CN108959347B - 基于地形和夜晚灯光数据的极光观测候选区确定方法 - Google Patents

基于地形和夜晚灯光数据的极光观测候选区确定方法 Download PDF

Info

Publication number
CN108959347B
CN108959347B CN201810328623.XA CN201810328623A CN108959347B CN 108959347 B CN108959347 B CN 108959347B CN 201810328623 A CN201810328623 A CN 201810328623A CN 108959347 B CN108959347 B CN 108959347B
Authority
CN
China
Prior art keywords
aurora
observation
area
light
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810328623.XA
Other languages
English (en)
Other versions
CN108959347A (zh
Inventor
付东杰
苏奋振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geographic Sciences and Natural Resources of CAS
Original Assignee
Institute of Geographic Sciences and Natural Resources of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geographic Sciences and Natural Resources of CAS filed Critical Institute of Geographic Sciences and Natural Resources of CAS
Priority to CN201810328623.XA priority Critical patent/CN108959347B/zh
Publication of CN108959347A publication Critical patent/CN108959347A/zh
Application granted granted Critical
Publication of CN108959347B publication Critical patent/CN108959347B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)

Abstract

一种基于地形和夜晚灯光数据的极光观测候选区确定方法,包括以下步骤:对极光常年空间分布区域进行网格划分,取网格中心的坐标点为该网格内极光空间分布代表点;选取朝地磁极能够在地平线上看见极光的区域的数字高程模型数据,将其设定为潜在的极光观测区域;对所有的极光空间分布代表点进行视域计算,得到初步极光观测候选区;利用观测时间对应的年度夜晚灯光卫星遥感数据,选取灯光强度最弱的区域,并与初步极光观测候选区进行叠加分析,得到最终极光观测候选区。本发明考虑了地形起伏和人类活动带来的灯光污染对极光观测的影响,可以获得更准确的极光观测候选区域。

Description

基于地形和夜晚灯光数据的极光观测候选区确定方法
技术领域
本发明涉及地理信息及遥感领域,具体涉及一种基于地形和夜晚灯光数据的极光观测候选区确定方法。
背景技术
随着极光观测技术的发展,研究者将极光强度指数(Kp指数)和观测地天气情况结合应用到了极光观测候选区域预测中,为观赏者提供极光观测的位置。
在极光观测中,极光强度指数(Kp指数)和观测地天气情况进行综合,得到了观测位置极光可见的概率大小。其中,极光强度指数(Kp指数)指即单个地磁台用来描述每日每3个小时内的地磁扰动强度的指数,是一种定量的分级指数,从0~9共分10级,数字越大表示地磁扰动越强,一般来说在极圈内的地方,只要Kp指数达到3~4就代表极光处于活跃状态,Kp指数到5~6就已经属于非常活跃。对于极光观测地的天气情况,天气晴朗可增加极光观测的可能性,观测地多云、降雨、降雪的天气会大大降低极光观测的可能性,需尽量避免。但是,这种基于极光强度指数(Kp指数)和观测地天气情况的极光观测方式所得到的极光观测候选区并不完全准确,因为地形高低起伏的影响,有的极光观测候选区被遮挡,并不能观测到极光,同时,由于城市夜晚灯光的干扰,位于城市附近的极光观测候选区也不一定能观测到极光。
极光多发生在春秋两季的夜晚时间,气温寒冷,准确的极光观测候选区将为观测者提供更好的观赏体验。基于上述情况,亟需一种准确度更高的极光观测候选区计算方法用于极光观测中。
视域指从一个或者多个观测点能看到的区域,视域分析指通过观测点位置以及地形数据计算得到该观测点能看到的区域范围。举例来说,如果将瞭望塔放置在特定位置,则从地表上的哪些位置可以看到瞭望塔,或者从道路上将看到什么风景。如刘礼等将视域分析应用到了风景区旅游设施规划中,周丹等利用视域分析,对矿山环境的视觉污染进行了评价。
此外,夜晚灯光卫星遥感数据可用于探测城市灯光、道路灯光甚至低亮度暂时性灯光,如渔灯、火灾、小规模的人类活动区域等,使之明显区别于黑暗的背景,该数据已经应用于多个领域,例如,对城市建成区的提取、经济水平和人口密度的估算、城市群空间格局变化、海洋渔业捕捞监测、人类健康与城市化的关系、能源消耗等。反之,夜晚灯光弱的区域受人类活动所带来的光污染影响较小。
发明内容
为了解决现有技术中存在的问题,本发明提出一种基于地形和夜晚灯光数据的极光观测候选区确定方法,引入视域分析和夜晚灯光卫星遥感数据分级,在结合极光强度指数(Kp指数)和观测地天气情况的基础上提高了原有极光观测候选位置的准确性,以及观测到极光的可能性。
本发明提出的基于地形和夜晚灯光数据的极光观测候选区确定方法,包括以下步骤:
对极光常年空间分布区域进行网格划分,取网格中心的坐标点为该网格内极光空间分布代表点;
选取朝地磁极能够在地平线上看见极光的区域的数字高程模型数据,将其设定为潜在的极光观测区域;
对所有的极光空间分布代表点进行视域计算,得到初步极光观测候选区;
利用观测时间对应的年度夜晚灯光卫星遥感数据,选取灯光强度最弱的区域,并与初步极光观测候选区进行叠加分析,得到最终极光观测候选区。
优选地,所述极光常年空间分布区域的极光强度指数不小于2。
优选地,所述数字高程模型数据选自北极地区数字高程模型数据ArcticDEMMosaic。
优选地,所述极光空间分布代表点的高度H为极光垂直分布的平均值。
优选地,计算极光空间分布代表点的视域时,观测方位角范围为0-360度,天顶角为-90-0度,高度为H。
优选地,所述视域的计算方法为:判断观察点和潜在的极光观测区域中每个像元是否通视,如果通视,则该像元能看到所述观察点处的极光,如果不通视,则该像元能看不到所述观察点处的极光。
优选地,所述视域利用ArcGIS的visibility工具进行计算。
优选地,所述年度夜晚灯光卫星遥感数据选自The Defense MeteorologicalProgram Operational Line-Scan System Version 4数据或者NASA Black Marbleproduct suite数据。
优选地,所述最终极光观测候选区为灯光强度最弱的区域,并与初步极光观测候选区与灯光强度最弱的区域的交集。
本发明与现有技术相比具有以下优点:
(1)本发明基于数字高程模型信息,考虑了地形起伏对极光观测的影响,合理的进行了视域分析,从而获得了更准确的极光观测候选区域;
(2)本发明采用了夜晚灯光卫星遥感数据,选取了夜晚灯光最弱的区域,减少了在进行极光观测时,人类活动带来的灯光污染影响。
附图说明
图1为本发明的极光观测候选区确定方法的流程图;
图2为基于视域分析的潜在极光观测区域示意图;
图3为北极光空间分布带;
图4为冰岛DEM及网格划分图;
图5为本发明实施例中的研究区DEM及网格划分图;
图6为ArcGIS软件Visibility工具界面图;
图7为本发明实施例中的初步极光观测候选区分布图;
图8为冰岛2013年夜晚灯光分布数据;
图9为本发明实施例中的初步极光观测候选区与夜晚灯光分布图;
图10为本发明实施例中的最终极光观测候选区分布图;
图11为冰岛气象局极光预报;
图12为本发明实施例中的极光出现可能性概率分布图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明提出一种基于地形和夜晚灯光数据的极光观测候选区确定方法,根据数字高程模型数据,极光高度数据,极光空间分布数据,利用视域分析进行初步极光观测候选区选取;并利用对应年份的夜晚灯光遥感数据进行分级,选择夜晚灯光强度最弱的区域;最后合并初步极光观测候选区和夜晚灯光强度最弱区域,得到最终极光观测候选区。如图1所示,具体实施步骤如下:
(1)首先,对极光常年空间分布区域进行网格划分,网格长宽尺寸相同,取网格中心的坐标点为该网格内极光空间分布代表点Obs,设定这些极光空间分布代表点为观察点,其高度取极光垂直分布的平均值,设定为固定值H;
(2)其次,选取朝地磁极能够在地平线上看见极光的区域的数字高程模型数据(栅格数据),这里选取北极地区数字高程模型数据ArcticDEM Mosaic(https://www.pgc.umn.edu/data/arcticdem/),空间分辨率为5米,每个像元对应的灰度值为其高程值,可直接使用,数据下载地址为ftp://ftp.data.pgc.umn.edu/elev/dem/setsm/ArcticDEM,将其设定为潜在的极光观测区域;
(3)选取一个极光空间分布代表点,设定其为观察点Obsi,其高度为H,其观测方位角范围为0-360度,天顶角为-90-0度,负值则表示水平面以下的角度,观测半径到达潜在极光观测区域边缘,如图2所示。然后可以开始对观察点Obsi在潜在极光观测区域的视域进行计算,即判断观察点Obsi和潜在极光观测区域中每个像元是否通视,如果通视,则该像元能看到观察点Obsi处的极光,如果不通视,则该像元能看不到观察点Obsi处的极光。本发明用到的是ArcGIS的visibility工具计算得到对应于观察点Obsi的能见区域,也就是潜在的极光观测区域中哪些地方能看到观察点Obsi
对所有的极光空间分布代表点Obs1……Obsn进行视域计算,得到其在潜在极光观测区的能见区域,也就是潜在的极光观测区域中哪些地方能看到观察点Obs1……Obsn,反过来,就是地面上某一位置可以看到多少个极光空间分布代表点Obsi,也就是极光空间分布区域。将能看到极光空间分布代表点的地面位置设定为初步极光观测候选区;
(4)利用观测时间对应的年度夜晚灯光卫星遥感数据,2013年以前的选取TheDefense Meteorological Program(DMSP)Operational Line-Scan System(OLS)Version4数据(https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html),其空间分辨率为1km,该夜晚灯光数据已经去除极光的影响,选取该数据的stable_lights图层,其值得范围为0-63,可以直接使用。2013年以后,可以选取NASA Black Marble product suite(VNP46A2)数据(
Figure BDA0001626990320000051
et al.,2018),该数据的空间分辨率为500米,选取该数据的DNB_BRDF-Corrected_NTL_500m图层,该数据已经经过去除极光对夜晚灯光数据的影响,每个像元对应的灰度值为其平均辐亮度值(单位:nanoWatts/cm2/sr,其中,nanoWatts为纳瓦特,即10-9瓦特,em为厘米,sr为立体角计量单位球面度),可直接使用,原始数据下载地址为https://ladsweb.modaps.eosdis.nasa.gov/,或者https://earthobservatory.nasa.gov/Features/NightLights/page3.php。选取灯光强度比较弱的区域(这里设定为DMSP/OLS的stable_lights图层等于0,或者VNP46A2的DNB_BRDF-Corrected_NTL_500m图层不大于2.5nanoWatts/cm2/sr的像元),并与初步极光观测候选区进行叠加,取其交集,得到最终极光观测候选区。
实施例1
以极光常年活动强度Kp指数为2时的极光分布带(图3)为例(http://auroraforecast.gi.alaska.edu/travelers-guide.php),选取冰岛东南部冰河湖
Figure BDA0001626990320000052
地区周围约70km范围内的地区作为研究区(图4,研究区范围)。
极光分布的网格划分,设定网格尺寸为10km*10km,以冰岛为例,则10km的网格分布如图4所示。本实验选取极光分布网格划分中三个网格作为样例,选取其中心点(图4中三个极光分布点),判断三个极光分布点是否对研究区可见,具体指研究区哪些地方可看到三个极光分布点。
大多数极光分布在距地面90km到150km的高度(https://en.wikipedia.org/wiki/Aurora),本实施例取其平均值,即120km。
本实施例中的数字高程模型数据,选取ArcticDEM Mosaic(https://www.pgc.umn.edu/data/arcticdem/)数据(图5),空间分辨率为5米,每个像元对应的灰度值为其高程值,可直接使用,数据下载地址为ftp://ftp.data.pgc.umn.edu/elev/dem/setsm/ArcticDEM。
