CN108956936B - 一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法 - Google Patents

一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法 Download PDF

Info

Publication number
CN108956936B
CN108956936B CN201810387650.4A CN201810387650A CN108956936B CN 108956936 B CN108956936 B CN 108956936B CN 201810387650 A CN201810387650 A CN 201810387650A CN 108956936 B CN108956936 B CN 108956936B
Authority
CN
China
Prior art keywords
pipeline
rock
water
bottom plate
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810387650.4A
Other languages
English (en)
Other versions
CN108956936A (zh
Inventor
叶飞
符文熹
文丽娜
魏玉峰
夏敏
雷孝章
袁星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810387650.4A priority Critical patent/CN108956936B/zh
Publication of CN108956936A publication Critical patent/CN108956936A/zh
Application granted granted Critical
Publication of CN108956936B publication Critical patent/CN108956936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明涉及一种边坡稳定性影响因素的测试技术,具体公开了一种模拟岩土体中管道水流冲刷效应的测试装置,包括底板和设置于底板上的内部具有贯通管道的模拟岩土层,底板包括固定端和升降端,固定端通过水平轴固定且可绕水平轴转动,升降端与升降装置相连,升降装置可连续调节升降端在竖直方向上的高度;模拟岩土层中的贯通管道包括上游端口和下游端口,下游端口配置有与端口形状匹配的阻水塞,上游端口与水源相连。本发明的优点是:适用于强降雨或排水条件下水流对岩土层中贯通管道壁面拖曳力的测定,从而为量化强降雨或排水条件下管道拖曳力对岩土体失稳的影响提供参考和贡献。

Description

一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法
技术领域
本发明涉及一种边坡稳定性影响因素的测试技术,尤其是一种用于测定岩土体管道流对岩土体稳定性影响的测试装置和方法。
背景技术
岩土体中的贯通管道、非贯通管道和孔隙共同构成一个复杂的多孔网络体系。其中,贯通管道是地下水与地表水之间相互转换的主要路径,是地下水与岩土体之间水力联系的重要通道,也是岩土体失稳破坏常常追踪的边界条件。岩土体管道流极大地影响了交通、水利水电和矿山等工程的施工安全和正常运行,其研究受到工程界和学术界的广泛关注。
土木工程领域对岩土体中水运动的描述,普遍采用线性Darcy定律。该定律适于单一均匀多孔介质、雷诺数Re上限为[1,10]的线性层流。基于线性Darcy渗流理论,计算相对均匀岩土体孔隙介质的流场并据此评价流固耦合作用下的力学响应是可行的。然而,当Re超出线性层流上限或岩土体存在贯通管道集中渗漏通道时,仍用Darcy理论计算则会产生显著误差。1868年,著名的俄国流体学家布辛习涅斯基提出了Newton流体在光滑平行板缝中的运动学理论。在该理论构架体系下,也能推导出光滑等直径圆形管道中流体的运动方程。在求解含贯通管道岩土体介质的地下水渗流问题时,目前普遍采用开口立方定律。然而,具体计算时大多将管道的壁面视为不透水边界,该假设隐含管道所赋存的岩土体基质也具不透水性(注:岩土体基质指包含孔隙结构和非贯通管道多孔介质部分),同时还假定管道内不含散粒充填物,这与实际相比仍存在较大偏差。因此,尚需提升和完善经典的地下水渗流运动理论,从而更准确地描述含充填物的贯通管道岩土体多孔介质的流场特征,以及更合理地评价地下水渗流作用下岩土体的力学响应。查阅国内外相关文献资料,有关管道流的研究鲜有考虑水流对管道壁面产生的拖曳力作用。
发明内容
为了更好地研究贯通管道壁面水流拖曳力对岩土体稳定性的影响,本发明提供了一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法。
本发明所采用的技术方案是:模拟岩土体中管道水流冲刷效应的测试装置,包括底板和铺设于底板上的内部具有贯通管道的模拟岩土层,所述底板包括固定端和升降端,所述固定端通过水平轴固定且可绕水平轴转动,所述升降端与升降装置相连,升降装置可连续调节升降端在竖直方向上的高度;所述模拟岩土层中的贯通管道包括靠近固定端的上游端口和靠近升降端的下游端口,所述下游端口配置有与端口形状匹配的阻水塞,所述上游端口与水源相连。
现有的管道水流在贯通管道壁面产生的拖曳力计算没有一定的理论,本发明提出了一套水流对贯通管道壁面产生的拖曳力测试技术。
为此,本发明研制了上述模拟岩土体中管道水流冲刷效应的测试装置,使用该装置可实现水流对岩土介质中贯通管道壁面拖曳力的测定。
容易理解的,本发明贯通管道的上游端口应当与水源相连,水源的选择不限,但需要保证水流能够平缓均匀的进入贯通管道中,以实现模拟自然管道流的目的,因此贯通管道的上游端口不能与带压水龙头等设备连接,最好是配备专用的储水容器为贯通管道供水。
本发明中的升降装置应当能够实现带动升降端平稳连续升降的功能,以便于准确测定岩土体开始产生滑动时的倾斜角度。例如采用图1所述的升降支架,该支架的升降可采用液压或气压驱动来实现。除此之外容易想到也可以采用其他能够实现上述功能的升降装置,例如还可以采用滑轮组作为升降装置。
利用本发明的测试装置能够测试不同的岩土层中各种形态的贯通管道的管道流拖曳力,测试时需根据待测试地质情况对模拟岩土层进行制作和铺设。例如在将本装置用于测试岩层中的管道流拖曳力时,可在底板上先铺设一层砂垫层,然后在砂垫层上放置混凝土层模拟岩层,在岩层中根据实际情况设置贯通管道,再在管道中填充粉质黏土层模拟管道填充物。各岩土层的铺设厚度和密度以及管道形态等情况应当根据待测试地质条件按照尺寸相似原理进行铺设。本发明所述“尺寸相似原理”指的是按照所模拟的实际地质条件中各岩层和土层的厚度以及分布比例,管道形态,填充物分布情况对模拟岩土层及其管道进行选择、制作和铺设。
本发明还公开了一种模拟岩土体中管道水流冲刷效应的测试方法,包括以下步骤:
A、选好实验场地,安装本发明的模拟岩土体中管道水流冲刷效应的测试装置;
B、根据待测试地质条件在底板上铺设好内部具有贯通管道的模拟岩土层,用配置好的阻水塞将贯通管道的下游端口堵住;
C、静水实验:通过升降装置调节底板至水平放置,然后通过上游端口向贯通管道中注水,使水充满贯通管道后停止注水;
D、调整升降装置,使升降端缓慢向下倾斜,直至底板上的模拟岩土层刚好发生滑动时立刻停止调整升降装置,并测量此时底板的倾斜角度α;
E、动水实验:还原底板至水平放置并按照与步骤B相同的方式在底板上铺设好内部具有贯通管道的模拟岩土层,用配置好的阻水塞将贯通管道的下游端口堵住,然后通过上游端口向贯通管道中注水,使水充满贯通管道;
F、拔掉阻水塞,同时调整升降装置,使升降端缓慢向下倾斜,该过程中保持向贯通管道中注水并调整水流量确保贯通管道中始终充满水流,直至底板上的模拟岩土层刚好发生滑动时立刻停止调整升降装置,并测量此时底板的倾斜角度β;
G、根据实验结果计算出水流对贯通管道壁面的拖曳力。
采用该方法即可实现利用本发明的模拟岩土体中管道水流冲刷效应的测试装置进行水流对岩土层中贯通管道壁面拖曳力的测定。
本发明的有益效果是:本发明的模拟岩土体中管道水流冲刷效应的测试装置及测试方法适用于强降雨或排水条件下水流对岩土层中贯通管道壁面拖曳力的测定,从而为量化强降雨或排水条件下管道拖曳力对岩土体失稳的影响提供参考和贡献。
