CN108946792A - A method of nanometer zincic acid barium is produced using containing zinc ore crude - Google Patents
A method of nanometer zincic acid barium is produced using containing zinc ore crude Download PDFInfo
- Publication number
- CN108946792A CN108946792A CN201810817128.5A CN201810817128A CN108946792A CN 108946792 A CN108946792 A CN 108946792A CN 201810817128 A CN201810817128 A CN 201810817128A CN 108946792 A CN108946792 A CN 108946792A
- Authority
- CN
- China
- Prior art keywords
- zinc
- carbonate
- leaching
- zincate
- barium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011701 zinc Substances 0.000 title claims abstract description 149
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 130
- 229910052788 barium Inorganic materials 0.000 title claims abstract description 58
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title abstract description 57
- 239000002253 acid Substances 0.000 title abstract description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 90
- 238000002386 leaching Methods 0.000 claims abstract description 77
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 27
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 16
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 9
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 54
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 34
- 239000007787 solid Substances 0.000 claims description 23
- 238000003756 stirring Methods 0.000 claims description 22
- 150000002500 ions Chemical class 0.000 claims description 20
- 238000001914 filtration Methods 0.000 claims description 19
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 18
- 239000001099 ammonium carbonate Substances 0.000 claims description 18
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 18
- 239000000706 filtrate Substances 0.000 claims description 18
- 239000011667 zinc carbonate Substances 0.000 claims description 18
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 18
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 17
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 14
- 239000000920 calcium hydroxide Substances 0.000 claims description 14
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 14
- 235000004416 zinc carbonate Nutrition 0.000 claims description 14
- 239000000292 calcium oxide Substances 0.000 claims description 13
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 12
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 9
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 9
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 9
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000013543 active substance Substances 0.000 claims description 7
- 229910001863 barium hydroxide Inorganic materials 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 239000012467 final product Substances 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 235000010755 mineral Nutrition 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- 238000005261 decarburization Methods 0.000 claims description 5
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims description 5
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims description 5
- 238000005262 decarbonization Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000011084 recovery Methods 0.000 abstract description 13
- IWLXWEWGQZEKGZ-UHFFFAOYSA-N azane;zinc Chemical compound N.[Zn] IWLXWEWGQZEKGZ-UHFFFAOYSA-N 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 56
- 239000011787 zinc oxide Substances 0.000 description 28
- 235000014692 zinc oxide Nutrition 0.000 description 28
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 18
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 16
- 239000000243 solution Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 229910000019 calcium carbonate Inorganic materials 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000004110 Zinc silicate Substances 0.000 description 5
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 235000019352 zinc silicate Nutrition 0.000 description 5
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 4
- PRKQVKDSMLBJBJ-UHFFFAOYSA-N ammonium carbonate Chemical compound N.N.OC(O)=O PRKQVKDSMLBJBJ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 4
- 238000005188 flotation Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 229940007718 zinc hydroxide Drugs 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001308 Zinc ferrite Inorganic materials 0.000 description 2
- 229910007661 ZnSiO3 Inorganic materials 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000001698 pyrogenic effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- WGEATSXPYVGFCC-UHFFFAOYSA-N zinc ferrite Chemical compound O=[Zn].O=[Fe]O[Fe]=O WGEATSXPYVGFCC-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- SRONXGSXMGLHAE-UHFFFAOYSA-N C(O)(O)=O.N[Zn]N Chemical compound C(O)(O)=O.N[Zn]N SRONXGSXMGLHAE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- MUHUIJPSGRCRFX-UHFFFAOYSA-M [Zn+].C([O-])([O-])=O.[NH4+] Chemical compound [Zn+].C([O-])([O-])=O.[NH4+] MUHUIJPSGRCRFX-UHFFFAOYSA-M 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229940105847 calamine Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- ONIOAEVPMYCHKX-UHFFFAOYSA-N carbonic acid;zinc Chemical compound [Zn].OC(O)=O ONIOAEVPMYCHKX-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- HYJPZWOFVGWLCA-UHFFFAOYSA-N diazanium zinc carbonate Chemical compound [Zn].[NH4+].C([O-])([O-])=O.[NH4+] HYJPZWOFVGWLCA-UHFFFAOYSA-N 0.000 description 1
- HHICRQHZPBOQPI-UHFFFAOYSA-L diazanium;zinc;dicarbonate Chemical compound [NH4+].[NH4+].[Zn+2].[O-]C([O-])=O.[O-]C([O-])=O HHICRQHZPBOQPI-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052864 hemimorphite Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000010956 selective crystallization Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- CPYIZQLXMGRKSW-UHFFFAOYSA-N zinc;iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Zn+2] CPYIZQLXMGRKSW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
This disclosure relates to a kind of method using the production nanometer zincic acid barium containing zinc ore crude, including leach step, optional purifying step, decarbonation process, zincic acid barium synthesis step, optional rinse step, drying steps.Disclosed method is by wet-leaching in conjunction with synthesis technology, realize the economic and environment-friendly utilization of super low-grade zinc, it is applied widely, without ammonia still process, it is simple and easy to do, greatly reduce the energy consumption of technique, also avoid water process pressure caused by ammonia still process, various problems such as high temperature and pressure security risk and equipment corrosion, solves the environmental issue faced due to steam, which brings water more than needed into, influences process water balance in ammonia circulation technology, solve the problems, such as the technique rate of recovery and fine work grade, it pollutes small, supplies are recyclable, the synthesis of the nanometer zincic acid barium under zinc ammonia environment is realized for the first time.
Description
Technical Field
The invention belongs to the technical field of inorganic chemical industry, relates to resource utilization of low-grade zinc-containing raw ore, and particularly relates to a method for producing nano barium zincate by using low-grade zinc oxide raw ore.
Background
The production and consumption of zinc in China are at the top of the world, domestic zinc resources cannot meet the production, and a large amount of zinc raw materials need to be imported every year. China is a country with abundant zinc oxide resources, and the reserve of zinc metal in zinc oxide ores in China is about 2800 ten thousand tons, which accounts for about 27.7 percent of the reserve of zinc metal in the zinc oxide ores in the world. The zinc oxide ore in China is low in zinc grade on the whole, the average grade is less than 5%, the reserves of dead ore and lean ore which cannot be economically utilized at present account for the vast majority, and mining tailings containing 3-5% of zinc oxide and billions of tons of the mining tailings are stockpiled.
Therefore, the method has important strategic significance for effectively developing and utilizing low-grade zinc oxide ore resources and relieving the problem of insufficient supply of domestic zinc raw materials.
The main process for utilizing the low-grade zinc oxide ore comprises the following steps: the production of the zinc hypoxide by the pyrogenic process is limited by national industrial policies due to the high energy consumption and high pollution of the process.
Flotation is the main process for treating zinc oxide ore at present, but regarding the zinc oxide flotation process, the foreign zinc oxide ore sorting indexes are as follows: the zinc grade is 36-40%, the recovery rate is 60-70%, and the highest recovery rate is 78%; the selection indexes of the zinc oxide ore in China are as follows: the zinc grade is 35-38%, the recovery rate is 68% on average, and the highest recovery rate is 73%. Therefore, the problems of low ore dressing recovery rate, low concentrate grade and the like are common problems existing in the ore dressing of zinc oxide ores at home and abroad, a large amount of sodium sulfide needs to be added for vulcanization treatment of the flotation zinc oxide, and the zinc after vulcanization coating can be directly used as a raw material for producing metal zinc or zinc oxide after secondary treatment of pyrogenic process or pressure oxidation.
As for the wet extraction of zinc ore, sulfuric acid leaching, calcium chloride, ammonium chloride, etc. are mainly known in the prior art. The sulfuric acid leaching method has low selectivity, can leach a large amount of soluble silicon in the ore, the generated colloidal silicon is difficult to filter, and the acid leaching method generates a large amount of sulfate slag, so that great environmental protection treatment pressure is caused; sulfuric acid leaching also does not effectively treat components such as zinc silicate and zinc ferrite in the ore. The calcium chloride method cannot effectively treat leaching of components such as zinc silicate, zinc ferrite and the like in raw ores, and has the disadvantages of unsatisfactory leaching rate, high-temperature leaching and poor comprehensive economic benefit. In the ammonium chloride process, however, the recovery of zinc from the leachate after leaching the crude ore is very difficult and is not suitable for industrial use.
Therefore, the existing process cannot satisfactorily utilize the low-grade zinc-containing raw ore.
Disclosure of Invention
Problems to be solved by the invention
The existing process for utilizing the low-grade zinc oxide ore has the problems of high energy consumption, low ore dressing recovery rate, serious environmental pollution, low economic value and the like. The invention solves the problems existing in the utilization of the zinc oxide ores by improving the treatment process of the zinc oxide ores.
Means for solving the problems
In order to solve the problems in the prior art, the present disclosure provides a method for producing nano barium zincate by using zinc-containing raw ore, comprising the following steps:
leaching: mixing and stirring ground zinc-containing raw ore and a leaching agent, and then filtering to obtain a leaching agent, wherein the leaching agent is a mixed aqueous solution of ammonia and ammonium bicarbonate, or a mixed aqueous solution of ammonia and ammonium carbonate, or a mixed aqueous solution of ammonia, ammonium bicarbonate and ammonium carbonate;
optionally, purifying the leachate obtained in the leaching step;
a decarburization step: adding calcium oxide and/or calcium hydroxide into the leachate, stirring, and then filtering to obtain a first solid and a first filtrate;
and (3) barium zincate synthesis: adding an active agent into the first filtrate, then adding barium hydroxide and/or barium oxide, stirring for reaction, and filtering to obtain a second solid and a second filtrate;
optionally, rinsing the second solid with water;
and (3) drying: and drying the second solid to obtain a final product of nano barium zincate.
In the method for producing nano barium zincate by using zinc-containing raw ore, the mass concentration of total ammonia in the leaching agent is 5-15%, and the molar concentration of available carbonate in the leaching agent is as follows:
Clixiviant carbonate radical=(nTotal zinc of raw ore-nRaw mineral zinc carbonate)×a/VLixiviant
Wherein,
Clixiviant carbonate radicalIs the molar concentration of available carbonate in the leaching agent,
ntotal zinc of raw oreIs the amount of the zinc element in the zinc-containing raw ore,
nraw mineral zinc carbonateIs the amount of zinc carbonate material in the zinc-bearing raw ore,
VlixiviantIs the volume of the leaching agent,
the value range of a is 100-600%, preferably 150-250%.
In the method for producing nano barium zincate by using zinc-containing raw ore, the concentration of zinc ammine complex ions (based on the mass of zinc element) in the leachate obtained in the leaching step is 10-25 g/L.
In the method for producing nano barium zincate using a zinc-containing raw ore provided in a further embodiment of the present disclosure, the amount of the substance of calcium oxide and/or calcium hydroxide added in the decarbonization step is 100% to 130%, preferably 100% to 110%, of the amount of the substance of available carbonate in the leachate.
In the method for producing nano barium zincate by using the zinc-containing raw ore, in the step of synthesizing the barium zincate, the ratio of the amount of the substance of barium hydroxide and/or barium oxide to the amount of the substance of zinc ammine complex ions in the first filtrate is 1-1.2: 2, preferably 1-1.1: 2.
In the method for producing nano barium zincate by using the zinc-containing raw ore, carbon dioxide is introduced into the second filtrate obtained in the barium zincate synthesis step, and the second filtrate introduced with the carbon dioxide is used as a leaching agent and is recycled for leaching the zinc-containing raw ore.
In the method for producing nano barium zincate by using the zinc-containing raw ore, the reaction temperature of the step of synthesizing the barium zincate is 15-90 ℃, preferably 15-25 ℃.
In the method for producing nano barium zincate by using the zinc-containing raw ore, the stirring reaction time of the step of synthesizing the barium zincate is 15-30 minutes.
In a further embodiment of the present disclosure, there is provided a method for producing nano barium zincate using zinc-containing raw ore, wherein the active agent is one or more selected from sodium hexametaphosphate and sodium dodecylbenzene sulfonate.
The disclosure also provides nano barium zincate prepared by the method for producing nano barium zincate by using the zinc-containing raw ore, wherein the average particle size of the nano barium zincate is 10-100 nm.
ADVANTAGEOUS EFFECTS OF INVENTION
The present disclosure achieves the following advantageous technical effects in one or more aspects:
1) the wet leaching and the synthesis process are combined, so that the economic and environment-friendly utilization of the ultralow-grade zinc ore is realized.
2) The method disclosed by the invention is wide in application range, and the ammonia-ammonium bicarbonate leaching system can be used for effectively extracting and utilizing zinc-containing raw ores in various forms.
3) The method breaks the inherent method that the traditional ammonia-ammonium bicarbonate method zinc complex leaching process destroys the complex environment by heating and evaporating ammonia to realize zinc ion crystallization separation, creatively adds barium oxide or barium hydroxide into an ammonium bicarbonate-zinc ammonia complex system to shift the balance of zinc ammine complex ion-zinc ion-barium zincate, realizes the selective crystallization separation of zinc element by a balance shift principle on the premise of not destroying the dissolved ammonia environment, and avoids the phenomenon of impurity coprecipitation caused by the ammonia environment destroyed by the existing heating and ammonia evaporation method. The process disclosed by the invention is simple and easy to implement without ammonia distillation, greatly reduces the energy consumption of the process, and also avoids the problems in many aspects such as water treatment pressure, high-temperature and high-pressure potential safety hazards, equipment corrosion and the like caused by ammonia distillation.
4) The leaching and separation of zinc are realized through the circulation of carbonate, and the environmental protection problem caused by the influence of the surplus water brought by steam on the process water balance in the ammonia circulation process is solved.
5) Compared with a zinc oxide flotation process, the method disclosed by the invention solves the problems of process recovery rate and quality grade of fine products, and the obtained product can be directly used as a product and also can be used as an industrial raw material.
6) The method disclosed by the invention has the advantages that the pollution is small, the auxiliary materials can be recycled, and the problem of environmental pollution caused by the auxiliary raw materials of the existing zinc oxide treatment process is solved.
7) The method realizes the synthesis of barium zincate in the zinc ammonia environment for the first time, in particular to the synthesis of nano barium zincate; the reaction for synthesizing barium zincate from zinc ammine complex ions has high selectivity, and is simple and rapid.
Detailed Description
Various exemplary embodiments, features and aspects of the disclosure are described in detail below. The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration. Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a better understanding of the present disclosure. In some instances, methods, means, reagents and devices well known to those skilled in the art are not described in detail, but those skilled in the art can implement the technical solutions of the present disclosure based on the general knowledge in the art.
The application range of the method disclosed by the invention is not particularly limited, and the method can be widely applied to the utilization of various zinc-containing raw ores. The advantages of the process disclosed herein are particularly pronounced when low grade zinc oxide raw ore is used as a production feedstock. For example, the low-grade zinc-containing raw ore can be zinc-containing raw ore with the zinc content of 3-15%; particularly, before the method, a large amount of zinc-containing raw ores (lean ores and mill tailings) with the zinc content of 3% -6% are stockpiled, the existing various processes cannot utilize the economic value of the zinc-containing raw ores, and great processing pressure is caused.
In the present disclosure, the form of the presence of the zinc component in the zinc-containing raw ore is not particularly limited, for example, the zinc component may be present in one or more forms including, but not limited to, zinc oxide, zinc carbonate, zinc silicate, and the like.
Noun interpretation
As used herein, unless otherwise specified, "zinc ammine carbonate" is a generic term for compounds formed from zinc ammine complex ions and carbonate ions, and includes [ Zn (NH)3)4]CO3(Zinc tetraammine carbonate), [ Zn (NH)3)3]CO3(Triammine Zinc carbonate), [ Zn (NH)3)2]CO3(Diaminozinc carbonate), [ Zn (NH)3)]CO3(zinc monoammonium carbonate), and the like.
In this context, unless otherwise stated, "zinc ammine complex ion" is a generic term for each level of ammine zinc complex ion, and includes [ Zn (NH)3)4]2+(Zinc tetraammine ion), [ Zn (NH)3)3]2+(Triammine Zinc ion), [ Zn (NH)3)2]2+(Diaminato zinc ion), [ Zn (NH)3)]2+(zinc ion ammine), and the like.
As used herein, unless otherwise indicated, "carbonate" in a solution (including but not limited to various liquors such as lixiviants, leachate, and the like) refers to the sum of carbonate and bicarbonate in the solution.
"optional" or "optionally" means that the subsequently described step may or may not be performed, and that the expression includes instances where the subsequently described step is performed and instances where the subsequently described step is not performed.
Chemical reaction formula
1. Leaching
a. Zinc oxide leaching
Extracting agent of ammonia and ammonium bicarbonate
ZnO+(i-1)NH3+NH4HCO3=[Zn(NH3)i]CO3+H2O (i is an integer of 1 to 4)
Ammonia and ammonium carbonate as leaching agents
ZnO+(i-2)NH3+(NH4)2CO3=[Zn(NH3)i]CO3+H2O (i is an integer of 2 to 4)
b. Leaching of zinc hydroxide
Extracting agent of ammonia and ammonium bicarbonate
Zn(OH)2+(i-1)NH3+NH4HCO3=[Zn(NH3)i]CO3+2H2O
(i is an integer of 1 to 4)
Ammonia and ammonium carbonate as leaching agents
Zn(OH)2+(i-2)NH3+(NH4)2CO3=[Zn(NH3)i]CO3+2H2O
(i is an integer of 2 to 4)
c. Zinc carbonate (calamine) leaching
ZnCO3+iNH3=[Zn(NH3)i]CO3(i is an integer of 1 to 4)
d. Zinc silicate leaching
Extracting agent of ammonia and ammonium bicarbonate
ZnSiO3+(i-1)NH3+NH4HCO3=[Zn(NH3)i]CO3+H2O+SiO2
(i is an integer of 1 to 4)
Ammonia and ammonium carbonate as leaching agents
ZnSiO3+(i-2)NH3+(NH4)2CO3=[Zn(NH3)i]CO3+H2O+SiO2
(i is an integer of 2 to 4)
2. Decarburization of carbon
Reaction of lime with water
CaO+H2O=Ca(OH)2
Precipitation of
Ca(OH)2+(NH4)2CO3=CaCO3↓+2NH3·H2O
Ca(OH)2+NH4HCO3=CaCO3↓+NH3+2H2O
[Zn(NH3)i]CO3+Ca(OH)2=[Zn(NH3)i](OH)2+CaCO3↓
(i is an integer of 1 to 4)
Possible side reactions:
Ca(OH)2+[Zn(NH3)i]CO3=CaCO3↓+Zn(OH)2↓+iNH3
(i is an integer of 1 to 4)
3. Barium zincate synthesis
2[Zn(NH3)i](OH)2+Ba(OH)2+2H2O=Ba(OH)2·2Zn(OH)2·2H2O+2iNH3
(i is an integer of 1 to 4)
The concrete process steps
Step 1 extraction
Mixing the ground low-grade zinc-containing raw ore with a prepared leaching agent according to a certain proportion, and stirring and leaching. The leaching agent may be selected from: a mixed aqueous solution of ammonia and ammonium bicarbonate; a mixed aqueous solution of ammonia and ammonium carbonate; a mixed aqueous solution of ammonia, ammonium bicarbonate and ammonium carbonate.
The concentration of total ammonia and the concentration of available carbonate in the leaching agent are not particularly limited, and those skilled in the art can select the concentration according to the actual needs by combining the factors such as raw ore components, grade and the like.
In the preferred scheme, the mass concentration of the total ammonia in the leaching agent is 5-15%, more preferably 6-8%, and the preferred concentration range can achieve sufficient leaching effect and avoid the problems of waste and environmental protection caused by excessive ammonia.
In a preferred scheme, the amount of available carbonate in the leaching agent is increased by 0-500% on the basis of the difference obtained by subtracting the amount of carbonate introduced by zinc carbonate in the raw material from the theoretical consumption of carbonate in complexed zinc, and more preferably, the amount of available carbonate in the leaching agent is increased by 50% -150% on the basis of the difference obtained by subtracting the amount of carbonate introduced by zinc carbonate in the raw material from the theoretical consumption of carbonate in complexed zinc. The consumption of carbonate in the theory of complex zinc is the consumption of carbonate which is used for completely converting zinc element in raw ore into zinc ammonium carbonate. Thus, the molar concentration of available carbonate in the lixiviant can be calculated as follows:
Clixiviant carbonate radical=(nTotal zinc of raw ore-nRaw mineral zinc carbonate)×a/VLixiviant
Wherein, CLixiviant carbonate radicalIs the molar concentration of available carbonate in the lixiviant, nTotal zinc of raw oreIs the amount of material containing zinc element in the zinc raw ore, nRaw mineral zinc carbonateIs the amount of zinc carbonate in the zinc-containing raw ore, VLixiviantIs the volume of the leaching agent, a is a coefficient, and the value of a is 100 to 600 percent, preferably 150 to 250 percent. The mass concentration of carbonate in the lixiviant can be converted according to the molar concentration.
The optimized effective carbonate concentration of the leaching agent can ensure that zinc in raw ore is completely leached, can realize the circulation of carbonate in the process, and can avoid the pressure of excessive carbonate on the subsequent process treatment.
The weight ratio of the leaching agent to the zinc-containing raw ore powder is not particularly limited as long as the zinc component can be leached. Preferably, the weight ratio of the leaching agent to the zinc-containing raw ore powder is 3:1 to 5:1, so that a satisfactory leaching effect can be obtained, and the waste of the leaching agent is avoided.
The leaching temperature is not particularly limited as long as the zinc component in the raw ore is leached. Preferably leaching is carried out at normal temperature, for example leaching is carried out at 15-30 ℃; the leaching may also be carried out at slightly elevated temperatures (e.g., 30-55 ℃). The temperature can be selected according to actual conditions.
The zinc-containing raw ore is mixed with the leaching agent and stirred for a period of time which is not particularly limited as long as the zinc component in the raw ore is leached, and the stirring time is preferably 1 to 4 hours, more preferably 1 to 2 hours.
During leaching, zinc element in raw ore is converted into zinc ammine complex ions (mainly zinc ammine complex ions at each level) and enters into a liquid phase. And filtering after leaching to obtain a leaching solution containing zinc ammonia complex ions. The leachate can be used in the subsequent decarburization process. The concentration of the zinc ammine complex ions in the leachate is not particularly limited, but the concentration (by mass of the zinc element) of the zinc ammine complex ions in the leachate is preferably 10-25 g/L, so that the treatment efficiency of the process is optimal, good yield and purity are obtained in the subsequent barium zincate synthesis step, and the comprehensive economic benefit is optimal. If the concentration of the zinc ammine complex ions in the original leached liquid is not in the preferred range, optionally concentrating or diluting the leached liquid, and adjusting the concentration of the zinc ammine complex ions in the leachate to be in the preferred range of 10-25 g/L.
Step 2 purification
Step 2 is an optional step, and step 2 is optionally performed, if necessary. Purifying the leachate by a known method to remove impurity elements such as iron, manganese, lead, copper and the like. An exemplary purification method is to add zinc powder for displacement and then filtering to remove heavy metal contaminants, but various other known purification methods may be used. The purification step helps to increase the purity of the final product.
Step 3 decarburization
In the decarbonization step, calcium hydroxide and/or calcium oxide is added into the leachate containing the zinc-ammonia complex ions, and carbonate/bicarbonate radicals in the leachate are converted into calcium carbonate. If the concentration of the zinc ammine complex ions in the leachate is too high, equilibrium shift of zinc ammine complex ions-zinc hydroxide in the leachate may occur at the same time, and a very small portion of the zinc component may be co-precipitated with calcium carbonate in the form of zinc hydroxide.
In the decarbonising step, the amount of calcium hydroxide and/or calcium oxide added substantially matches the amount of available carbonate in the leach solution, for example, the amount of calcium hydroxide and/or calcium oxide species added in the decarbonising step is 100% to 130%, more preferably 100% to 110% of the amount of available carbonate species in the leach solution. Proper addition of calcium hydroxide and/or calcium oxide is helpful for controlling the process cost and improving the purity and quality of the finished zinc product.
In the decarbonization step, calcium hydroxide and/or calcium oxide are added into the leaching solution, and the mixture is stirred for reaction to generate solid precipitate. The reaction temperature is not particularly limited, and particularly, the reaction is preferably carried out at normal temperature (for example, 15 to 25 ℃), so that on one hand, energy is saved, and on the other hand, environmental pollution caused by ammonia volatilization is reduced. The stirring time is not particularly limited as long as a precipitate is obtained, and stirring is preferably performed for 1 to 2 hours.
And filtering after stirring to obtain a first solid and a first filtrate. The primary component of the first solid is calcium carbonate, and if the concentration of zinc ammine ions in the leach solution is high, some zinc hydroxide co-precipitated with the calcium carbonate may also be present in the first solid. The first solid can be calcined into calcium oxide and carbon dioxide for recycling. The first filtrate is continuously used for the subsequent barium zincate synthesis.
Step 4 barium zincate Synthesis
And adding an active agent into the first filtrate, then adding barium hydroxide and/or barium oxide, and stirring for reaction. The active agent is preferably sodium hexametaphosphate or sodium dodecyl benzene sulfonate, and the addition amount of the active agent is preferably 0.01-0.05% of the estimated final product mass. The ratio of the amount of barium hydroxide and/or barium oxide added in this step to the amount of zinc ammine complex ion in the first filtrate is preferably 1 to 1.2:2, more preferably 1 to 1.1: 2. The reaction temperature is not particularly limited, and may be, for example, 15 to 90 ℃, but it is particularly preferable to carry out the reaction at normal temperature (for example, 15 to 25 ℃), so that on the one hand, energy is saved, on the other hand, environmental pollution caused by ammonia volatilization is reduced, and at the same time, the control of the crystal particle size is facilitated at a low temperature.
The stirring time is not particularly limited as long as a precipitate is obtained, but in order to control the crystal particle size, the stirring reaction is preferably carried out for 15 to 30 minutes, and then the filtration can be carried out without a long-time reaction and aging process. Filtering to obtain a second solid and a second filtrate. The main component of the second solid is nano barium zincate, and generally, the barium zincate component can account for more than 95% of the total mass of the second solid. Carbon dioxide may be passed to the second filtrate and then recycled for leaching of the zinc containing raw ore.
Step 5 rinsing
This step is an optional step, and a rinsing step is performed if necessary. And rinsing the second solid with water, wherein the liquid-solid ratio is 5-10: 1, and the rinsing times are 1-2.
Step 6 drying
And drying the second solid at a temperature not higher than 125 ℃ to obtain a final product taking nano barium zincate as a main component. The average particle size of the final product nano barium zincate is 10-100 nm.
Embodiments of the present disclosure will be described in detail below with reference to examples, but those skilled in the art will appreciate that the following examples are only illustrative of the present disclosure and should not be construed as limiting the scope of the present disclosure. The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products commercially available.
Example 1
The zinc content of the zinc ore in some places in Yunnan province is 5.6%, the oxidation rate of raw ore is 96.3%, and the zinc component in the ore takes zinc carbonate as a main existing form.
300 g of zinc-containing raw ore is taken and put into 900 ml of ammonia-ammonium bicarbonate mixed solution (the mass concentration of total ammonia is 10 percent, and the mass concentration of carbonate is 3 percent) for stirring and leaching, the leaching temperature is normal temperature, the stirring time is 2 hours, then the filtering is carried out, the filtered liquid contains 1.632 percent of zinc (calculated by zinc oxide equivalent), the mass concentration of carbonate in the liquid is 4.23 percent, and the increased part is introduced by zinc carbonate in the raw ore. According to the test data, the recovery rate of soluble zinc in the raw ore in the leaching process is 90.79%, and the total recovery rate of zinc is 87.43%.
And purifying the filtered zinc-ammonia complex solution.
And adding 14.55 g of calcium oxide into 600 ml of zinc-ammonia complex solution obtained by leaching and filtering for precipitating carbonate, reacting for 1 hour, and filtering.
And taking 500 ml of filtered liquid, adding 3 mg of sodium dodecyl benzene sulfonate and 6.6 g of barium oxide for synthesizing barium zincate, stirring at normal temperature for reaction, filtering after reacting for 1 hour, drying the filtered solid at 105 ℃ for 2 hours, sampling and analyzing, and checking that the content of the barium zincate in the solid is 99.53 percent and the average particle size is 54.1 nm.
Example 2
In Chongqing some zincite, the zinc content is 4.7%, the oxidation rate of raw ore is 95.52%, and the zinc component in the zincite is zinc silicate which is the main existing form.
300 g of zinc-containing raw ore is taken and put into 900 ml of ammonia-ammonium bicarbonate mixed solution (the mass concentration of total ammonia is 10 percent, and the mass concentration of carbonate is 3 percent) for stirring and leaching, the leaching temperature is normal temperature, the stirring time is 2 hours, then the filtering is carried out, the zinc (calculated by zinc oxide equivalent) in the filtered liquid is 1.367 percent, the mass concentration of carbonate in the liquid is 3.54 percent, and the part of the zinc-containing raw ore is added by zinc carbonate in the raw ore. According to the test data, the recovery rate of soluble zinc in the raw ore in the leaching process is 91.35%, and the total recovery rate of zinc is 87.26%.
And purifying the filtered zinc-ammonia complex solution.
Taking 600 ml of zinc-ammonia complex liquid obtained by leaching and filtering, adding 12.18 g of calcium oxide for precipitating carbonate, reacting for 1 hour, and filtering.
And taking 500 ml of filtered liquid, adding 3 mg of sodium dodecyl benzene sulfonate and 5.44 g of barium oxide for synthesizing barium zincate, stirring at normal temperature for reaction, filtering after reacting for 1 hour, drying the filtered solid at 105 ℃ for 2 hours, sampling and analyzing, and checking that the content of the barium zincate in the solid is 99.47% and the average particle size is 52.3 nm.
Having described embodiments of the present disclosure, the foregoing description is intended to be exemplary, not exhaustive, and not limited to the disclosed embodiments. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein is chosen in order to best explain the principles of the embodiments, the practical application, or improvements made to the technology in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Claims (10)
1. The method for producing nano barium zincate by using the zinc-containing raw ore is characterized by comprising the following steps of:
leaching: mixing and stirring ground zinc-containing raw ore and a leaching agent, and then filtering to obtain a leaching agent, wherein the leaching agent is a mixed aqueous solution of ammonia and ammonium bicarbonate, or a mixed aqueous solution of ammonia and ammonium carbonate, or a mixed aqueous solution of ammonia, ammonium bicarbonate and ammonium carbonate;
optionally, purifying the leachate obtained in the leaching step;
a decarburization step: adding calcium oxide and/or calcium hydroxide into the leachate, stirring, and then filtering to obtain a first solid and a first filtrate;
and (3) barium zincate synthesis: adding an active agent into the first filtrate, then adding barium hydroxide and/or barium oxide, stirring for reaction, and filtering to obtain a second solid and a second filtrate;
optionally, rinsing the second solid with water;
and (3) drying: and drying the second solid to obtain a final product of nano barium zincate.
2. The method for producing nano barium zincate using raw zinc containing ore according to claim 1,
the mass concentration of total ammonia in the leaching agent is 5% -15%, and the molar concentration of available carbonate in the leaching agent is as follows:
Clixiviant carbonate radical=(nTotal zinc of raw ore-nRaw mineral zinc carbonate)×a/VLixiviant
Wherein,
Clixiviant carbonate radicalIs the molar concentration of available carbonate in the leaching agent,
ntotal zinc of raw oreIs the amount of the zinc element in the zinc-containing raw ore,
nraw mineral zinc carbonateIs the amount of zinc carbonate material in the zinc-bearing raw ore,
VlixiviantIs the volume of the leaching agent,
the value range of a is 100-600%, preferably 150-250%.
3. The method for producing nano barium zincate by using zinc-containing raw ore according to claim 1 or 2, wherein the concentration of zinc ammine complex ions (based on the mass of zinc element) in the leachate obtained in the leaching step is 10-25 g/L.
4. The method for producing nano barium zincate using raw zinc containing ore according to any one of claims 1 to 3, wherein the amount of the substance of calcium oxide and/or calcium hydroxide added in the decarbonization step is 100 to 130%, preferably 100 to 110% of the amount of the substance of available carbonate in the leachate.
5. The method for producing nano barium zincate by using zinc-containing raw ore according to any one of claims 1 to 4, wherein in the step of synthesizing barium zincate, the ratio of the amount of the substance of barium hydroxide and/or barium oxide to the amount of the substance of zinc ammine complex ion in the first filtrate is 1-1.2: 2, preferably 1-1.1: 2.
6. The method for producing nano barium zincate by using raw zinc-containing ore according to any one of claims 1 to 5, wherein carbon dioxide is introduced into the second filtrate obtained in the barium zincate synthesis step, and the second filtrate introduced with carbon dioxide is used as a leaching agent and is recycled for leaching the raw zinc-containing ore.
7. The method for producing nano barium zincate by using zinc-containing raw ore according to any one of claims 1 to 6, wherein the reaction temperature of the barium zincate synthesis step is 15 to 90 ℃, preferably 15 to 25 ℃.
8. The method for producing nano barium zincate by using zinc-containing raw ore according to any one of claims 1 to 7, wherein the stirring reaction time of the barium zincate synthesis step is 15 to 30 minutes.
9. The method for producing nano barium zincate by using raw zinc containing ore according to any one of claims 1 to 8, wherein the active agent is one or more selected from sodium hexametaphosphate and sodium dodecyl benzene sulfonate.
10. The nano barium zincate prepared by the method for producing nano barium zincate using the zinc-containing raw ore according to any one of claims 1 to 9, wherein the average particle size of the nano barium zincate is 10 to 100 nm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810817128.5A CN108946792A (en) | 2018-07-24 | 2018-07-24 | A method of nanometer zincic acid barium is produced using containing zinc ore crude |
CN201910597956.7A CN110205489B (en) | 2018-07-24 | 2019-07-04 | Method for treating zinc-containing raw ore by barium zincate synthesis way |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810817128.5A CN108946792A (en) | 2018-07-24 | 2018-07-24 | A method of nanometer zincic acid barium is produced using containing zinc ore crude |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108946792A true CN108946792A (en) | 2018-12-07 |
Family
ID=64463252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810817128.5A Withdrawn CN108946792A (en) | 2018-07-24 | 2018-07-24 | A method of nanometer zincic acid barium is produced using containing zinc ore crude |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108946792A (en) |
-
2018
- 2018-07-24 CN CN201810817128.5A patent/CN108946792A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110972479B (en) | Method for producing zinc oxide by twice leaching method | |
CN102560116B (en) | Method for recovering manganese and vanadium from titanium white waste acid, manganese slag and vanadium-containing steel slag | |
CN102242262A (en) | Method for treating low-grade zinc oxide ore by using weakly alkaline amino acid salt system | |
CN108862370A (en) | A method of nano zine oxide being produced under zinc ammonia complexing environment using containing zinc ore crude | |
CN110896643B (en) | Method for producing zinc-containing compound or zinc oxide from zinc-containing raw ore through intermediate step of calcium zincate synthesis | |
CN108588413A (en) | A method of producing nano zine oxide using containing zinc ore crude | |
CN108862371A (en) | A method of zinc oxide is produced using containing zinc ore crude | |
CN108862372A (en) | A method of nano zine oxide and compound of calcium carbonate are produced using containing zinc ore crude | |
CN108950239A (en) | A method of it produces using containing zinc ore crude containing zinc complexes | |
CN108622927A (en) | A method of producing nano zine oxide using containing zinc ore crude | |
CN108754140A (en) | A method of it is produced containing zinc complexes using containing zinc ore crude | |
CN108866331A (en) | A method of zinc oxide being produced under zinc ammonia complexing environment using containing zinc ore crude | |
CN108793227A (en) | A method of producing nano zine oxide using containing zinc ore crude | |
CN108585026A (en) | A method of producing nanometer calcium zincates using containing zinc ore crude | |
CN110817935A (en) | Method for preparing high-purity zinc oxide by utilizing zinc renewable resources | |
CN108622925A (en) | A method of producing calcium zincates using containing zinc ore crude | |
CN108913887A (en) | A method of zinc oxide is produced using containing zinc ore crude | |
CN108950238A (en) | A kind of low-grade beneficiation method containing zinc ore crude | |
CN110972482B (en) | Beneficiation method for low-grade zinc-containing raw ore | |
CN108892162A (en) | A method of zinc oxide and compound of calcium carbonate are produced using containing zinc ore crude | |
CN108946792A (en) | A method of nanometer zincic acid barium is produced using containing zinc ore crude | |
CN108913886A (en) | A method of nanometer zincic acid strontium is produced using containing zinc ore crude | |
CN108640146A (en) | A method of producing nano zine oxide using containing zinc ore crude | |
CN108950241A (en) | A method of zinc oxide is produced using containing zinc ore crude | |
CN108892166A (en) | A method of zincic acid strontium is produced using containing zinc ore crude |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20181207 |