CN108962231B - 一种语音分类方法、装置、服务器及存储介质 - Google Patents

一种语音分类方法、装置、服务器及存储介质 Download PDF

Info

Publication number
CN108962231B
CN108962231B CN201810726469.1A CN201810726469A CN108962231B CN 108962231 B CN108962231 B CN 108962231B CN 201810726469 A CN201810726469 A CN 201810726469A CN 108962231 B CN108962231 B CN 108962231B
Authority
CN
China
Prior art keywords
voice
mfcc
image
target image
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810726469.1A
Other languages
English (en)
Other versions
CN108962231A (zh
Inventor
吕志高
张文明
陈少杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Guosheng Technology Co ltd
Original Assignee
Wuhan Douyu Network Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Douyu Network Technology Co Ltd filed Critical Wuhan Douyu Network Technology Co Ltd
Priority to CN201810726469.1A priority Critical patent/CN108962231B/zh
Publication of CN108962231A publication Critical patent/CN108962231A/zh
Application granted granted Critical
Publication of CN108962231B publication Critical patent/CN108962231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/04Segmentation; Word boundary detection
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/28Constructional details of speech recognition systems
    • G10L15/30Distributed recognition, e.g. in client-server systems, for mobile phones or network applications
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/24Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being the cepstrum
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/45Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of analysis window

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Image Analysis (AREA)

Abstract

本发明实施例公开了一种语音分类方法、装置、服务器和存储介质,其中,语音分类方法包括:利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像;基于深度学习模型,提取目标图像的目标图像特征;将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别。本发明实施例克服了现有语音分类方法忽视了语音内容的深层信息,仅能对内容差异化较大的语音进行粗略的评定的不足,实现了快速有效地对语音数据进行分类处理的效果。

Description

一种语音分类方法、装置、服务器及存储介质
技术领域
本发明实施例涉及互联网技术应用领域,尤其涉及一种语音分类方法、装置、服务器及存储介质。
背景技术
随着互联网行业的快速发展,语音信息膨胀式产生,如何在海量信息中快速、精准地对语音数据进行分类,并节约计算资源,是目前的一个难点。
现有的语音分类方法,通常计算语音数据中每帧的MFCC特征,然后将每帧的MFCC特征拼接为短语音的整体特征,并训练分类器并进行特征分类,然后获取分类标签。但是,基于一般的语音分类方法,忽视了语音内容的深层信息,仅能对内容差异化较大的语音进行粗略的评定。
发明内容
本发明提供一种语音分类方法、装置、服务器及存储介质,以基于语音内容的层面,快速有效的实现语音分类。
第一方面,本发明实施例提供了一种语音分类方法,该方法包括:
利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将所述MFCC特征矩阵转换为目标图像;
基于深度学习模型,提取所述目标图像的目标图像特征;
将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别。
第二方面,本发明实施例还提供了一种语音分类装置,该装置包括:
目标图像转换模块,用于利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将所述MFCC特征矩阵转换为目标图像;
特征确定模块,用于基于深度学习模型,提取所述目标图像的目标图像特征;
语音类别确定模块,用于将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别。
第三方面,本发明实施例还提供了一种语音分类服务器,该服务器包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上所述的语音分类方法。
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述的语音分类方法。
本发明实施例提供的语音分类方法、装置、服务器及存储介质,通过利用MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像,基于深度学习模型,提取目标图像的目标图像特征,将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别,克服了现有语音分类方法忽视了语音内容的深层信息,仅能对内容差异化较大的语音进行粗略的评定的不足,实现了快速有效地对语音数据进行分类处理的效果。
附图说明
下面将通过参照附图详细描述本发明的示例性实施例,使本领域的普通技术人员更清楚本发明的上述及其他特征和优点,附图中:
图1是本发明实施例一中的语音分类方法的流程图;
图2是本发明实施例二中的语音分类方法的流程图;
图3是本发明实施例三中的语音分类装置的结构示意图;
图4是本发明实施例四中的语音分类服务器的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1为本发明实施例一提供的一种语音分类方法的流程图,本实施例可适用于在众多语音数据中,基于语音内容的深层信息实现语音分类的的情况,该方法可以由语音分类装置来执行,其中,该装置可由软件和/或硬件实现。如图1所示,本实施例的方法具体包括:
S110、利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像。
其中,梅尔频率是基于人耳听觉特性提出的,其与HZ频率成非线性对应关系。其中,人耳的听觉特性为人耳对不同频率的语音信号有不同的感知能力,语音信号的频率越高,人耳的感知能力就越差。梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC,以下简称MFCC)是受人的听觉系统研究成果推动而导出的声学特征,该特征通常需要利用MFCC算法从语音数据中提取出来。一般的,利用MFCC算法提取MFCC特征的过程可以包括如下步骤:(1)先对语音信号进行预加重、分帧和加窗;(2)对每一个短时分析窗进行快速傅里叶变换FFT,得到对应的频谱;(3)将获取到的对应频谱通过梅尔滤波器组,得到梅尔频谱;(4)通过取对数,离散余弦变换DCT等操作,对Mel频谱进行倒谱分析,得到D阶MFCC系数(D通常取12-16之间的整数),其中,D阶MFCC系数即为相应帧语音信号的MFCC特征。
其中,目标短语音是根据预设短语音时长,从目标长语音信号中提取出来的。由于语音信号是一种非平稳的时变信号,因此,无法直接提取目标短语音中的语音特征。但是语音信号在非常短的时间段内能够近似稳定,因此,优选可以根据预设帧长,将目标短语音信号分成各帧,并利用MFCC算法提取各帧中的MFCC特征。在将短语音进行分帧的过程中,为了避免相邻两帧的特征变化过大,还可以根据预设帧移使相邻两帧之间存在重叠区域。在获取到各帧的MFCC特征之后,可以将各MFCC特征按预设规则整合成一个MFCC特征矩阵,即MFCC特征矩阵中包含目标短语音中的各帧语音的MFCC特征。将该MFCC特征矩阵作为目标短语音的MFCC特征表达。
由于现有的基于MFCC算法的语音分类方法无法提取出语音内容中更加深层的特征信息,因此,优选可以将利用MFCC算法获取到的MFCC特征转换为视觉图像,从图像的层面上提取语音内容中更加深层次的特征信息。本实施例中,在利用梅尔频率倒谱系数MFCC算法获取到目标短语音的MFCC特征矩阵之后,优选可以将MFCC特征矩阵转换为目标图像。
优选的,利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,包括:
根据预设的帧长和帧移,将目标短语音划分为各语音帧;
利用MFCC算法分别对各语音帧进行MFCC特征提取,得到各语音帧对应的MFCC特征向量;
将各MFCC特征向量拼接为MFCC特征矩阵,将MFCC特征矩阵作为目标短语音的MFCC特征矩阵。
示例性的,利用MFCC算法获取目标短语音的MFCC特征矩阵的过程主要可以包括:
1)将当前目标语音数据切分为多条短语音,其中,预设段语音时长可以设定为30s。
采用语音活动检测(Voice Activity Detect,VAD,以下简称VAD)算法,将当前目标语音Voicecurrent提取为多条短语音数据Speechcurrent,同时丢弃一部分静音数据。其中,VAD算法又称为语音端点检测算法或语音边界检测算法。该算法的目的是从语音信号流中识别和消除长时间的静音期。
上述提取段语音的公式如下:
Figure BDA0001719912740000051
其中,M为当前目标语音能够提取到的短语音的总条数。2)对当前目标短语音进行分帧,其中,预设帧长可以设定为25ms,预设帧移可以设定为10ms。
依据预设的帧长与帧移,将当前第m条短语音
Figure BDA0001719912740000052
作为当前目标短语音,对该当前目标短语音进行分帧操作。
上述将当前目标短语音进行分帧的公式如下:
Figure BDA0001719912740000061
其中,N为当前目标短语音进行分帧后,得到的总帧数。
3)提取每帧语音的MFCC特征。
采用MFCC算法,提取当前目标短语音第n帧
Figure BDA0001719912740000062
的MFCC特征MFCCm,n
上述提取每帧语音的MFCC特征的公式如下:
Figure BDA0001719912740000063
其中,D为每帧语音的MFCC特征长度,本方案中可以取D=13;i为具体的特征索引。
4)将各帧短语音对应的MFCC特征依次进行拼接,整合成一个MFCC特征矩阵。
S120、基于深度学习模型,提取目标图像的目标图像特征。
其中,深度学习模型可以用来提取目标图像中的各图像特征,其中,各图像特征可以用于区分相应短语音的类别,优选深度学习模型可以是卷积神经网络模型CNN、循环神经网络模型RNN等。
示例性的,在对目标图像进行目标图像特征提取的过程中,可以将卷积神经网络模型CNN作为深度学习模型,取卷积神经网络模型CNN最后一层全连接层的输出特征,并将该输出特征作为目标图像特征。
上述过程的具体公式如下:
Figure BDA0001719912740000064
其中,FC-Featm为目标图像特征,Dfc为目标图像特征FC-Featm的特征维度。
S130、将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别。
其中,预先训练好的语音分类器可以用于对目标短语音进行语音分类,即输入一个目标短语音,该预先训练好的语音分类器即可将输入的目标短语音映射到给定的某个语音类别中。具体的,可以将目标短语音对应的目标图像特征作为预先训练好的语音分类器的输入,相应的,语音分类器的输出即为目标短语音的类别。
本发明实施例提供的语音分类方法,通过利用MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像,基于深度学习模型,提取目标图像的目标图像特征,将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别,克服了现有语音分类方法忽视了语音内容的深层信息,仅能对内容差异化较大的语音进行粗略的评定的不足,实现了快速有效地对语音数据进行分类处理的效果。
在上述各实施例的基础上,进一步的,在将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别之前,还包括:
根据历史短语音确定与历史短语音相对应的历史图像的图像特征;
将图像特征输入预先建立的语音分类器中,并输出历史短语音的类别;
基于输出的类别与期望类别对语音分类器的模型参数进行调整。