附图说明
图1是实施例一的模拟岩土体中管道水流冲刷效应的测试装置结构示意图。
图2是实施例二的模拟岩土体中管道水流冲刷效应的测试装置结构示意图。
图3是实施例一的模拟岩土层横截面结构图。
图4是实施例二的模拟岩土层横截面结构图。
图5是静水实验条件下内部具有贯通管道的岩土体受力分析图。
图6是动水实验条件下内部具有贯通管道的岩土体受力分析图。
图中标记为:1-底板,2-模拟岩土层,21-砂垫层,22-混凝土层,23-粉质黏土填充层,3-贯通管道,31-上游端口,32-下游端口,33-阻水塞,9-升降支架,G-具有贯通管道的岩土体自重,F-贯通管道中水体对岩土体的压力,Ff-下层岩体对具有贯通管道的岩土体的摩擦力,α-静水试验条件下测得的底板倾斜角度,β-动水试验条件下测得的底板倾斜角度,Fd-水流对贯通管道壁面产生的拖曳力,FN-下层岩体对具有贯通管道的岩土体的支持力,P-贯通管道中水对阻水塞的压力。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
如图1、图2、图3和图4所示,本发明的模拟岩土体中管道水流冲刷效应的测试装置,包括底板1,内部具有贯通管道3的模拟岩土层2;所述底板1包括固定端和升降端,所述固定端通过水平轴固定且可绕水平轴转动,所述升降端与由液压驱动的升降支架9相连,升降支架9可连续调节升降端在竖直方向上的高度;所述模拟岩土层2设置于底板1上,包括铺设在底板1上的砂垫层21和铺设在砂垫层21上的混凝土层22,贯通管道3设置于混凝土层22内部,所述贯通管道3内壁具有粉质黏土填充层23;贯通管道3包括上游端口31和下游端口32,所述下游端口32配置有与端口形状匹配的阻水塞33。
实施例一:
按照以下步骤利用本发明的模拟岩土体中管道水流冲刷效应的测试装置对水流对圆形管道壁面产生的拖曳力进行测定:
(1)选好实验场地,安装上述的模拟岩土体中管道水流冲刷效应的测试装置;
(2)根据待测试地质条件按照尺寸相似原理在底板上铺设一层砂垫层21,在砂垫层21上铺设混凝土层22模拟岩层,贯通管道3设置于混凝土层22内部,管道横截面为圆形,贯通管道3内壁设置有用于模拟管道填充物的粉质黏土填充层23。然后用配置好的阻水塞33将贯通管道3的下游端口32堵住;
(3)静水实验:通过升降支架调节底板1至水平放置,然后通过上游端口31向贯通管道3中注水,使水充满贯通管道3后停止注水;
(4)调整升降支架9,使升降端缓慢向下倾斜,直至底板1上的混凝土层22刚好发生滑动时立刻停止调整升降支架9,并测量此时底板1的倾斜角度α;
(5)动水实验:还原底板1至水平放置并按照与步骤B相同的方式在底板1上铺设好模拟岩土层2并设置好其内部的贯通管道3,然后通过上游端口31向贯通管道3中注水,使水充满贯通管道3;
(6)拔掉阻水塞33,同时调整升降支架9,使升降端缓慢向下倾斜,该过程中保持向贯通管道3中注水并调整水流量确保贯通管道3中始终充满水流,直至底板1上的混凝土层22刚好发生滑动时立刻停止调整升降支架9,并测量此时底板1的倾斜角度β;
(7)根据实验结果计算出水流对贯通管道3壁面的拖曳力。
实施例二:
按照以下步骤利用本发明的模拟岩土体中管道水流冲刷效应的测试装置对水流对矩形管道壁面产生的拖曳力进行测定:
(1)选好实验场地,安装上述的模拟岩土体中管道水流冲刷效应的测试装置;
(2)根据待测试地质条件按照尺寸相似原理在底板上铺设一层砂垫层21,在砂垫层21上铺设混凝土层22模拟岩层,贯通管道3设置于混凝土层22内部,管道横截面为矩形,贯通管道3内壁设置有用于模拟管道填充物的粉质黏土填充层23。然后用配置好的阻水塞33将贯通管道3的下游端口32堵住;
(3)静水实验:通过升降支架调节底板1至水平放置,然后通过上游端口31向贯通管道3中注水,使水充满贯通管道3后停止注水;
(4)调整升降支架9,使升降端缓慢向下倾斜,直至底板1上的混凝土层22刚好发生滑动时立刻停止调整升降支架9,并测量此时底板1的倾斜角度α;
(5)动水实验:还原底板1至水平放置并按照与步骤B相同的方式在底板1上铺设好模拟岩土层2并设置好其内部的贯通管道3,然后通过上游端口31向贯通管道3中注水,使水充满贯通管道3;
(6)拔掉阻水塞33,同时调整升降支架9,使升降端缓慢向下倾斜,该过程中保持向贯通管道3中注水并调整水流量确保贯通管道3中始终充满水流,直至底板1上的混凝土层22刚好发生滑动时立刻停止调整升降支架9,并测量此时底板1的倾斜角度β;
(7)根据实验结果计算出水流对贯通管道3壁面的拖曳力。
应当理解,上述实施例一和实施例二中采用在混凝土层中设置横截面为圆形和矩形的贯通管道进行测定,仅仅是出于便于模型制作的考虑,根据本发明的测定原理可知,本发明的测定装置和方法还可适用于其他形态包括不规则形态的贯通管道壁面水流拖曳力的测定。
计算方法:
通过对具有贯通管道的岩土体(在实施例一和实施例二中具有贯通管道的岩土体指的是混凝土层)进行力的平衡分析,代入静水试验条件下计算出的摩阻力Ff,从而计算出水流对贯通管道壁面的拖曳力Fd
具有贯通管道的岩土体在静水实验和动水实验条件下的受力分析分别如图5、图6所示。
拖曳力计算公式如下:
Figure BDA0001642632280000051
式中:
G代表具有贯通管道的岩土体自重,
F代表贯通管道中水体对岩土体的压力,
Ff代表下层岩体对具有贯通管道的岩土体的摩擦力(在实施例一和实施例二中表示砂垫层对混凝土层的摩擦力),
α代表静水试验条件下测得的底板倾斜角度,
β代表动水试验条件下测得的底板倾斜角度,
Fd代表水流对贯通管道壁面产生的拖曳力。

Claims (5)

1.模拟岩土体中管道水流冲刷效应的测试方法,包括以下步骤:
A、选好实验场地,安装模拟岩土体中管道水流冲刷效应的测试装置;所述模拟岩土体中管道水流冲刷效应的测试装置包括底板(1)和铺设于底板(1)上的内部具有贯通管道(3)的模拟岩土层(2);所述底板(1)包括固定端和升降端,所述固定端通过水平轴固定且可绕水平轴转动,所述升降端与升降装置相连,升降装置可连续调节升降端在竖直方向上的高度;所述模拟岩土层(2)中的贯通管道(3)包括靠近固定端的上游端口(31)和靠近升降端的下游端口(32),所述下游端口(32)配置有与端口形状匹配的阻水塞(33),所述上游端口(31)与水源相连;
B、根据待测试地质条件在底板(1)上铺设好内部具有贯通管道(3)的模拟岩土层(2),用配置好的阻水塞(33)将贯通管道(3)的下游端口(32)堵住;
C、静水实验:通过升降装置调节底板(1)至水平放置,然后通过上游端口(31)向贯通管道(3)中注水,使水充满贯通管道(3)后停止注水;
D、调整升降装置,使升降端缓慢向下倾斜,直至底板(1)上的模拟岩土层(2)刚好发生滑动时立刻停止调整升降装置,并测量此时底板(1)的倾斜角度α;
E、动水实验:还原底板(1)至水平放置并按照与步骤B相同的方式在底板(1)上铺设好内部具有贯通管道(3)的模拟岩土层(2),用配置好的阻水塞(33)将贯通管道(3)的下游端口(32)堵住,然后通过上游端口(31)向贯通管道(3)中注水,使水充满贯通管道(3);
F、拔掉阻水塞(33),同时调整升降装置,使升降端缓慢向下倾斜,该过程中保持向贯通管道(3)中注水并调整水流量确保贯通管道(3)中始终充满水流,直至底板(1)上的模拟岩土层(2)刚好发生滑动时立刻停止调整升降装置,并测量此时底板(1)的倾斜角度β;
G、根据实验结果计算出水流对贯通管道(3)壁面的拖曳力;
拖曳力计算公式如下:
Figure FDA0002664703710000011
式中:
G代表具有贯通管道的岩土体自重,
F代表贯通管道中水体对岩土体的压力,
Ff代表下层岩体对具有贯通管道的岩土体的摩擦力,
α代表静水试验条件下测得的底板倾斜角度,
β代表动水试验条件下测得的底板倾斜角度,
Fd代表水流对贯通管道壁面产生的拖曳力。
2.根据权利要求1所述的模拟岩土体中管道水流冲刷效应的测试方法,其特征在于:所述升降装置为升降支架(9)。
3.根据权利要求1或2中任一权利要求所述的模拟岩土体中管道水流冲刷效应的测试方法,其特征在于:所述贯通管道(3)横截面为圆形。
4.根据权利要求1或2中任一权利要求所述的模拟岩土体中管道水流冲刷效应的测试方法,其特征在于:所述贯通管道(3)横截面为矩形。
5.根据权利要求1所述的模拟岩土体中管道水流冲刷效应的测试方法,其特征在于:所述模拟岩土层(2)包括铺设在底板(1)上的砂垫层(21)和铺设在砂垫层(21)上的混凝土层(22),贯通管道(3)设置于混凝土层(22)内部,所述贯通管道(3)内壁具有粉质黏土填充层(23)。
CN201810387650.4A 2018-04-26 2018-04-26 一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法 Active CN108956936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810387650.4A CN108956936B (zh) 2018-04-26 2018-04-26 一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810387650.4A CN108956936B (zh) 2018-04-26 2018-04-26 一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法

Publications (2)

Publication Number Publication Date
CN108956936A CN108956936A (zh) 2018-12-07
CN108956936B true CN108956936B (zh) 2020-11-17

Family

ID=64499669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810387650.4A Active CN108956936B (zh) 2018-04-26 2018-04-26 一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法

Country Status (1)

Country Link
CN (1) CN108956936B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568155A (zh) * 2019-09-10 2019-12-13 佛山科学技术学院 一种用于模拟石漠化装置的试验泥土平面调节结构
CN115628879B (zh) * 2022-12-22 2023-03-17 西南石油大学 一种测量往复潮流冲刷对海底输油管道影响的装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804580B (zh) * 2005-12-05 2010-05-12 中国农业大学 一种土壤入渗性能的线源入流测量装置和测量方法
CN201589783U (zh) * 2010-01-26 2010-09-22 何建新 渗流力作用下泥沙起动流速试验装置
CN202614752U (zh) * 2012-05-16 2012-12-19 河海大学 一种可变坡度矩形水槽模拟底泥侵蚀和传输特征的装置
CN105547967B (zh) * 2016-01-28 2019-04-02 成都理工大学 裂隙介质系统渗透张量室内测定装置
CN205679605U (zh) * 2016-04-18 2016-11-09 湖南科技大学 一种电动液压千斤顶调节大体积堆土箱坡角的装置
CN205643339U (zh) * 2016-05-17 2016-10-12 四川大学 一种滑坡试验的滑槽系统
CN105891037B (zh) * 2016-06-27 2018-05-22 重庆交通大学 边坡冲刷模拟试验装置
CN106290800B (zh) * 2016-09-30 2018-10-12 长沙理工大学 一种土质边坡抗水流侵蚀能力模拟试验方法及装置
CN106940366B (zh) * 2017-03-31 2019-05-17 中国安全生产科学研究院 一种边坡失稳试验装置
CN206920265U (zh) * 2017-06-29 2018-01-23 河海大学 一种边坡坡面冲刷量测试装置
CN107340381B (zh) * 2017-07-26 2023-04-14 中国科学院、水利部成都山地灾害与环境研究所 一种研究沟头侵蚀的移动试验装置及其试验方法
CN107478779B (zh) * 2017-08-23 2018-05-25 中国地质环境监测院 一种流态化滑坡流体拖曳效应的模型试验方法

Also Published As

Publication number Publication date
CN108956936A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
Chen et al. Centrifugal model tests on face failure of earth pressure balance shield induced by steady state seepage in saturated sandy silt ground
JP3220586U (ja) 多種類土砂の透水係数を測定する装置
CN103510551B (zh) 一种桥梁深水基础三向静动力加载模型试验平台
Coyle et al. Load transfer for axially loaded piles in clay
CN103245771B (zh) 人工地层冻结法对周围环境效应的模型试验装置及方法
Talmon et al. Calculation of longitudinal bending moment and shear force for Shanghai Yangtze River Tunnel: Application of lessons from Dutch research
CN203639954U (zh) 一种桥梁深水基础三向静动力加载模型试验平台
CN211904664U (zh) 多功能顶管及注浆润滑减阻过程模拟实验装置
Bryden et al. Soil-structure interaction of very flexible pipes: Centrifuge and numerical investigations
Liu et al. Model test studies on soil restraint to pipeline buried in Bohai soft clay
CN108956936B (zh) 一种模拟岩土体中管道水流冲刷效应的测试装置及测试方法
CN104265331A (zh) 一种模拟巷道突水注浆封堵的可视化试验系统装置
Li et al. Model test of immersed tube tunnel foundation treated by sand-flow method
CN105717024A (zh) 一种矿井注浆堵水材料性能测试装置及其使用方法
CN106706416A (zh) 模拟承压水作用下地下室底板受力的试验装置及使用方法
CN206470116U (zh) 一种模拟承压水作用下地下室底板受力的试验装置
CN109326193A (zh) 模拟交叉岩溶管道涌水封堵实验装置及方法
CN111175477A (zh) 饱和粉细砂层诱导注浆实验模型及实验方法
CN104075936A (zh) 无约束管段横向运动全过程监控测试系统
Gao et al. Model test based soil spring model and application in pipeline thermal buckling analysis
Pham et al. Stability of slope and seepage analysis in earth dam using numerical finite element model
CN108760549B (zh) 模拟岩土体中管道水流壁面拖曳力效应的测试系统及方法
Li et al. The development of sand erosion induced by shield-tunnel joint leakage
de Brum Passini et al. Experimental investigation of pile installation by vertical jet fluidization in sand
Li et al. Study on the characteristics of grout permeation based on cylindrical diffusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant