基板2、上层金属地板3、第二层介质基板4、下层金属地板5和第三层介质基板6的横截面尺寸相同,横截面的长边均为L1,宽边均为W1;第一层介质基板2的介电常数为ε1,高度为H1;第二层介质基板4的介电常数为ε2,高度为H2;第三层介质基板6与第一层介质基板2的介电常数、高度均相同,取值分别为:2×λ0≤L1≤2.8×λ0,W1=(M×W2)+(M-1)×S1,2≤ε1≤4,0.02×λ0≤H1≤0.08×λ0,2≤ε2≤4,0.02×λ0≤H2≤0.08×λ0,其中,λ0为天线工作频带中心频率对应的自由空间波长。
所述顶层辐射阵列1,由N×M个方形贴片11组成,每个方形贴片上蚀刻有左右对称的两个矩形缝隙;每个方形贴片11的边长为W2,每个方形贴片与其上下相邻方形贴片的间距为S1,每个方形贴片与其左右相邻方形贴片的间距为S2;每个方形贴片中的矩形缝隙长边为L3,宽边为W3,矩形缝隙长边到方形贴片的边的距离为A1,矩形缝隙宽边到方形贴片的边的距离为A2,其中,N为偶数,2≤N≤8,M为整数,3≤M≤8,0.07×λ0≤W2≤0.195×λ0,0.01×λ0≤S1≤0.04×λ0,0.01×λ0≤S2≤0.04×λ0,0.06×λ0≤L3≤0.185×λ0,0.01×λ0≤W3≤0.04×λ0,0.035×λ0≤A1≤0.095×λ0λ0为天线工作频带中心频率对应的自由空间波长。
所述底层辐射阵列7与顶层辐射阵列1结构、尺寸均相同。
参照图4,所述第一层介质基板2上设有N×M个金属化过孔21,每个金属化过孔的直径为R;每个金属化过孔中心与其上下相邻的金属化过孔的中心的间距为S3,每个金属化过孔中心与其左右相邻的金属化过孔的中心的间距为S4;第一个金属化过孔的中心与第一层介质基板长边的距离为A3,第一个金属化过孔的中心与第一层介质基板宽边的距离为A4,其中,N为偶数,2≤N≤8,M为整数,3≤M≤8,0.008×λ0≤R≤0.02×λ0,S3=W2+S1,S4=W2+S2,其中λ0为天线工作频带中心频率对应的自由空间波长。
参照图5,所述上层金属地板3上蚀刻有矩形缝隙31,矩形缝隙的长度为L5,宽度为W5,矩形缝隙长边与金属地板宽边的距离为A6,矩形缝隙宽边与金属地板长边的距离为A5,取值分别为:0.3×λ0≤L5≤0.7×λ0,0.02×λ0≤W5≤0.07×λ0其中,λ0为天线工作频带中心频率对应的自由空间波长。
所述下层金属地板5与上层金属地板3结构、尺寸均相同。
参照图6,所述第二层介质基板4的内部设有带状馈线41,其长度为L4,宽度为W4,带状馈线宽边与第二层介质基板宽边重合,带状馈线长边与第二层介质基板长边的距离为A7。取值分别为:0.01×λ0≤W4≤0.04×λ0其中,λ0为天线工作频带中心频率对应的自由空间波长,εe是等效介电常数,ε2为第二层介质基板的介电常数,H2为第二层介质基板的高度。
本发明的效果通过以下仿真实例进一步说明:
实施例1:工作频带为26.63GHz~32.65GHz的微带天线,各结构尺寸参数如下。
每层介质基板与每层金属地板的横截面长边均为L1=24mm,宽边均为W1=8.05mm;第一层介质基板2的介电常数为ε1=3.48,高度为H1=0.508mm;第二层介质基板4的介电常数为ε2=3.48,高度为H2=0.508mm。
顶层辐射阵列1由6×5个方形贴片11组成,每个方形贴片11的边长为W2=1.45mm,每个方形贴片11与其上下相邻方形贴片的间距为S1=0.2mm,每个方形贴片与其左右相邻方形贴片的间距为S2=0.2mm;每个方形贴片中的矩形缝隙长边为L3=1.25mm,宽边为W3=0.2mm,矩形缝隙长边到方形贴片的边的距离为A1=0.6mm,矩形缝隙宽边到方形贴片的边的距离为A2=0.1mm。
第一层介质板2上设有6×5个金属化过孔21,每个金属化过孔的直径为R=0.1mm;每个金属化过孔中心与其上下相邻的金属化过孔的中心的间距为S3=1.65mm,每个金属化过孔中心与其左右相邻的金属化过孔的中心的间距为S4=1.65mm;第一个金属化过孔的中心与第一层介质基板长边的距离为A3=0.725mm,第一个金属化过孔的中心与第一层介质基板宽边的距离为A4=7.15mm。
上层金属地板3上蚀刻有矩形缝隙31,用于激励顶层辐射阵列1,矩形缝隙的长度为L5=5.5mm,宽度为W5=0.5mm,矩形缝隙长边与金属地板宽边的距离为A6=11.75mm,矩形缝隙宽边与金属地板长边的距离为A5=1.275mm;第二层介质基板4的内部设有带状馈线41,其长度为L4=13.2mm,宽度为W4=0.23mm,带状馈线宽边与第二层介质基板宽边重合,带状馈线长边与第二层介质基板长边的距离为A7=3.91mm。
仿真内容:
仿真1,在高频电磁仿真软件CST STUDIO SUITE中,对实施例1天线建立模型,在工作频带内对回波损耗特性进行仿真分析,仿真结果如图7,其横坐标为天线的工作频率,纵坐标为回波损耗强度。图7可见,该天线带宽约为20.3%,该天线的工作带宽较大。
仿真2,在高频电磁仿真软件CST STUDIO SUITE中,对实施例1天线建立模型,在工作频带内对方向图特性进行仿真分析,仿真结果如图8,其中,图8(a)为天线工作在27GHz的E面和H面方向图,图8(b)为天线工作在29.5GHz的E面和H面方向图,图8(c)为天线工作在32GHz的E面和H面方向图。从图8可见,该天线可在较宽的工作频带内实现双向辐射。
从以上实施例的仿真结果可见,设计的双向辐射宽带天线与现有技术相比,天线在实现双向辐射的同时,获得了较大的工作带宽。
实施例2:工作频带为3.56GHz~4.51GHz的微带天线,各结构尺寸参数如下。
每层介质基板与每层金属地板的横截面长边均为L1=160mm,宽边均为W1=60.2mm;第一层介质基板2的介电常数为ε1=2.65,高度为H1=3.5mm;第二层介质基板4的介电常数为ε2=2.65,高度为H2=3mm。
顶层辐射阵列1由4×4个方形贴片11组成,每个方形贴片11的边长为W2=14mm,每个方形贴片11与其上下相邻方形贴片的间距为S1=1.4mm,每个方形贴片与其左右相邻方形贴片的间距为S2=1.6mm;每个方形贴片中的矩形缝隙长边为L3=12mm,宽边为W3=1mm,矩形缝隙长边到方形贴片的边的距离为A1=5.8mm,矩形缝隙宽边到方形贴片的边的距离为A2=1mm。
第一层介质板2上设有4×4个金属化过孔21,每个金属化过孔的直径为R=1mm;每个金属化过孔中心与其上下相邻的金属化过孔的中心的间距为S3=15.4mm,每个金属化过孔中心与其左右相邻的金属化过孔的中心的间距为S4=15.6mm;第一个金属化过孔的中心与第一层介质基板长边的距离为A3=7mm,第一个金属化过孔的中心与第一层介质基板宽边的距离为A4=49.9mm。
上层金属地板3上蚀刻有矩形缝隙31,用于激励顶层辐射阵列1,矩形缝隙的长度为L5=36mm,宽度为W5=2.5mm,矩形缝隙长边与金属地板宽边的距离为A6=78.75mm,矩形缝隙宽边与金属地板长边的距离为A5=12.1mm;第二层介质基板4的内部设有带状馈线41,其长度为L4=92mm,宽度为W4=1.2mm,带状馈线宽边与第二层介质基板宽边重合,带状馈线长边与第二层介质基板长边的距离为A7=29.5mm。
仿真内容:
仿真1,在高频电磁仿真软件CST STUDIO SUITE中,对实施例2天线建立模型,在工作频带内对回波损耗特性进行仿真分析,仿真结果如图9,其横坐标为天线的工作频率,纵坐标为回波损耗强度。图9可见,该天线带宽约为23.5%,该天线的工作带宽较大。
仿真2,在高频电磁仿真软件CST STUDIO SUITE中,对实施例2天线建立模型,在工作频带内对方向图特性进行仿真分析,仿真结果如图10,其中,图10(a)为天线工作在3.7GHz的E面和H面方向图,图10(b)为天线工作在4GHz的E面和H面方向图,图10(c)为天线工作在4.3GHz的E面和H面方向图。从图10可见,该天线可在较宽的工作频带内实现双向辐射。
从以上实施例的仿真结果可见,本发明与现有技术相比,在实现双向辐射的同时,可获得较大的工作带宽。

Claims (10)

1.双向辐射宽带微带天线,包括顶层辐射阵列(1)、三层介质基板(2,4,6)、两层金属地板(3,5)和底层辐射阵列(7),顶层辐射阵列(1)位于第一层介质基板(2)的上表面,上层金属地板(3)位于第一层介质基板(2)和第二层介质基板(4)之间;第二层介质基板(4)的内部设有带状馈线(41),外侧设有馈电点(42),该带状馈线(41)与馈电点(42)相连;下层金属地板(5)位于第二层介质基板(4)和第三层介质基板(6)之间,底层辐射阵列(7)位于第三层介质基板(6)的下表面,其特征在于:
所述顶层辐射阵列(1)由N×M个方形贴片(11)组成,每个方形贴片上蚀刻有左右对称的两个矩形缝隙,其中,N为偶数,2≤N≤8,M为整数,3≤M≤8;
所述第一层介质基板(2)上设有N×M个金属化过孔(21),每个金属化过孔(21)的上底面圆心与方形贴片(11)的中心一一对应,辐射阵列(1)通过金属化过孔(21)与上层金属地板(3)相连;
所述带状馈线(41)通过上层金属地板(3)和下层金属地板(5)同时激励顶层辐射阵列(1)和底层辐射阵列(7),以实现双向辐射。
2.根据权利要求1所述的天线,其特征在于,每个方形贴片(11)的边长为W2,每个方形贴片(11)与其上下相邻方形贴片的间距为S1,每个方形贴片与其左右相邻方形贴片的间距为S2,其中:0.07×λ0≤W2≤0.195×λ0,0.01×λ0≤S1≤0.04×λ0,0.01×λ0≤S2≤0.04×λ0,λ0为天线工作频带中心频率对应的自由空间波长。
3.根据权利要求1所述的天线,其特征在于,每个方形贴片中的矩形缝隙长边为L3,宽边为W3,矩形缝隙长边到方形贴片的边的距离为A1,矩形缝隙宽边到方形贴片的边的距离为A2,取值如下:
0.06×λ0≤L3≤0.185×λ0,0.01×λ0≤W3≤0.04×λ0
0.035×λ0≤A1≤0.095×λ0
其中λ0为天线工作频带中心频率对应的自由空间波长。
4.根据权利要求1所述的天线,其特征在于,每层介质基板与每层金属地板的横截面尺寸相同,横截面的长边均为L1,宽边均为W1,取值分别为:2×λ0≤L1≤2.8×λ0,W1=(M×W2)+(M-1)×S1,其中,λ0为天线工作频带中心频率对应的自由空间波长。
5.根据权利要求1所述的天线,其特征在于:
第一层介质基板(2)的介电常数为ε1,高度为H1,取值分别为:2≤ε1≤4,0.02×λ0≤H1≤0.08×λ0,其中λ0为天线工作频带中心频率对应的自由空间波长;
第二层介质基板(4)的介电常数为ε2,高度为H2,取值分别为:2≤ε2≤4,0.02×λ0≤H2≤0.08×λ0
第三层介质基板(6)与第一层介质基板(2)的介电常数、高度均相同。
6.根据权利要求1所述的天线,其特征在于,每个金属化过孔(21)直径为R,过孔中心与其上下相邻的金属化过孔的中心间距为S3,过孔中心与其左右相邻的金属化过孔的中心的间距为S4,取值分别为:0.008×λ0≤R≤0.02×λ0,S3=W2+S1,S4=W2+S2,其中λ0为天线工作频带中心频率对应的自由空间波长。
7.根据权利要求1所述的天线,其特征在于,第一个金属化过孔的中心与第一层介质基板长边的距离为A3,第一个金属化过孔的中心与第一层介质基板宽边的距离为A4,取值分别为:其中λ0为天线工作频带中心频率对应的自由空间波长。
8.根据权利要求1所述的天线,其特征在于,上层金属地板(3)上蚀刻有矩形缝隙(31),用于激励顶层辐射阵列(1),矩形缝隙的长度为L5,宽度为W5,矩形缝隙长边与金属地板宽边的距离为A6,矩形缝隙宽边与金属地板长边的距离为A5,取值分别为:0.3×λ0≤L5≤0.7×λ0,0.02×λ0≤W5≤0.07×λ0其中λ0为天线工作频带中心频率对应的自由空间波长。
9.根据权利要求1所述的天线,其特征在于,所述带状馈线(41)的长度为L4,宽度为W4,带状馈线宽边与第二层介质基板宽边重合,带状馈线长边与第二层介质基板长边的距离为A7,取值分别为:0.01×λ0≤W4≤0.04×λ0其中,λ0为天线工作频带中心频率对应的自由空间波长,εe是等效介电常数,ε2为第二层介质基板的介电常数,H2为第二层介质基板的高度。
10.根据权利要求1所述的天线,其特征在于:
所述的下层金属地板(5)与上层金属地板(3)的结构、尺寸均相同;
所述的底层辐射阵列(7)与顶层辐射阵列(1)的结构、尺寸均相同。
CN201810843270.7A 2018-07-27 2018-07-27 双向辐射宽带微带天线 Pending CN108963452A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810843270.7A CN108963452A (zh) 2018-07-27 2018-07-27 双向辐射宽带微带天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810843270.7A CN108963452A (zh) 2018-07-27 2018-07-27 双向辐射宽带微带天线

Publications (1)

Publication Number Publication Date
CN108963452A true CN108963452A (zh) 2018-12-07

Family

ID=64465613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810843270.7A Pending CN108963452A (zh) 2018-07-27 2018-07-27 双向辐射宽带微带天线

Country Status (1)

Country Link
CN (1) CN108963452A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628286A (zh) * 2020-07-06 2020-09-04 西安电子科技大学 双频双圆极化天线
CN112448157A (zh) * 2020-11-10 2021-03-05 安徽大学 基于多层pcb的毫米波集成对数周期天线
CN112736447A (zh) * 2020-12-29 2021-04-30 中山大学 一种宽带波束固定阵列天线
CN114865288A (zh) * 2022-05-20 2022-08-05 西南交通大学 一种基于mstl的频率扫描天线与微带传输线双工共形电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466366A (zh) * 2013-09-14 2015-03-25 航天信息股份有限公司 双向辐射微带天线

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466366A (zh) * 2013-09-14 2015-03-25 航天信息股份有限公司 双向辐射微带天线

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG HAN LIN ET-AL: "《A Metamaterial-Based Broadband Circularly Polarized Aperture-Fed Grid-Slotted Patch Antenna》", 《2015 IEEE 4TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP)》 *
HAO YI ET-AL: "《A Novel Broadband Microstrip Patch Antenna with》", 《2018 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE(CSQRWC)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628286A (zh) * 2020-07-06 2020-09-04 西安电子科技大学 双频双圆极化天线
CN111628286B (zh) * 2020-07-06 2021-11-30 西安电子科技大学 双频双圆极化天线
CN112448157A (zh) * 2020-11-10 2021-03-05 安徽大学 基于多层pcb的毫米波集成对数周期天线
CN112448157B (zh) * 2020-11-10 2022-04-22 安徽大学 基于多层pcb的毫米波集成对数周期天线
CN112736447A (zh) * 2020-12-29 2021-04-30 中山大学 一种宽带波束固定阵列天线
CN114865288A (zh) * 2022-05-20 2022-08-05 西南交通大学 一种基于mstl的频率扫描天线与微带传输线双工共形电路
CN114865288B (zh) * 2022-05-20 2023-05-30 西南交通大学 一种基于mstl的频率扫描天线与微带传输线双工共形电路

Similar Documents

Publication Publication Date Title
CN108963452A (zh) 双向辐射宽带微带天线
EP4047746A1 (en) Antenna module and electronic device
TWI509888B (zh) 指向性天線及智慧型天線系統
CN106816713A (zh) 小型化宽带微带天线
CN107369895B (zh) 一种定向高增益微带天线
CN105870623A (zh) 加载超表面的宽带圆极化高增益低剖面微带缝隙天线
CN107634335A (zh) 基于多层结构的毫米波阵列天线
CN109004344B (zh) 应用于5g移动端的宽带天线
CN105762513A (zh) 一种应用于无线局域网的小型化高隔离度双频mimo天线
CN109066071A (zh) 一种紧凑型宽带柔性微带天线
Ikram et al. A novel connected PIFA array with MIMO configuration for 5G mobile applications
CN103151607B (zh) 用于移动终端的基于去耦线结构的宽频带双天线系统
CN111430919A (zh) 一种小型化具有三陷波特性的uwb-mimo天线
CN113964508A (zh) 宽带双极化毫米波天线及其宽角扫描阵列
CN104701628A (zh) 宽带圆极化微带天线
CN106785433A (zh) 一种基于脊隙波导技术的无隙扫描漏波天线
CN113410631A (zh) 一种面向5g毫米波双频段应用的混合天线
CN109216904A (zh) 一种宽带低剖面微带天线
KR100980779B1 (ko) Uwb용 칩 안테나
Wu et al. Design of dual-band millimeter-wave antenna array for 5G communication system
CN209344301U (zh) 超高频rfid抗金属标签天线
CN110534882B (zh) 一种双频天线
CN101304116A (zh) 射频识别系统矩形阵列光子带隙陶瓷平面螺旋双频带天线
CN116130974A (zh) 一种基于极化转换超表面的双频圆极化天线
CN203456593U (zh) 一种基于半模基片集成波导的双频段缝隙天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181207

WD01 Invention patent application deemed withdrawn after publication