上述过程为训练语音分类器的过程。优选的,可以将历史短语音的已知类别以及历史短语音对应的图像特征作为语音分类器的训练数据,具体的,可以利用MFCC算法获取各历史短语音的各MFCC特征数据,并将各MFCC特征数据转换为各历史短语音对应的各历史图像,获取各历史图像的各图像特征,并将各图像特征作为各历史短语音对应的图像特征。
训练语音分类器的过程就是利用训练数据不断调整其内部参数的过程,具体的,对于每对训练数据(将一个历史短语音的已知类别以及该历史短语音对应的图像特征作为一对训练数据),可以将历史短语音对应的图像特征输入预先建立的语音分类器中,并输出一个历史短语音的类别,将该输出的语音类别与输入的图像特征对应的已知语音类别进行对比,如果该输出的语音类别与输入的图像特征对应的已知语音类别相同,则利用下一对训练数据继续进行训练;如果该输出的语音类别与输入的图像特征对应的已知语音类别不相同,则利用该对训练参数继续训练,直至该输出的语音类别与输入的图像特征对应的已知语音类别相同。
进一步的,在基于深度学习模型,提取目标图像的目标图像特征之前,还包括:
根据历史短语音确定与历史短语音相对应的历史图像;
基于至少一张历史图像生成训练样本集,将训练样本集输入到预先建立好的深度学习模型中,输出历史图像的历史图像特征;
根据输出的历史图像特征与期望历史图像特征之间的差异对深度学习模型的模型参数进行调整。
上述过程为训练深度学习模型的过程。优选的,可以将各历史短语音对应的各历史图像以及各历史图像对应的各已知历史图像特征作为深度学习模型的训练数据,具体的,可以利用MFCC算法获取各历史短语音的各MFCC特征数据,并将各MFCC特征数据转换为各历史短语音对应的各历史图像。
训练深度学习模型的过程就是利用训练数据不断调整其内部参数的过程,具体的,对于每对训练数据(将一个历史短语音对应的历史图像以及该历史短语音对应的已知历史图像特征作为一对训练数据),可以将历史短语音对应的历史图像输入预先建立的深度学习模型中,并输出一个历史图像特征,将该输出的历史图像特征与输入的历史图像对应的已知历史图像特征进行对比,如果该输出的历史图像特征与输入的历史图像对应的已知历史图像特征相同,则利用下一对训练数据继续进行训练;如果该输出的历史图像特征与输入的历史图像对应的已知历史图像特征不相同,则利用该对训练参数继续训练,直至该输出的历史图像特征与输入的历史图像对应的已知历史图像特征相同。
优选的,可以将上述训练语音分类器的过程和训练深度模型的过程结合起来共同训练,此时,作为输入的训练数据可以为各历史短语音对应的各历史图像,作为输出的训练数据可以为各历史短语音的已知类别。
实施例二
图2为本发明实施例二提供的一种语音分类方法的流程图。本实施例在上述各实施例的基础上,可选所述将所述MFCC特征矩阵转换为目标图像,包括:根据第一预设规则调整所述MFCC特征矩阵的行列比值,使得所述行列比值与所述目标图像的预设长宽比值相同;将调整行列比值后的所述MFCC特征矩阵转换为灰度图像,其中,调整行列比值后的所述MFCC特征矩阵中的每个元素对应所述灰度图像中的一个灰度值;将所述灰度图像转换为RGB三原色图像,将所述RGB三原色图像作为所述目标图像。进一步的,可选所述在根据预设第一规则调整所述MFCC特征矩阵的行列比值之前,还包括:对所述MFCC特征矩阵中的每个元素进行归一化处理;利用权重255对经过归一化处理后的所述每个元素做乘积处理,使得经过乘积处理后的所述MFCC特征矩阵中的每个元素的取值均在0到255之间。进一步的,可选在将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别之前,还包括:对所述目标图像特征每个维度上的元素进行归一化处理。如图2所示,本实施例的方法具体包括:
S210、利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵。
S220、对MFCC特征矩阵中的每个元素进行归一化处理。
由于MFCC特征矩阵中的各个MFCC特征是分别利用MFCC算法获取到的,因此,可以将各个MFCC特征置于同一度量维度下进行度量。优选的,可以对MFCC特征矩阵中的每个元素进行归一化处理。
S230、利用权重255对经过归一化处理后的每个元素做乘积处理,使得经过乘积处理后的MFCC特征矩阵中的每个元素的取值均在0到255之间。
为了方便后续将MFCC特征矩阵转换为视觉图像表达,优选可以利用权重255对归一化后的各特征元素做乘积处理,以使经过乘积处理后的各特征原色的取值在0到255之间。
上述S220和S230的过程如下公式所示:
Figure BDA0001719912740000101
其中,max为MFCC特征矩阵MFCCm中的最大值,min为MFCC特征矩阵MFCCm中的最小值。
S240、根据第一预设规则调整MFCC特征矩阵的行列比值,使得行列比值与目标图像的预设长宽比值相同。
本实施例中,需要将MFCC特征矩阵转换为目标图像,但是,一般的,深度学习模型对输入图像的尺寸都存在特殊的要求,例如,卷积神经网络模型CNN对输入图像的长宽比值要求为1:1,而MFCC特征矩阵的行和列分别对应目标短语音的总帧数和特征维度,其行列比值可能并不能满足深度学习模型对输入图像的需求。因此,如果直接将MFCC特征矩阵转换为目标图像,该转换后的目标图像可能并不能作为深度学习网络的输入。因此,可以根据第一预设规则调整MFCC特征矩阵的行列比值,使得行列比值与目标图像的预设长宽比值相同。其中,目标图像的预设长宽比值即为深度学习模型所要求的输入图像的长宽比值。
以深度学习模型为卷积神经网络CNN为例,由于卷积神经网络CNN的输入图像长宽比为1:1,且当前短语音MFCC特征MFCCm的帧数为N,特征维度为D,故可以根据下述公式将MFCC特征矩阵重新整合为MFCCm
Figure BDA0001719912740000111
其中,Mean为当前短语音MFCC特征MFCCm的均值;P和Q在取值时分别为向上取整。
S250、将调整行列比值后的MFCC特征矩阵转换为灰度图像,其中,调整行列比值后的MFCC特征矩阵中的每个元素对应灰度图像中的一个灰度值。
其中,在将调整行列比值后的MFCC特征矩阵转换为灰度图像之后,优选可以根据深度学习模型对输入图像的尺寸要求,对灰度图像进行尺寸缩放处理。
S260、将灰度图像转换为RGB三原色图像,将RGB三原色图像作为目标图像。
其中,将灰度图像转换为RGB三原色图像,即将每个灰度值转换为由R、G、B三个颜色通道来表示。
S270、基于深度学习模型,提取目标图像的目标图像特征。
S280、对目标图像特征每个维度上的元素进行归一化处理。
该过程的具体公式如下:
Figure BDA0001719912740000121
其中,Hash-Featm为目标图像征,max为目标图像特征Hash-Featm中的最大值,min为目标图像特征Hash-Featm中的最小值。
S290、将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别。
本发明实施例提供的语音分类方法,在上述各实施例的基础上,对转换为目标图像的MFCC特征矩阵进行归一化以及加权处理,并适应性的调整处理后的MFCC特征矩阵的行列比值,在克服了现有语音分类方法忽视了语音内容的深层信息,仅能对内容差异化较大的语音进行粗略的评定的不足,实现了快速有效地对语音数据进行分类处理的效果的同时,使得语音分类的结果更加精确。
实施例三
图3是本发明实施例三中的一种语音分类装置的结构示意图。如图3所示,语音分类装置包括:
目标图像转换模块310,用于利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像;
特征确定模块320,用于基于深度学习模型,提取目标图像的目标图像特征;
语音类别确定模块330,用于将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别。
本发明实施例提供的语音分类装置,通过目标图像转换模块利用MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像,利用特征确定模块基于深度学习模型,提取目标图像的目标图像特征,并利用语音类别确定模块将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别,克服了现有语音分类方法忽视了语音内容的深层信息,仅能对内容差异化较大的语音进行粗略的评定的不足,实现了快速有效地对语音数据进行分类处理的效果。
在上述各实施例的基础上,进一步的,目标图像转换模块310可以包括:
行列比值调整单元,用于根据第一预设规则调整MFCC特征矩阵的行列比值,使得行列比值与目标图像的预设长宽比值相同;
灰度图像转换单元,用于将调整行列比值后的MFCC特征矩阵转换为灰度图像,其中,调整行列比值后的MFCC特征矩阵中的每个元素对应灰度图像中的一个灰度值;
目标图像获取单元,用于将灰度图像转换为RGB三原色图像,将RGB三原色图像作为目标图像。
进一步的,目标图像转换模块310还可以包括:
第一归一化处理单元,用于在根据预设第一规则调整MFCC特征矩阵的行列比值之前,对MFCC特征矩阵中的每个元素进行归一化处理;
乘积处理单元,用于利用权重255对经过归一化处理后的每个元素做乘积处理,使得经过乘积处理后的MFCC特征矩阵中的每个元素的取值均在0到255之间。
进一步的,语音分类装置还可以包括:
归一化处理模块,用于在将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别之前,对目标图像特征每个维度上的元素进行归一化处理。
进一步的,语音分类装置还可以包括语音分类器训练模块,其中,语音分类器训练模块具体可以用于:
在将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别之前,根据历史短语音确定与历史短语音相对应的历史图像的图像特征;
将图像特征输入预先建立的语音分类器中,并输出历史短语音的类别;
基于输出的类别与期望类别对语音分类器的模型参数进行调整。
进一步的,语音分类装置还可以包括深度学习模型训练模块,其中,深度学习模型训练模块具体可以用于:
在基于深度学习模型,提取目标图像的目标图像特征之前,根据历史短语音确定与历史短语音相对应的历史图像;
基于至少一张历史图像生成训练样本集,将训练样本集输入到预先建立好的深度学习模型中,输出历史图像的历史图像特征;
根据输出的历史图像特征与期望历史图像特征之间的差异对深度学习模型的模型参数进行调整。
进一步的,目标图像转换模块310还可以包括:
语音帧划分单元,用于根据预设的帧长和帧移,将目标短语音划分为各语音帧;
MFCC特征向量获取单元,用于利用MFCC算法分别对各语音帧进行MFCC特征提取,得到各语音帧对应的MFCC特征向量;
MFCC特征矩阵确定单元,用于将各MFCC特征向量拼接为MFCC特征矩阵,将MFCC特征矩阵作为目标短语音的MFCC特征矩阵。
本发明实施例所提供的语音分类装置可执行本发明任意实施例所提供的语音分类方法,具备执行方法相应的功能模块和有益效果。
实施例四
图4为本发明实施例四提供的语音分类服务器的结构示意图。图4示出了适于用来实现本发明实施方式的示例性语音分类服务器412的框图。图4显示的语音分类服务器412仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图4所示,语音分类服务器412以通用计算设备的形式表现。语音分类服务器412的组件可以包括但不限于:一个或者多个处理器416,存储器428,连接不同系统组件(包括存储器428和处理器416)的总线418。
总线418表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
语音分类服务器412典型地包括多种计算机系统可读介质。这些介质可以是任何能够被语音分类服务器412访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器428可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)430和/或高速缓存存储器432。语音分类服务器412可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储装置434可以用于读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线418相连。存储器428可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块442的程序/实用工具440,可以存储在例如存储器428中,这样的程序模块442包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块442通常执行本发明所描述的实施例中的功能和/或方法。
语音分类服务器412也可以与一个或多个外部设备414(例如键盘、指向设备、显示器424等,其中,显示器424可根据实际需要决定是否配置)通信,还可与一个或者多个使得用户能与该语音分类服务器412交互的设备通信,和/或与使得该语音分类服务器412能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口422进行。并且,语音分类服务器412还可以通过网络适配器420与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器420通过总线418与语音分类服务器412的其它模块通信。应当明白,尽管图4中未示出,可以结合语音分类服务器412使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储装置等。
处理器416通过运行存储在存储器428中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的语音分类方法。
实施例五
本发明实施例五提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明实施例所提供的语音分类方法,包括:
利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将MFCC特征矩阵转换为目标图像;
基于深度学习模型,提取目标图像的目标图像特征;
将目标图像特征输入至预先训练好的语音分类器中,并输出目标短语音的类别。
当然,本发明实施例所提供的计算机可读存储介质,其上存储的计算机程序不限于执行如上所述的方法操作,还可以执行本发明任意实施例所提供的基于语音分类服务器的语音分类方法中的相关操作。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (7)

1.一种语音分类方法,其特征在于,包括:
利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将所述MFCC特征矩阵转换为目标图像;
基于深度学习模型,提取所述目标图像的目标图像特征;
将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别;
其中,所述将所述MFCC特征矩阵转换为目标图像,包括:
对所述MFCC特征矩阵中的每个元素进行归一化处理;
利用权重255对经过归一化处理后的所述每个元素做乘积处理,使得经过乘积处理后的所述MFCC特征矩阵中的每个元素的取值均在0到255之间;
根据第一预设规则调整所述MFCC特征矩阵的行列比值,使得所述行列比值与所述目标图像的预设长宽比值相同;
将调整行列比值后的所述MFCC特征矩阵转换为灰度图像,其中,调整行列比值后的所述MFCC特征矩阵中的每个元素对应所述灰度图像中的一个灰度值;
将所述灰度图像转换为RGB三原色图像,将所述RGB三原色图像作为所述目标图像;
其中,所述利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,包括:
根据预设的帧长和帧移,将所述目标短语音划分为各语音帧;
利用所述MFCC算法分别对所述各语音帧进行MFCC特征提取,得到所述各语音帧对应的MFCC特征向量;
将各所述MFCC特征向量拼接为MFCC特征矩阵,将所述MFCC特征矩阵作为所述目标短语音的MFCC特征矩阵;
其中,根据预设的帧移使相邻两帧之间存在重叠区域。
2.根据权利要求1所述的方法,其特征在于,在将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别之前,还包括:
对所述目标图像特征每个维度上的元素进行归一化处理。
3.根据权利要求1所述的方法,其特征在于,在将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别之前,还包括:
根据历史短语音确定与所述历史短语音相对应的历史图像的图像特征;
将所述图像特征输入预先建立的语音分类器中,并输出所述历史短语音的类别;
基于输出的所述类别与期望类别对所述语音分类器的模型参数进行调整。
4.根据权利要求1所述的方法,其特征在于,在基于深度学习模型,提取所述目标图像的目标图像特征之前,还包括:
根据历史短语音确定与所述历史短语音相对应的历史图像;
基于至少一张所述历史图像生成训练样本集,将所述训练样本集输入到预先建立好的深度学习模型中,输出所述历史图像的历史图像特征;
根据输出的所述历史图像特征与期望历史图像特征之间的差异对所述深度学习模型的模型参数进行调整。
5.一种语音分类装置,其特征在于,包括:
目标图像转换模块,用于利用梅尔频率倒谱系数MFCC算法获取目标短语音的MFCC特征矩阵,并将所述MFCC特征矩阵转换为目标图像;
特征确定模块,用于基于深度学习模型,提取所述目标图像的目标图像特征;
语音类别确定模块,用于将所述目标图像特征输入至预先训练好的语音分类器中,并输出所述目标短语音的类别;
其中,目标图像转换模块包括:
第一归一化处理单元,用于对MFCC特征矩阵中的每个元素进行归一化处理;
乘积处理单元,用于利用权重255对经过归一化处理后的每个元素做乘积处理,使得经过乘积处理后的MFCC特征矩阵中的每个元素的取值均在0到255之间;
行列比值调整单元,用于根据第一预设规则调整所述MFCC特征矩阵的行列比值,使得所述行列比值与所述目标图像的预设长宽比值相同;
灰度图像转换单元,用于将调整行列比值后的所述MFCC特征矩阵转换为灰度图像,其中,调整行列比值后的所述MFCC特征矩阵中的每个元素对应所述灰度图像中的一个灰度值;
目标图像获取单元,用于将所述灰度图像转换为RGB三原色图像,将所述RGB三原色图像作为所述目标图像;
其中,所述目标图像转换模块包括:
语音帧划分单元,用于根据预设的帧长和帧移,将所述目标短语音划分为各语音帧;
MFCC特征向量获取单元,用于利用所述MFCC算法分别对所述各语音帧进行MFCC特征提取,得到所述各语音帧对应的MFCC特征向量;
MFCC特征矩阵确定单元,用于将各所述MFCC特征向量拼接为MFCC特征矩阵,将所述MFCC特征矩阵作为所述目标短语音的MFCC特征矩阵;
其中,根据预设的帧移使相邻两帧之间存在重叠区域。
6.一种语音分类服务器,其特征在于,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-4中任一所述的语音分类方法。
7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-4中任一所述的语音分类方法。
CN201810726469.1A 2018-07-04 2018-07-04 一种语音分类方法、装置、服务器及存储介质 Active CN108962231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810726469.1A CN108962231B (zh) 2018-07-04 2018-07-04 一种语音分类方法、装置、服务器及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810726469.1A CN108962231B (zh) 2018-07-04 2018-07-04 一种语音分类方法、装置、服务器及存储介质

Publications (2)

Publication Number Publication Date
CN108962231A CN108962231A (zh) 2018-12-07
CN108962231B true CN108962231B (zh) 2021-05-28

Family

ID=64485725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810726469.1A Active CN108962231B (zh) 2018-07-04 2018-07-04 一种语音分类方法、装置、服务器及存储介质

Country Status (1)

Country Link
CN (1) CN108962231B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109977258A (zh) * 2019-02-21 2019-07-05 中国科学院西安光学精密机械研究所 图像和语音的跨模态检索分类器模型、检索系统和检索方法
CN110363148A (zh) * 2019-07-16 2019-10-22 中用科技有限公司 一种人脸声纹特征融合验证的方法
CN112396078A (zh) * 2019-08-16 2021-02-23 中国移动通信有限公司研究院 一种服务分类方法、装置、设备及计算机可读存储介质
CN110780741B (zh) * 2019-10-28 2022-03-01 Oppo广东移动通信有限公司 模型训练方法、应用运行方法、装置、介质及电子设备
CN111145746A (zh) * 2019-12-27 2020-05-12 安徽讯呼信息科技有限公司 一种基于人工智能语音的人机交互方法
CN112333596B (zh) * 2020-11-05 2024-06-04 江苏紫米电子技术有限公司 一种耳机均衡器的调整方法、装置、服务器及介质
CN112712820B (zh) * 2020-12-25 2024-08-06 广州欢城文化传媒有限公司 一种音色分类方法、装置、设备和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258536A (zh) * 2013-03-08 2013-08-21 北京理工大学 一种大规模说话人辨认方法
CN105321525A (zh) * 2015-09-30 2016-02-10 北京邮电大学 一种降低voip通信资源开销的系统和方法
CN106782501A (zh) * 2016-12-28 2017-05-31 百度在线网络技术(北京)有限公司 基于人工智能的语音特征提取方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597919B2 (ja) * 2006-07-03 2010-12-15 日本電信電話株式会社 音響信号特徴抽出方法、抽出装置、抽出プログラム、該プログラムを記録した記録媒体、および該特徴を利用した音響信号検索方法、検索装置、検索プログラム、並びに該プログラムを記録した記録媒体
CN106128465A (zh) * 2016-06-23 2016-11-16 成都启英泰伦科技有限公司 一种声纹识别系统及方法
CN106847294B (zh) * 2017-01-17 2018-11-30 百度在线网络技术(北京)有限公司 基于人工智能的音频处理方法和装置
CN106920545B (zh) * 2017-03-21 2020-07-28 百度在线网络技术(北京)有限公司 基于人工智能的语音特征提取方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258536A (zh) * 2013-03-08 2013-08-21 北京理工大学 一种大规模说话人辨认方法
CN105321525A (zh) * 2015-09-30 2016-02-10 北京邮电大学 一种降低voip通信资源开销的系统和方法
CN106782501A (zh) * 2016-12-28 2017-05-31 百度在线网络技术(北京)有限公司 基于人工智能的语音特征提取方法和装置

Also Published As

Publication number Publication date
CN108962231A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108962231B (zh) 一种语音分类方法、装置、服务器及存储介质
WO2021208287A1 (zh) 用于情绪识别的语音端点检测方法、装置、电子设备及存储介质
US10679643B2 (en) Automatic audio captioning
US10176811B2 (en) Neural network-based voiceprint information extraction method and apparatus
CN112259106B (zh) 声纹识别方法、装置、存储介质及计算机设备
CN112435684B (zh) 语音分离方法、装置、计算机设备和存储介质
WO2018223727A1 (zh) 识别声纹的方法、装置、设备及介质
CN109243490A (zh) 司机情绪识别方法及终端设备
Simantiraki et al. Stress detection from speech using spectral slope measurements
US9451304B2 (en) Sound feature priority alignment
CN110970036B (zh) 声纹识别方法及装置、计算机存储介质、电子设备
CN109801646B (zh) 一种基于融合特征的语音端点检测方法和装置
Rammo et al. Detecting the speaker language using CNN deep learning algorithm
WO2023283823A1 (zh) 语音对抗样本检测方法、装置、设备及计算机可读存储介质
WO2021227259A1 (zh) 重音检测方法及装置、非瞬时性存储介质
CN110827793A (zh) 一种语种识别方法
CN111932056A (zh) 客服质量评分方法、装置、计算机设备和存储介质
CN109947971A (zh) 图像检索方法、装置、电子设备及存储介质
CN108847251B (zh) 一种语音去重方法、装置、服务器及存储介质
EP4177885A1 (en) Quantifying signal purity by means of machine learning
CN114913859B (zh) 声纹识别方法、装置、电子设备和存储介质
Sharma et al. Comparative analysis of various feature extraction techniques for classification of speech disfluencies
CN113539243A (zh) 语音分类模型的训练方法、语音分类方法及相关装置
JP5091202B2 (ja) サンプルを用いずあらゆる言語を識別可能な識別方法
Płonkowski Using bands of frequencies for vowel recognition for Polish language

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240402

Address after: Room 601, 6th Floor, Building 5, Lianhuayuan, Haidian District, Beijing, 100080

Patentee after: Aerospace Guosheng Technology Co.,Ltd.

Country or region after: China

Address before: 11 / F, building B1, phase 4.1, software industry, No.1, Software Park East Road, Wuhan East Lake Development Zone, Wuhan City, Hubei Province, 430070

Patentee before: WUHAN DOUYU NETWORK TECHNOLOGY Co.,Ltd.

Country or region before: China