利用ArcGIS软件中的Toolboxes/System Toolboxes/3D Analyst Tools/Visibility下的Visibility工具(图6),进行极光观测可视区域的分析。
将试验区DEM数据和三个极光分布点的数据输入Visibility工具中进行分析,得到针对于三个极光分布点的初步极光候选区(图7),其中,红色区域为0个极光分布点不可见,蓝色区域为1个极光分布点可见,绿色区域为2个极光分布点可见,其他区域为3个极光分布点可见。
本实施例中,夜晚灯光数据选取The Defense Meteorological Program(DMSP)Operational Line-Scan System(OLS)Version 4数据(https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html),其空间分辨率为1km,该夜晚灯光数据已经去除极光的影响,选取其2013年年合成数据的stable_lights图层。本实施例假定夜晚灯光数据像元值大于0的区域不能看到极光。图8为冰岛2013年夜晚灯光数据,其中,右下角圆形区域陆地部分为本实验研究区。
将初步极光观测候选区和研究区内夜晚灯光数据叠加(图9),选取试验区内能看到3个极光分布点,同时夜晚灯光数据像元值等于0的区域,取其交集,即可得到最终极光观测候选区(图10)。
本实施例结合高程数据和夜晚灯光遥感数据,得到的三个极光分布点的最终观测候选区。相比于现有的极光观测区域预报方案,以本实施例的研究区所处的冰岛为例,其极光预报一般通过冰岛气象局发布(http://en.vedur.is/weather/forecasts/aurora/),具体预报形式为整个冰岛的极光活动强度(0到9,值约大极光活动强度越高,极光观测的可能性越高)(图11),但冰岛气象局的极光预报中,仅仅给出了云覆盖的空间分布,其并未给出整个冰岛不同区域的极光观测候选区。
虽然现在有极光预测的空间分布数据,例如美国海洋和大气管理局(NationalOceanic and Atmospheric Administration,NOAA)的30分钟极光预测空间分布数据(https∶//www.swpc.noaa.gov/products/aurora-30-minute-forecast),其像元值从0到100,表示为可见极光的可能性。但其只预报了极光的空间分布,其空间分辨率也比较粗(0.32846715度*0.3515625度),并未给出极光观测候选区。比如,以2018年1月26日NOAA的30分钟极光预测数据为例,其空间分布如图12所示。
综上所述,本发明能得到相比于现有未考虑地形的方案得到更优的极光观测候选区。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于地形和夜晚灯光数据的极光观测候选区确定方法,其特征在于,包括以下步骤:
对极光常年空间分布区域进行网格划分,取网格中心的坐标点为该网格内极光空间分布代表点,所述极光常年空间分布区域的极光强度指数不小于2;
选取朝地磁极能够在地平线上看见极光的区域的数字高程模型数据,将其设定为潜在的极光观测区域,所述数字高程模型数据为选自北极地区数字高程模型数据ArcticDEMMosaic;
对所有的极光空间分布代表点进行视域计算,得到初步极光观测候选区;
利用观测时间对应的年度夜晚灯光卫星遥感数据,选取灯光强度最弱的区域,并与初步极光观测候选区进行叠加分析,得到最终极光观测候选区,所述最终极光观测候选区为所述初步极光观测候选区与灯光强度最弱的区域的交集。
2.根据权利要求1所述的方法,其中,所述极光空间分布代表点的高度H为极光垂直分布的平均值。
3.根据权利要求1所述的方法,其中,计算极光空间分布代表点的视域时,观测方位角范围为0-360度,天顶角为-90-0度,高度为H。
4.根据权利要求1所述的方法,其中,所述视域的计算方法为:判断观察点和潜在的极光观测区域中每个像元是否通视,如果通视,则该像元能看到所述观察点处的极光,如果不通视,则该像元能看不到所述观察点处的极光。
5.根据权利要求1所述的方法,其中,所述视域利用ArcGIS的visibility工具进行计算。
6.根据权利要求1所述的方法,其中,所述年度夜晚灯光卫星遥感数据选自TheDefense Meteorological Program OperationalLine-Scan System Version 4数据或者NASA Black Marble product suite数据。
CN201810328623.XA 2018-04-12 2018-04-12 基于地形和夜晚灯光数据的极光观测候选区确定方法 Active CN108959347B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810328623.XA CN108959347B (zh) 2018-04-12 2018-04-12 基于地形和夜晚灯光数据的极光观测候选区确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810328623.XA CN108959347B (zh) 2018-04-12 2018-04-12 基于地形和夜晚灯光数据的极光观测候选区确定方法

Publications (2)

Publication Number Publication Date
CN108959347A CN108959347A (zh) 2018-12-07
CN108959347B true CN108959347B (zh) 2021-03-09

Family

ID=64498806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810328623.XA Active CN108959347B (zh) 2018-04-12 2018-04-12 基于地形和夜晚灯光数据的极光观测候选区确定方法

Country Status (1)

Country Link
CN (1) CN108959347B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111414820A (zh) * 2020-03-11 2020-07-14 长光卫星技术有限公司 一种基于夜光影像的城市人口密度获取方法
CN111693006B (zh) * 2020-06-12 2021-07-02 中国科学院地理科学与资源研究所 珊瑚沙土壤监测区域的传感器数量和位置确定方法及装置
CN112463846B (zh) * 2020-10-23 2021-08-03 西南林业大学 基于夜视灯光数据的人为活动影响力场的表达方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105761310A (zh) * 2016-02-03 2016-07-13 东南大学 一种天空可视域数字地图的模拟分析及图像显示方法
CN105869211A (zh) * 2016-06-16 2016-08-17 成都中科合迅科技有限公司 一种可视域分析方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174559B2 (ja) * 2001-10-26 2008-11-05 独立行政法人 宇宙航空研究開発機構 衛星画像を利用した高度視界情報提供システムとその方法及び飛行障害認識システムとその方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105761310A (zh) * 2016-02-03 2016-07-13 东南大学 一种天空可视域数字地图的模拟分析及图像显示方法
CN105869211A (zh) * 2016-06-16 2016-08-17 成都中科合迅科技有限公司 一种可视域分析方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ArcGIS 可视域分析在瞭望台管理中的应用;王佳璆 等;《湖南林业科技》;20050430;第32卷(第2期);第24-26页 *
GIS 技术在景观视觉分析中的应用;张艳军 等;《地理空间信息》;20080831;第6卷(第4期);第87-89页 *

Also Published As

Publication number Publication date
CN108959347A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
Effat Selection of potential sites for solar energy farms in Ismailia Governorate, Egypt using SRTM and multicriteria analysis
Kuechly et al. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany
Weeks Using remote sensing and geographic information systems to identify the underlying properties of urban environments
Rawat et al. Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: a case study of Shahjahanpur district, Uttar Pradesh, India
CN108959347B (zh) 基于地形和夜晚灯光数据的极光观测候选区确定方法
Nghiem et al. Observations of urban and suburban environments with global satellite scatterometer data
CN109657866A (zh) 基于最大熵模型的地质灾害生态安全评价模型的构建方法
Wu et al. A building volume adjusted nighttime light index for characterizing the relationship between urban population and nighttime light intensity
Horvat Using landsat satellite imagery to determine land use/land cover changes in Međimurje County, Croatia
Mohammed et al. The dynamics of land use land cover change: using geospatial techniques to promote sustainable urban development in Ilorin Metropolis, Nigeria
Sono et al. Spatiotemporal evolution of West Africa’s urban landscape characteristics applying harmonized DMSP-OLS and NPP-VIIRS nighttime light (NTL) data
Liu et al. Classification of non-vegetated areas using Formosat-2 high spatiotemporal imagery: the case of Tseng-Wen Reservoir catchment area (Taiwan)
Sreedhar et al. An appraisal of land use/land cover change scenario of Tummalapalle, Cuddapah region, India—a remote sensing and GIS perspective
Wu et al. Construction and verification of a rainstorm death risk index based on grid data fusion: a case study of the Beijing rainstorm on July 21, 2012
Sullivan et al. Visibility and visual characteristics of the ivanpah solar electric generating system power tower facility
Jain et al. Tracing the changes in the pattern of urban landscape of Dehradun over last two decades using RS and GIS
Izah et al. Determining land use change pattern in southern Nigeria: a comparative study
Wang et al. Satellite observations of urban greenery phenology in downtown Beijing at meter to kilometer scales
Domenikiotis et al. GIS-based weather radar siting procedure in mountainous terrain
Spasova Assessment of heat islands in different economic regions of Bulgaria for the needs of digital twins
Ourng et al. Spatio-temporal urban growth pattern in the arctic: A case study in surgut, Russia
Watson Analysis of urban heat island climates along the I-85/I-40 corridor in central North Carolina
Zhou Analyzing the velocity of urban dynamic over Northeastern China using DMSP-OLS night-time lights
Indrawati et al. Urban expansion analysis through Remote Sensing and GIS in Semarang-Indonesia
Bharata et al. The change of coastal typology in Bali Island Karst Region at southern formation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261370

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant