CN108961754A - Smart city cloud intelligent traffic monitoring method - Google Patents

Smart city cloud intelligent traffic monitoring method Download PDF

Info

Publication number
CN108961754A
CN108961754A CN201810799967.9A CN201810799967A CN108961754A CN 108961754 A CN108961754 A CN 108961754A CN 201810799967 A CN201810799967 A CN 201810799967A CN 108961754 A CN108961754 A CN 108961754A
Authority
CN
China
Prior art keywords
num
crossing
vehicles
moment
road network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810799967.9A
Other languages
Chinese (zh)
Inventor
王大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810799967.9A priority Critical patent/CN108961754A/en
Publication of CN108961754A publication Critical patent/CN108961754A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Abstract

In order to improve the efficiency controlled or regulated that the control of traffic lights blocks road network, the present invention provides a kind of smart city cloud intelligent traffic monitoring methods, comprising: (10) monitors the number of vehicles in road network between two crossings;(20) road network congestion level is obtained by way of cloud computing according to number of vehicles;(30) congestion level warning information is sent to intelligent terminal according to congestion level.The present invention can carry out dynamically red, green light lighting time length adjustment according to the number of vehicles in the section on road network between traffic lights, and above-mentioned modified empirical equation is determined according to a large number of experiments of applicant for number of vehicles, to the ratio by adjusting traffic light time length, enable since the chocking-up degree caused by early, evening that starts to walk when driver's subjective reason causes traffic lights to convert is reduced automatically as much as possible.Through testing, the road network chocking-up degree in Beijing area can be automatically reduced 15%-18%.

Description

Smart city cloud intelligent traffic monitoring method
Technical field
The present invention relates to road network chocking-up degree control fields, more particularly, to a kind of intelligent transportation of smart city cloud Monitoring method.
Background technique
Urban transportation blocking is to influence the major issue of China's economic development and quality of residents'life.Implement traffic signals control System strategy is to reduce delay;Publication Real-time Traffic Information is keeping road network dynamic equalization and alleviation traffic stifled to induce vehicle driving The traffic management measure of plug.Both traffic management measures especially commenting the effective of traffic jam degree with traffic behavior Premised on valence." the urban traffic management assessment indicator system " that the Ministry of Public Security of China and the Ministry of Construction formulate jointly will " traffic be negative Lotus degree " and " intersection blocking rate " important indicator scientific as urban traffic management.Using peak period road network Traffic loading degree reflects the intensity of urban central zone transport need in time, is in one day under least favorable situation The tensity of disparities between supply and demand.The degree of saturation that entire road network is measured using intersection blocking rate is to check traffic administration Effect, the foundation formulated Transportation Demand Management countermeasure, propose the construction scheme of intersection Re-construction planning.Periodic blockage intersection Refer to the intersection for often occurring blocking in certain time (caused by not being random or accidental cause).Signalized control intersection If it is Severe blockage that No. 3 green lights, which show that vehicle does not pass through crossing,.
Application No. is the Chinese invention patent applications of CN200810198919.0 to disclose a kind of city based on data characteristics City's signal controlled junctions traffic condition detection and evaluation method.The data configuration that it uses data transmission unit to transmit is with traffic Variable density and have stablize minimum vehicle when away from as saturation traffic flow character parameter.However, this method has ignored The difference of the subjective delay length of driver in vehicle shutdown process, this difference so that when vehicle away from stabilization minimum value be inaccurate It is true to be even not present, seriously affect the validity of the control duration of traffic lights.
Summary of the invention
In order to improve the efficiency controlled or regulated that the control of traffic lights blocks road network, the present invention provides one kind Smart city cloud intelligent traffic monitoring method, comprising:
(10) number of vehicles in road network between two crossings is monitored;
(20) road network congestion level is obtained by way of cloud computing according to number of vehicles;
(30) congestion level warning information is sent to intelligent terminal according to congestion level.
Further, the step (10) includes:
The number of vehicles set { Num (n) } at crossing will be arrived at from a upper crossing by obtaining for the 1 to the n-th moment;
Further, the step (20) includes:
(201) set { Num (n) } is modified, the (n+1)th moment of prediction will arrive at the vehicle at crossing from a upper crossing Number set { Num (n+1) }, and when calculating red, green light within a Signalized control period according to prediction result and lighting Between length ratio;
(202) ratio is corrected;
(203) a upper crossing and the road network chocking-up degree that will be arrived between crossing are estimated.
Further, the early warning degree information includes 5 kinds, indicates warning grade with 1,2,3,4 and 5 respectively.
Further, the early warning degree information is transmitted in the form of broadcast singal.
Further, the 1 to the n-th moment of the acquisition will arrive at the number of vehicles set at crossing from a upper crossing { Num (n) } includes: the number of vehicles at some position detected between two crossings.
Further, the number of vehicles at some position between two crossings of the detection is including the use of camera and base It obtains uni-directionally in Car license recognition mode by the number of the vehicle at the position.
Further, the step (201) includes:
If being repaired to the 1 to the n-th moment from the number of vehicles set { Num (n) } that a upper crossing will arrive at crossing The the 1 to the n-th moment just obtained afterwards will arrive at the number of vehicles at crossing for { Num ' (n) }, wherein { Num from a upper crossing (n) } meet the probability distribution rule of Poisson distribution, wherein n be natural number and n=1,2 ...;
By the joint probability density function C (Num (n), Num ' (n)) of { Num (n) } and { Num ' (n) } be denoted as C (Num, Num '),
C (Num, Num ') and=Pois (α T1 λ, α T2 λ ..., α Tn λ)=λ [- Pois (N) (λ)+α T1Pois (N-1) (λ) + ...+α TNPois (λ)],
Wherein Pois (λ)=e-N λ;N indicates the number of vehicles of the n-th moment Tn;
λ=[n, Num ' (n)] T, [] T indicate that λ is random vector, is handed in short-term according to SVR to [] progress transposition herein The through-flow modulus value in the sum of the single order item of { Num ' (n) } at the n-th moment this set for predicting to obtain;
{ Num (n) } is modified:
The probability density of { Num ' (n) } under the conditions of { Num (n) } is set again:
P (Num ' | Num)=p (Num ', Num)/p (Num)=Pois (Num ', λ Num ' | Num), wherein
Pois (Num ', λ Num ' | Num) be that mean value is equal to λ Num ' | Num, variance matrix M are Poisson function, CA, B indicate A and B between cross covariance,
Then
Further, the step (202) includes:
(2021) red, green light lighting time length the ratio R [n] of the signal lamp at the crossing that will be arrived at is obtained;
(2022) chocking-up degree of the vehicle at a upper crossing to the section between the crossing that will be arrived at is obtained Dcrowd;
(2023) the signal period duration T [n+1] that will arrive at crossing is modified:
WhereinExpression takes integer, Num'[n] indicate that the n-th moment revised will arrive at from a upper crossing The number of vehicles at crossing, Num'[n+1] indicate the number of vehicles that will arrive at crossing from a upper crossing to the (n+1)th moment Predict number, BrpreIndicate the turnout number at a crossing, BrnowIndicate that the turnout number at the crossing that will be arrived at, i and j are positive whole Number.
Further, the step (203) includes:
According to the value of T [n+1] compared with preset threshold set, determines a crossing and will arrive between crossing Road network chocking-up degree.
The invention has the benefit that can be carried out dynamically according to the number of vehicles in the section on road network between traffic lights Red, green light lighting time length adjustment, and above-mentioned modified warp has been determined according to a large number of experiments of applicant for number of vehicles Formula is tested, thus by adjusting the ratio of traffic light time length, when so that causing traffic lights to convert due to driver's subjective reason The chocking-up degree caused by early, evening that starts to walk can be reduced automatically as much as possible.Road network chocking-up degree through testing, in Beijing area 15%-18% can be automatically reduced.
Specific embodiment
Preferred embodiment in accordance with the present invention, the present invention provides a kind of smart city cloud intelligent traffic monitoring method, Include:
(10) number of vehicles in road network between two crossings is monitored;
(20) road network congestion level is obtained by way of cloud computing according to number of vehicles;
(30) congestion level warning information is sent to intelligent terminal according to congestion level.
Preferably, the step (10) includes:
The number of vehicles set { Num (n) } at crossing will be arrived at from a upper crossing by obtaining for the 1 to the n-th moment;
Preferably, the step (20) includes:
(201) set { Num (n) } is modified, the (n+1)th moment of prediction will arrive at the vehicle at crossing from a upper crossing Number set { Num (n+1) }, and when calculating red, green light within a Signalized control period according to prediction result and lighting Between length ratio;
(202) ratio is corrected;
(203) a upper crossing and the road network chocking-up degree that will be arrived between crossing are estimated.
Preferably, the early warning degree information includes 5 kinds, indicates warning grade with 1,2,3,4 and 5 respectively.
Preferably, the early warning degree information is transmitted in the form of broadcast singal.
Preferably, the 1 to the n-th moment of the acquisition will arrive at the number of vehicles set { Num at crossing from a upper crossing (n) } include: detect two crossings between some position at number of vehicles.
Preferably, the number of vehicles at some position between two crossings of the detection including the use of camera and is based on Car license recognition mode obtains uni-directionally by the number of the vehicle at the position.
Preferably, the step (201) includes:
If being repaired to the 1 to the n-th moment from the number of vehicles set { Num (n) } that a upper crossing will arrive at crossing The the 1 to the n-th moment just obtained afterwards will arrive at the number of vehicles at crossing for { Num ' (n) }, wherein { Num from a upper crossing (n) } meet the probability distribution rule of Poisson distribution, wherein n be natural number and n=1,2 ...;
By the joint probability density function C (Num (n), Num ' (n)) of { Num (n) } and { Num ' (n) } be denoted as C (Num, Num '),
C (Num, Num ') and=Pois (α T1 λ, α T2 λ ..., α Tn λ)=λ [- Pois (N) (λ)+α T1Pois (N-1) (λ) + ...+α TNPois (λ)],
Wherein Pois (λ)=e-N λ;N indicates the number of vehicles of the n-th moment Tn;
λ=[n, Num ' (n)] T, [] T indicate that λ is random vector, is handed in short-term according to SVR to [] progress transposition herein The through-flow modulus value in the sum of the single order item of { Num ' (n) } at the n-th moment this set for predicting to obtain;
{ Num (n) } is modified:
The probability density of { Num ' (n) } under the conditions of { Num (n) } is set again:
P (Num ' | Num)=p (Num ', Num)/p (Num)=Pois (Num ', λ Num ' | Num), wherein
Pois (Num ', λ Num ' | Num) be that mean value is equal to λ Num ' | Num, variance matrix M are Poisson function, CA, B indicate A and B between cross covariance,
Then
Preferably, the step (202) includes:
(2021) red, green light lighting time length the ratio R [n] of the signal lamp at the crossing that will be arrived at is obtained;
(2022) chocking-up degree of the vehicle at a upper crossing to the section between the crossing that will be arrived at is obtained Dcrowd;
(2023) the signal period duration T [n+1] that will arrive at crossing is modified:
WhereinExpression takes integer, Num'[n] indicate that the n-th moment revised will arrive at from a upper crossing The number of vehicles at crossing, Num'[n+1] indicate the number of vehicles that will arrive at crossing from a upper crossing to the (n+1)th moment Predict number, BrpreIndicate the turnout number at a crossing, BrnowIndicate that the turnout number at the crossing that will be arrived at, i and j are positive whole Number.
Preferably, the step (203) includes:
According to the value of T [n+1] compared with preset threshold set, determines a crossing and will arrive between crossing Road network chocking-up degree.
The above-described embodiments merely illustrate the principles and effects of the present invention, and is not intended to limit the present invention.It is any ripe The personage for knowing this technology all without departing from the spirit and scope of the present invention, carries out modifications and changes to above-described embodiment.Cause This, institute is complete without departing from the spirit and technical ideas disclosed in the present invention by those of ordinary skill in the art such as At all equivalent modifications or change, should be covered by the claims of the present invention.

Claims (10)

1. a kind of smart city cloud intelligent traffic monitoring method, comprising:
(10) number of vehicles in road network between two crossings is monitored;
(20) road network congestion level is obtained by way of cloud computing according to number of vehicles;
(30) congestion level warning information is sent to intelligent terminal according to congestion level.
2. the method according to claim 1, wherein the step (10) include: obtain the 1 to the n-th moment from A upper crossing will arrive at the number of vehicles set { Num (n) } at crossing.
3. according to the method described in claim 2, it is characterized in that, the step (20) includes:
(201) set { Num (n) } is modified, the (n+1)th moment of prediction will arrive at the vehicle number at crossing from a upper crossing Mesh set { Num (n+1) }, and it is long according to prediction result to calculate red, green light lighting time within a Signalized control period The ratio of degree;
(202) ratio is corrected;
(203) a upper crossing and the road network chocking-up degree that will be arrived between crossing are estimated.
4. according to the method described in claim 3, it is characterized in that, the early warning degree information includes 5 kinds, respectively with 1,2,3, 4 and 5 indicate warning grade.
5. according to the method described in claim 4, it is characterized in that, the early warning degree information by the form of broadcast singal into Row transmission.
6. according to the method described in claim 5, it is characterized in that, the 1 to the n-th moment of the acquisition will from a upper crossing The number of vehicles set { Num (n) } at arrival crossing includes: the number of vehicles at some position detected between two crossings.
7. according to the method described in claim 6, it is characterized in that, it is described detection two crossings between some position at vehicle Number is obtained uni-directionally including the use of camera and based on Car license recognition mode by the number of the vehicle at the position.
8. the method according to the description of claim 7 is characterized in that the step (201) include: set to the 1 to the n-th moment from The the 1 to the n-th moment that the number of vehicles set { Num (n) } that a upper crossing will arrive at crossing obtains after being modified is from upper The number of vehicles that one crossing will arrive at crossing is { Num ' (n) }, wherein { Num (n) } meets the probability distribution of Poisson distribution Rule, wherein n be natural number and n=1,2 ...;
The joint probability density function C (Num (n), Num ' (n)) of { Num (n) } and { Num ' (n) } are denoted as C (Num, Num '),
C (Num, Num ')=Pois (αT1λ,αT2λ,…,αTnλ)=λ [- Pois(N)(λ)+αT1Pois(N-1)(λ)+…+αTNPois (λ)],
Wherein Pois (λ)=e-Nλ;N indicates the number of vehicles of the n-th moment Tn;
λ=[n, Num ' (n)]T, []TIt indicates to carry out transposition to [] herein, λ is random vector, is pre- according to SVR short-term traffic flow The modulus value in the sum of the single order item of { Num ' (n) } at the n-th moment this set measured;
{ Num (n) } is modified:
The probability density of { Num ' (n) } under the conditions of { Num (n) } is set again:
P (Num ' | Num)=p (Num ', Num)/p (Num)=Pois (Num ', λNum’|Num), wherein Pois (Num ', λNum’|Num) It is equal to λ for mean valueNum’|Num, variance matrix M bePoisson function, CA, BIt indicates between A and B Cross covariance,
Then
9. according to the method described in claim 8, it is characterized in that, the step (202) includes:
(2021) red, green light lighting time length the ratio R [n] of the signal lamp at the crossing that will be arrived at is obtained;
(2022) chocking-up degree Dcrowd of the vehicle at a upper crossing to the section between the crossing that will be arrived at is obtained;
(2023) the signal period duration T [n+1] that will arrive at crossing is modified:
WhereinExpression takes integer, Num'[n] indicate that the n-th moment revised will arrive at crossing from a upper crossing Number of vehicles, Num'[n+1] indicate prediction to the number of vehicles that will arrive at crossing from a upper crossing at the (n+1)th moment Number, BrpreIndicate the turnout number at a crossing, BrnowIndicate the turnout number at the crossing that will be arrived at, i and j are positive integer.
10. according to the method described in claim 9, it is characterized in that, the step (203) includes:
According to the value of T [n+1] compared with preset threshold set, determines a crossing and the road network between crossing will be arrived at Chocking-up degree.
CN201810799967.9A 2018-07-19 2018-07-19 Smart city cloud intelligent traffic monitoring method Pending CN108961754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810799967.9A CN108961754A (en) 2018-07-19 2018-07-19 Smart city cloud intelligent traffic monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810799967.9A CN108961754A (en) 2018-07-19 2018-07-19 Smart city cloud intelligent traffic monitoring method

Publications (1)

Publication Number Publication Date
CN108961754A true CN108961754A (en) 2018-12-07

Family

ID=64497869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810799967.9A Pending CN108961754A (en) 2018-07-19 2018-07-19 Smart city cloud intelligent traffic monitoring method

Country Status (1)

Country Link
CN (1) CN108961754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373297A (en) * 2021-12-14 2022-04-19 青岛海信网络科技股份有限公司 Data processing device and method and electronic equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194317A (en) * 2011-04-06 2011-09-21 孙磊 Multi-node intelligent traffic micro cloud computing method
CN102568223A (en) * 2012-02-06 2012-07-11 同济大学 Signal crossing right turn special lane real-time dynamic control method
CN103345165A (en) * 2013-07-26 2013-10-09 中国人民解放军军事交通学院 Intelligent transportation hardware online simulation system of miniature intelligent vehicle group
CN103903453A (en) * 2012-12-26 2014-07-02 中国移动通信集团公司 Intelligent traffic control system, device and method
CN104575036A (en) * 2015-01-28 2015-04-29 重庆云途交通科技有限公司 Regional signal control method based on dynamic OD flow prediction and simulating optimization
CN105303856A (en) * 2015-11-11 2016-02-03 清华大学 Variable message sign information release method of prediction model
CN105761521A (en) * 2015-12-31 2016-07-13 重庆邮电大学 Real-time traffic guidance roadside system and real-time traffic guidance method based on Internet of Vehicles
CN106297328A (en) * 2016-08-25 2017-01-04 深圳市元征科技股份有限公司 A kind of method for controlling traffic signal lights and device
CN106530762A (en) * 2016-12-26 2017-03-22 东软集团股份有限公司 Traffic signal control method and device
US9637050B2 (en) * 2015-03-23 2017-05-02 Honda Motor Co., Ltd. Vehicle collision avoidance assist apparatus
CN107301774A (en) * 2017-06-30 2017-10-27 深圳市金溢科技股份有限公司 Congestion prediction method, system, board units and roadside unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194317A (en) * 2011-04-06 2011-09-21 孙磊 Multi-node intelligent traffic micro cloud computing method
CN102568223A (en) * 2012-02-06 2012-07-11 同济大学 Signal crossing right turn special lane real-time dynamic control method
CN103903453A (en) * 2012-12-26 2014-07-02 中国移动通信集团公司 Intelligent traffic control system, device and method
CN103345165A (en) * 2013-07-26 2013-10-09 中国人民解放军军事交通学院 Intelligent transportation hardware online simulation system of miniature intelligent vehicle group
CN104575036A (en) * 2015-01-28 2015-04-29 重庆云途交通科技有限公司 Regional signal control method based on dynamic OD flow prediction and simulating optimization
US9637050B2 (en) * 2015-03-23 2017-05-02 Honda Motor Co., Ltd. Vehicle collision avoidance assist apparatus
CN105303856A (en) * 2015-11-11 2016-02-03 清华大学 Variable message sign information release method of prediction model
CN105761521A (en) * 2015-12-31 2016-07-13 重庆邮电大学 Real-time traffic guidance roadside system and real-time traffic guidance method based on Internet of Vehicles
CN106297328A (en) * 2016-08-25 2017-01-04 深圳市元征科技股份有限公司 A kind of method for controlling traffic signal lights and device
CN106530762A (en) * 2016-12-26 2017-03-22 东软集团股份有限公司 Traffic signal control method and device
CN107301774A (en) * 2017-06-30 2017-10-27 深圳市金溢科技股份有限公司 Congestion prediction method, system, board units and roadside unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨兆升: "基于支持向量机方法的短时交通流量预测方法", 《吉林大学学报(工学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373297A (en) * 2021-12-14 2022-04-19 青岛海信网络科技股份有限公司 Data processing device and method and electronic equipment

Similar Documents

Publication Publication Date Title
Perrin et al. Modifying signal timing during inclement weather
CN104778834B (en) Urban road traffic jam judging method based on vehicle GPS data
CN109272744B (en) Urban expressway entrance ramp control method based on queuing length
CN103606269B (en) A kind of control method improving traffic efficiency of freeway construction area
CN104318773B (en) A kind of traffic congestion assay method based on traffic congestion space-time total amount
CN105654744A (en) Improved traffic signal control method based on Q learning
CN117173909B (en) Intelligent crosswalk safety warning management system based on Internet of things
CN108961754A (en) Smart city cloud intelligent traffic monitoring method
CN104182633B (en) Hierarchical traffic operation evaluation method
Patel et al. Assessment of network traffic congestion through Traffic Congestability Value (TCV): a new index
CN108922208A (en) Interconnected monitoring system is cured in conjunction with the wisdom of traffic information
Agbolosu-Amison et al. Inclement weather and traffic flow at signalized intersections: case study from Northern New England
CN108898836A (en) Smart city traffic cloud computing method
CN108922206A (en) Smart city road network monitoring method based on big data
Ackaah et al. Assessing the harmonization potential of variable speed limit systems
CN109035756A (en) Road condition analyzing method, apparatus, server and computer readable storage medium
CN108922165A (en) Medical care wisdom salvage system based on environmental factor
CN108877249A (en) Intelligent medical treatment service network based on cloud computing
Zhao et al. Correlating the safety performance of urban arterials with lighting: Empirical model
Ostrowski Attempt to apply the theory of reliability to assessment of signalised lane operation
CN108717792A (en) Wisdom doctor's networking ambulance monitoring system
CN107067723A (en) A kind of method of estimation of Urban road hourage
Schreurs et al. Maximum pass-by noise levels from vehicles in real road traffic streams: Comparison to modeled levels and measurement protocol issues
CN108877245A (en) A kind of dynamic wisdom relief control system
LV15229A (en) Method for control of closing of railway crossing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207

RJ01 Rejection of invention patent application after publication