CN108955888A - A kind of full optical fiber interferometer Free Spectral Range measuring system and method - Google Patents
A kind of full optical fiber interferometer Free Spectral Range measuring system and method Download PDFInfo
- Publication number
- CN108955888A CN108955888A CN201810985909.5A CN201810985909A CN108955888A CN 108955888 A CN108955888 A CN 108955888A CN 201810985909 A CN201810985909 A CN 201810985909A CN 108955888 A CN108955888 A CN 108955888A
- Authority
- CN
- China
- Prior art keywords
- fiber
- microwave signal
- spectral range
- free spectral
- interferometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000013307 optical fiber Substances 0.000 title description 2
- 239000000835 fiber Substances 0.000 claims abstract description 61
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 238000001228 spectrum Methods 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims description 5
- 230000008676 import Effects 0.000 claims description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003012 network analysis Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
本发明公开了一种全光纤干涉仪自由光谱范围测量系统及方法,利用矢量网络分析仪测量信号发生器输入的微波信号和光电探测器输出微波信号的S21参数特性,将全光纤Mach‑Zehnder干涉仪的自由光谱范围的转换为微波信号的S21参数的等间隔梳状频谱,通过矢量网络分析仪S21参数观察计算全光纤Mach‑Zehnder干涉仪的自由光谱范围。本发明简化了全光纤Mach‑Zehnder干涉仪的自由光谱范围测量系统的复杂性,减小了系统的成本,而且操作步骤简单。
The invention discloses a system and method for measuring the free spectral range of an all-fiber interferometer. A vector network analyzer is used to measure the microwave signal input by a signal generator and the S21 parameter characteristics of a microwave signal output by a photodetector, and the all-fiber Mach-Zehnder interference The free spectral range of the instrument is converted into the equally spaced comb spectrum of the S21 parameter of the microwave signal, and the free spectral range of the all-fiber Mach-Zehnder interferometer is calculated by observing the S21 parameter of the vector network analyzer. The invention simplifies the complexity of the free spectral range measurement system of the all-fiber Mach-Zehnder interferometer, reduces the cost of the system, and has simple operation steps.
Description
技术领域technical field
本发明涉及一种自由光谱范围测量系统及方法,特别是一种全光纤干涉仪自由光谱范围测量系统及方法。The invention relates to a free spectral range measurement system and method, in particular to an all-fiber interferometer free spectral range measurement system and method.
背景技术Background technique
全光纤Mach-Zehnder 干涉仪因其具有体积小、重量轻、结构紧凑、抗电磁干扰和灵敏度高等特点,广泛应用于光纤传感系统和光纤波分复用(WDM)通信领域。高性能的光传感测量系统和光纤通信系统对全光纤Mach-Zehnder干涉仪的自由光谱范围是有着严格的要求。因此,全光纤Mach-Zehnder干涉仪的自由光谱范围是决定其性能的重要参数,传统的自由自由光谱范围测量方法是基于Fabry Perot标准具方法或光谱分析仪方法,这2种方法通常原理简单,但是基于Fabry Perot标准具的自由光谱范围测量法需要价格昂贵的可调谐激光器,且操作步骤复杂,对操作人员的专业技术要求较高。基于光谱分析仪虽然测量简单,但受限于光源的波长稳定度,测量精度低。All-fiber Mach-Zehnder interferometers are widely used in fiber optic sensing systems and fiber optic wavelength division multiplexing (WDM) communications because of their small size, light weight, compact structure, anti-electromagnetic interference, and high sensitivity. High-performance optical sensing measurement systems and optical fiber communication systems have strict requirements on the free spectral range of all-fiber Mach-Zehnder interferometers. Therefore, the free spectral range of the all-fiber Mach-Zehnder interferometer is an important parameter to determine its performance. The traditional free free spectral range measurement method is based on the Fabry Perot etalon method or the spectral analyzer method. These two methods are usually simple in principle. However, the free spectral range measurement method based on the Fabry Perot etalon requires an expensive tunable laser, and the operation steps are complicated, which requires high professional skills of the operator. Although the measurement based on the spectrum analyzer is simple, it is limited by the wavelength stability of the light source and the measurement accuracy is low.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种全光纤干涉仪自由光谱范围测量系统及方法。The technical problem to be solved by the present invention is to provide a free spectral range measurement system and method of an all-fiber interferometer.
为解决上述技术问题,本发明所采用的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种全光纤干涉仪自由光谱范围测量系统,其特征在于:包含分布式反馈激光器、电光相位调制器、全光纤Mach-Zehnder干涉仪、光电探测器、功分器、信号发生器和矢量网络分析仪,电光相位调制器与分布式反馈激光器光连接,全光纤Mach-Zehnder干涉仪与电光相位调制器光连接,光电探测器与全光纤Mach-Zehnder干涉仪光连接,功分器分别与信号发生器、电光相位调制器和矢量网络分析仪电连接,矢量网络分析仪与光电探测器电连接。An all-fiber interferometer free spectral range measurement system is characterized in that: it includes a distributed feedback laser, an electro-optical phase modulator, an all-fiber Mach-Zehnder interferometer, a photoelectric detector, a power divider, a signal generator and a vector network analysis The electro-optic phase modulator is optically connected to the distributed feedback laser, the all-fiber Mach-Zehnder interferometer is optically connected to the electro-optic phase modulator, the photodetector is optically connected to the all-fiber Mach-Zehnder interferometer, and the power splitter is connected to the signal generator The device, the electro-optic phase modulator and the vector network analyzer are electrically connected, and the vector network analyzer is electrically connected to the photodetector.
进一步地,所述分布式反馈激光器输出激光,信号发生器产生微波信号,微波信号经过电光相位调制器调制到分布式反馈激光器的输出的光载波上,再导入全光纤Mach-Zehnder干涉仪,全光纤Mach-Zehnder干涉仪输出光经光电探测器转换为微波信号,微波信号与信号发生器输出的微波信号输入矢量网络分析仪。Further, the distributed feedback laser outputs laser light, the signal generator generates a microwave signal, and the microwave signal is modulated onto the optical carrier output of the distributed feedback laser through an electro-optical phase modulator, and then introduced into an all-fiber Mach-Zehnder interferometer, and the whole The output light of the fiber optic Mach-Zehnder interferometer is converted into a microwave signal by a photodetector, and the microwave signal and the microwave signal output by the signal generator are input into a vector network analyzer.
进一步地,所述分布式反馈激光器输出1550nm激光,分布式反馈激光器功率为10dBm。Further, the distributed feedback laser outputs 1550nm laser, and the power of the distributed feedback laser is 10dBm.
进一步地,所述信号发生器产生的微波信号频率为10GHz。Further, the frequency of the microwave signal generated by the signal generator is 10 GHz.
一种全光纤干涉仪自由光谱范围测量系统的测量方法,其特征在于包含以下步骤:A measurement method of an all-fiber interferometer free spectral range measurement system is characterized in that it comprises the following steps:
步骤一:分布式反馈激光器输出1550nm激光,分布式反馈激光器的功率为10dBm;Step 1: The distributed feedback laser outputs 1550nm laser, and the power of the distributed feedback laser is 10dBm;
步骤二:信号发生器产生10GHz的微波信号;Step 2: The signal generator generates a 10GHz microwave signal;
步骤三:通过相位调制器调制后,将10GHz的微波信号调制到1550nm光载波上,并导入全光纤Mach-Zehnder干涉仪;Step 3: After being modulated by a phase modulator, modulate a 10GHz microwave signal onto a 1550nm optical carrier, and import it into an all-fiber Mach-Zehnder interferometer;
步骤四:全光纤Mach-Zehnder干涉仪输出光输入光电探测器;Step 4: The output light of the all-fiber Mach-Zehnder interferometer is input into the photodetector;
步骤五:用矢量网络分析仪分析仪测出信号发生器产生的10GHz的微波信号和光电探测器输出的微波信号的S21参数特性曲线;Step 5 : Measure the 10GHz microwave signal produced by the signal generator and the S21 parameter characteristic curve of the microwave signal output by the photodetector with a vector network analyzer analyzer;
步骤六:S21参数的单个等间隔梳状频谱范围即为全光纤Mach-Zehnder干涉仪的自由光谱范围。Step 6: The single equidistant comb spectrum range of the S 21 parameter is the free spectrum range of the all-fiber Mach-Zehnder interferometer.
进一步地,所述步骤一中,连续增大或者减小信号发生器输出微波信号的频率和功率,选择合适的微波频率和功率,便于观察矢量网络分析仪S21参数。Further, in the first step, the frequency and power of the microwave signal output by the signal generator are continuously increased or decreased, and an appropriate microwave frequency and power are selected to facilitate the observation of the S21 parameters of the vector network analyzer.
进一步地,所述步骤五,多次重复用矢量网络分析仪分析仪测出信号发生器产生的10GHz的微波信号和光电探测器输出的微波信号的S21参数特性曲线,然后求其平均值。Further, said step 5 , repeatedly measuring the S21 parameter characteristic curve of the 10GHz microwave signal produced by the signal generator and the microwave signal output by the photodetector with a vector network analyzer analyzer, and then calculating its average value.
进一步地,所述步骤六中,测量多个等间隔梳状频谱,求平均值,以提高测量全光纤Mach-Zehnder干涉仪自由光谱范围的测量精度。Further, in the step six, a plurality of equally spaced comb spectrums are measured and averaged to improve the measurement accuracy of the free spectral range of the all-fiber Mach-Zehnder interferometer.
本发明与现有技术相比,具有以下优点和效果:本发明不依赖于昂贵的可调谐激光器或者有限分辨率的光谱分析,采用常见的分布式反馈激光器,和高精度的矢量网络分析仪(频率分辨率可做到为1Hz),通过矢量网络分析仪将全光纤Mach-Zehnder干涉仪自由光谱范围转化为微波信号的S21参数的等间隔梳状频谱,能精确测量出全光纤Mach-Zehnder干涉仪的自由光谱范围。本发明的方法简化了全光纤Mach-Zehnder干涉仪的自由光谱范围测量系统的复杂性,减小了系统的成本,而且操作步骤简单,可以通过扫频很快地完成对全光纤Mach-Zehnder干涉仪自由光谱范围的测量,结果测量直观,具有很好的实用价值。Compared with the prior art, the present invention has the following advantages and effects: the present invention does not rely on expensive tunable lasers or spectral analysis with limited resolution, and adopts common distributed feedback lasers and high-precision vector network analyzers ( The frequency resolution can be 1Hz), and the free spectral range of the all-fiber Mach-Zehnder interferometer is converted into the equidistant comb spectrum of the S21 parameter of the microwave signal through the vector network analyzer, which can accurately measure the all-fiber Mach-Zehnder The free spectral range of the interferometer. The method of the present invention simplifies the complexity of the free spectral range measurement system of the all-fiber Mach-Zehnder interferometer, reduces the cost of the system, and has simple operation steps, and can quickly complete the all-fiber Mach-Zehnder interference by frequency sweeping The free spectral range of the instrument can be measured, and the result measurement is intuitive and has good practical value.
附图说明Description of drawings
图1是本发明的一种全光纤干涉仪自由光谱范围测量系统的示意图。Fig. 1 is a schematic diagram of an all-fiber interferometer free spectral range measurement system of the present invention.
图2是本发明的实施例的通过矢量网络分析仪将全光纤Mach-Zehnder干涉仪自由光谱范围转化为微波信号的S21参数的梳状频谱示意图。Fig. 2 is a schematic diagram of the comb spectrum of the S21 parameter of the all-fiber Mach-Zehnder interferometer converted into a microwave signal by a vector network analyzer according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图并通过实施例对本发明作进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。The present invention will be further described in detail below in conjunction with the accompanying drawings and examples. The following examples are explanations of the present invention and the present invention is not limited to the following examples.
如图1所示,本发明的一种全光纤干涉仪自由光谱范围测量系统,包含分布式反馈激光器1、电光相位调制器2、全光纤Mach-Zehnder干涉仪3、光电探测器4、功分器5、信号发生器6和矢量网络分析仪7,电光相位调制器2与分布式反馈激光器1光连接,全光纤Mach-Zehnder干涉仪3与电光相位调制器2光连接,光电探测器4与全光纤Mach-Zehnder干涉仪3光连接,功分器5分别与信号发生器6、电光相位调制器2和矢量网络分析仪7电连接,矢量网络分析仪7与光电探测器4电连接。As shown in Figure 1, an all-fiber interferometer free spectral range measurement system of the present invention includes a distributed feedback laser 1, an electro-optic phase modulator 2, an all-fiber Mach-Zehnder interferometer 3, a photodetector 4, a power divider 5, signal generator 6 and vector network analyzer 7, electro-optic phase modulator 2 is optically connected with distributed feedback laser 1, all-fiber Mach-Zehnder interferometer 3 is optically connected with electro-optic phase modulator 2, and photodetector 4 is optically connected with The all-fiber Mach-Zehnder interferometer 3 is optically connected, the power divider 5 is electrically connected to the signal generator 6, the electro-optical phase modulator 2 and the vector network analyzer 7, and the vector network analyzer 7 is electrically connected to the photodetector 4.
分布式反馈激光器1输出激光,信号发生器6产生微波信号,微波信号经过电光相位调制器2调制到分布式反馈激光器1的输出的光载波上,再导入全光纤Mach-Zehnder干涉仪3,全光纤Mach-Zehnder干涉仪3输出光经光电探测器4转换为微波信号,微波信号与信号发生器6输出的微波信号输入矢量网络分析仪7。The distributed feedback laser 1 outputs laser light, and the signal generator 6 generates microwave signals. The microwave signals are modulated by the electro-optic phase modulator 2 to the optical carrier output of the distributed feedback laser 1, and then imported into the all-fiber Mach-Zehnder interferometer 3. The output light of the fiber optic Mach-Zehnder interferometer 3 is converted into a microwave signal by the photodetector 4 , and the microwave signal and the microwave signal output by the signal generator 6 are input to the vector network analyzer 7 .
分布式反馈激光器1输出1550nm激光,分布式反馈激光器功率为10dBm。信号发生器6产生的微波信号频率为10GHz。The distributed feedback laser 1 outputs 1550nm laser, and the power of the distributed feedback laser is 10dBm. The frequency of the microwave signal generated by the signal generator 6 is 10 GHz.
一种全光纤干涉仪自由光谱范围测量系统的测量方法,包含以下步骤:A measurement method of an all-fiber interferometer free spectral range measurement system, comprising the following steps:
步骤一:分布式反馈激光器输出1550nm激光,分布式反馈激光器的功率为10dBm;连续增大或者减小信号发生器输出微波信号的频率和功率,选择合适的微波频率和功率,便于观察矢量网络分析仪S21参数。Step 1: The distributed feedback laser outputs 1550nm laser, and the power of the distributed feedback laser is 10dBm; continuously increase or decrease the frequency and power of the microwave signal output by the signal generator, and select the appropriate microwave frequency and power to facilitate observation vector network analysis Instrument S 21 parameters.
步骤二:信号发生器产生10GHz的微波信号;Step 2: The signal generator generates a 10GHz microwave signal;
步骤三:通过相位调制器调制后,将10GHz的微波信号调制到1550nm光载波上,并导入全光纤Mach-Zehnder干涉仪;Step 3: After being modulated by a phase modulator, modulate a 10GHz microwave signal onto a 1550nm optical carrier, and import it into an all-fiber Mach-Zehnder interferometer;
步骤四:全光纤Mach-Zehnder干涉仪输出光输入光电探测器;Step 4: The output light of the all-fiber Mach-Zehnder interferometer is input into the photodetector;
步骤五:用矢量网络分析仪分析仪测出信号发生器产生的10GHz的微波信号和光电探测器输出的微波信号的S21参数特性曲线;多次重复用矢量网络分析仪分析仪测出信号发生器产生的10GHz的微波信号和光电探测器输出的微波信号的S21参数特性曲线,然后求其平均值,以提高测量全光纤Mach-Zehnder干涉仪自由光谱范围的测量精度。Step 5 : Use a vector network analyzer to measure the S21 parameter characteristic curve of the 10GHz microwave signal generated by the signal generator and the microwave signal output by the photodetector; repeatedly use the vector network analyzer to measure the signal generation The S21 parameter characteristic curve of the 10GHz microwave signal generated by the detector and the microwave signal output by the photodetector is calculated, and then the average value is calculated to improve the measurement accuracy of the free spectral range of the all-fiber Mach-Zehnder interferometer.
步骤六:如图2所示,S21参数的单个等间隔梳状频谱范围即为全光纤Mach-Zehnder干涉仪的自由光谱范围。测量多个等间隔梳状频谱,求平均值,以提高测量全光纤Mach-Zehnder干涉仪自由光谱范围的测量精度。Step 6: As shown in Fig. 2, the single equidistant comb spectrum range of the S 21 parameter is the free spectrum range of the all-fiber Mach-Zehnder interferometer. Measure multiple equidistant comb spectra and calculate the average value to improve the measurement accuracy of the free spectral range of the all-fiber Mach-Zehnder interferometer.
本发明不依赖于昂贵的可调谐激光器或者有限分辨率的光谱分析,采用常见的分布式反馈激光器,和高精度的矢量网络分析仪(频率分辨率可做到为1Hz),通过矢量网络分析仪将全光纤Mach-Zehnder干涉仪自由光谱范围转化为微波信号的S21参数的等间隔梳状频谱,能精确测量出全光纤Mach-Zehnder干涉仪的自由光谱范围。本发明的方法简化了全光纤Mach-Zehnder干涉仪的自由光谱范围测量系统的复杂性,减小了系统的成本,而且操作步骤简单,可以通过扫频很快地完成对全光纤Mach-Zehnder干涉仪自由光谱范围的测量,结果测量直观,具有很好的实用价值。The present invention does not rely on expensive tunable lasers or limited-resolution spectral analysis, and uses common distributed feedback lasers and high-precision vector network analyzers (frequency resolution can be 1Hz), through vector network analyzers The free spectral range of the all-fiber Mach-Zehnder interferometer is converted into the equidistant comb spectrum of the S21 parameter of the microwave signal, and the free spectral range of the all-fiber Mach-Zehnder interferometer can be accurately measured. The method of the present invention simplifies the complexity of the free spectral range measurement system of the all-fiber Mach-Zehnder interferometer, reduces the cost of the system, and has simple operation steps, and can quickly complete the all-fiber Mach-Zehnder interference by frequency sweeping The free spectral range of the instrument can be measured, and the result measurement is intuitive and has good practical value.
本说明书中所描述的以上内容仅仅是对本发明所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种修改或补充或采用类似的方式替代,只要不偏离本发明说明书的内容或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。The above content described in this specification is only an illustration of the present invention. Those skilled in the technical field to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, as long as they do not deviate from the content of the present invention specification or exceed the scope defined in the claims, all should Belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810985909.5A CN108955888B (en) | 2018-08-28 | 2018-08-28 | An all-fiber interferometer free spectral range measurement system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810985909.5A CN108955888B (en) | 2018-08-28 | 2018-08-28 | An all-fiber interferometer free spectral range measurement system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108955888A true CN108955888A (en) | 2018-12-07 |
CN108955888B CN108955888B (en) | 2023-11-17 |
Family
ID=64474323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810985909.5A Active CN108955888B (en) | 2018-08-28 | 2018-08-28 | An all-fiber interferometer free spectral range measurement system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108955888B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101762330A (en) * | 2009-12-30 | 2010-06-30 | 中国科学院半导体研究所 | Device and method for accurately measuring optical wavelength of single-mode infrared laser |
CN104238229A (en) * | 2014-09-30 | 2014-12-24 | 金陵科技学院 | Mach-Zehnder fiber-optic interferometer tunable in free spectral range |
CN104993358A (en) * | 2015-07-07 | 2015-10-21 | 中国科学院半导体研究所 | Single-sideband optical carrier microwave signal generating device based on stimulated Brillouin scattering |
CN105547648A (en) * | 2015-12-04 | 2016-05-04 | 西安交通大学 | System and method for measuring Fabry-Perot etalon free spectrum scope FSR |
US20160248218A1 (en) * | 2016-04-08 | 2016-08-25 | Zibo Qi-red PhotoElectrical Technology Co., Ltd. | Optic-microwave frequency discriminator for laser frequency difference locking, and method thereof |
CN106092520A (en) * | 2016-08-02 | 2016-11-09 | 中国电子科技集团公司第三十八研究所 | The measurement apparatus of Distributed Feedback Laser frequency noise and method |
CN208621185U (en) * | 2018-08-28 | 2019-03-19 | 金陵科技学院 | An all-fiber interferometer free spectral range measurement system |
-
2018
- 2018-08-28 CN CN201810985909.5A patent/CN108955888B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101762330A (en) * | 2009-12-30 | 2010-06-30 | 中国科学院半导体研究所 | Device and method for accurately measuring optical wavelength of single-mode infrared laser |
CN104238229A (en) * | 2014-09-30 | 2014-12-24 | 金陵科技学院 | Mach-Zehnder fiber-optic interferometer tunable in free spectral range |
CN104993358A (en) * | 2015-07-07 | 2015-10-21 | 中国科学院半导体研究所 | Single-sideband optical carrier microwave signal generating device based on stimulated Brillouin scattering |
CN105547648A (en) * | 2015-12-04 | 2016-05-04 | 西安交通大学 | System and method for measuring Fabry-Perot etalon free spectrum scope FSR |
US20160248218A1 (en) * | 2016-04-08 | 2016-08-25 | Zibo Qi-red PhotoElectrical Technology Co., Ltd. | Optic-microwave frequency discriminator for laser frequency difference locking, and method thereof |
CN106092520A (en) * | 2016-08-02 | 2016-11-09 | 中国电子科技集团公司第三十八研究所 | The measurement apparatus of Distributed Feedback Laser frequency noise and method |
CN208621185U (en) * | 2018-08-28 | 2019-03-19 | 金陵科技学院 | An all-fiber interferometer free spectral range measurement system |
Non-Patent Citations (1)
Title |
---|
叶全意 等: "基于 3 dB 光纤耦合器构成的 Mach-Zehnder 光纤干涉仪稳定控制系统", pages 1 - 3 * |
Also Published As
Publication number | Publication date |
---|---|
CN108955888B (en) | 2023-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107872274B (en) | Method for measuring dispersion coefficient of optical fiber | |
CN104764592B (en) | A kind of measuring method of electro-optic intensity modulator chirp parameter | |
CN107860405B (en) | A kind of spectrum demodulation method and its demodulating equipment based on cursor effect | |
CN104568219A (en) | Temperature measurement device and method based on single-passband microwave photon filter | |
CN102636694A (en) | Single-response microwave photonic filter-based frequency measurement device and measurement method | |
CN107941754B (en) | Method for measuring refractive index of gas | |
CN105091776A (en) | Fiber laser static-state strain beat frequency demodulation system based on single-sideband frequency sweep modulation | |
CN107894327B (en) | Measuring device for optical fiber dispersion coefficient | |
CN105651492A (en) | Laser line width measuring system and method based on electro-optic modulator and adjustable radio source | |
CN105547336B (en) | Fiber grating sensing demodulation apparatus and method based on optoelectronic oscillation loop | |
CN107085143A (en) | A photoelectric frequency response tester and test method | |
CN103414513B (en) | A kind of pulsed light dynamic extinction ratio measurement mechanism and method with high dynamic range | |
CN103645371A (en) | Device and method for measuring half-wave voltage of electro-optic phase modulator | |
CN108614126B (en) | Device and method for measuring angular velocity based on broadband tunable photoelectric oscillator | |
RU102256U1 (en) | DEVICE FOR MEASURING PHYSICAL FIELD PARAMETERS | |
CN102353394A (en) | Time division multiplexing (TDM)-based low-reflectivity triangle spectrum-shaped fiber grating sensing system | |
CN108955939B (en) | Fiber grating temperature sensing demodulation system | |
CN107835053A (en) | A kind of high-precision transient microwave frequency measurement apparatus | |
CN115307795A (en) | Fiber F-P pressure sensor demodulation system based on tunable laser | |
RU2721739C1 (en) | Fiber-optic instantaneous frequency measuring system of multiple microwave signals | |
CN208621185U (en) | An all-fiber interferometer free spectral range measurement system | |
CN107941752B (en) | Measuring device for gas refractive index | |
CN105353210B (en) | A kind of highly sensitive big bandwidth photon microwave frequency measurement apparatus and method | |
CN108955888B (en) | An all-fiber interferometer free spectral range measurement system and method | |
CN107631694B (en) | Method for measuring thickness of optical component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |