CN108933335A - 一种调控雷达吸波材料吸收频率的新方法 - Google Patents
一种调控雷达吸波材料吸收频率的新方法 Download PDFInfo
- Publication number
- CN108933335A CN108933335A CN201810943790.5A CN201810943790A CN108933335A CN 108933335 A CN108933335 A CN 108933335A CN 201810943790 A CN201810943790 A CN 201810943790A CN 108933335 A CN108933335 A CN 108933335A
- Authority
- CN
- China
- Prior art keywords
- fega
- pet
- substrate
- band
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/007—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
本发明公开了一种调控雷达吸波材料吸收频率的新方法,包括如下步骤:S1、采用PET材料制作柔性衬底;S2、采用磁控溅射镀膜方法,在弯曲的柔性衬底PET上沉积FeGa薄膜,PET衬底恢复平整后,FeGa薄膜受到预应力作用,通过光刻技术,制备出FeGa条带结构;S3、在FeGa条带中施加不同程度的预应力;S4、通过对衬底材料PET施加应力,进行FeGa条带的吸波频率的改变。本发明解决了以往吸波材料共振吸收频率固定单一的问题,极大的扩展了吸波材料的应用领域,对于国防战斗机隐形技术以及日常电磁设备屏蔽维护,都具有重要的实用价值。
Description
技术领域
本发明涉及雷达吸波材料制备领域,具体涉及一种调控雷达吸波材料吸收频率的新方法。
背景技术
随着隐身技术的发展,吸波材料成为世界各国研究的重点,吸波材料能够有效的提升武器装备的系统生存能力和作战能力。日常生活中,为了有效的防护电子设备辐射电磁波,也需要使用吸波材料来进行电磁屏蔽。然而,实际应用过程中,电磁波的频率会因为使用场景的不同而发生改变,这就要求吸波材料具有灵活的可调的吸收频率。目前,关于吸波材料中吸收频率动态可调的专利依然十分少见。
发明内容
为解决上述问题,本发明提供了一种调控雷达吸波材料吸收频率的新方法,将柔性衬底与磁致伸缩条带相结合,选用高延展性,高磁致伸缩,耐冲击,机械性能优异的FeGa这一新颖材料,实现微波共振吸收频率动态可调,在雷达吸波隐身以及电磁屏蔽方面具有十分重要的应用价值。
为实现上述目的,本发明采取的技术方案为:
一种调控雷达吸波材料吸收频率的新方法,包括如下步骤:
S1、采用PET材料制作柔性衬底;
S2、采用磁控溅射镀膜方法,在弯曲的PET上沉积FeGa薄膜,PET衬底恢复平整后,FeGa薄膜受到预应力作用,通过光刻技术,制备出FeGa条带结构;
S3、在FeGa条带中施加不同程度的预应力;将柔性PET衬底弯曲在不同曲率半径的圆弧曲面上,沉积FeGa薄膜后,将PET衬底展平,FeGa薄膜中就会受到不同程度的应力。应力主要来源于弯曲的PET在恢复平整状态后产生的应变,应变通界面传递给FeGa薄膜,从而在薄膜中产生应力。
S4、通过对衬底材料PET施加应力,由于PET衬底可以自由弯曲,因此,可以通过相关拉伸或压缩机械装置,对薄膜衬底施加应力,PET衬底在外加机械应力的作用下发生形变,由于FeGa薄膜与PET结合紧密,从而FeGa薄膜也会产生应变,从而达到动态调控FeGa条带的吸波频率。
本发明解决了以往吸波材料共振吸收频率固定单一的问题,极大的扩展了吸波材料的应用领域,对于国防战斗机隐形技术以及日常电磁设备屏蔽维护,都具有重要的实用价值。
附图说明
图1为不同应力状态下,FeGa条带的磁化率随磁场频率的变化关系曲线。
图2为不同应力状态下,FeGa磁化率共振峰的频率随应力的变化关系汇总图。插图显示了应力施加在FeGa条带的宽度方向,磁场沿条带宽度方向并平行于FeGa条带平面。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的一种调控雷达吸波材料吸收频率的新方法,包括如下步骤:
S1、采用PET材料制作柔性衬底;
S2、采用磁控溅射镀膜方法,在PET上沉积FeGa薄膜,通过光刻技术,制备出FeGa条带结构;
S3、在FeGa条带中施加不同程度的预应力;
S4、通过对衬底材料PET施加应力,应力由衬底传递到FeGa条带中,由于逆磁致伸缩效应,FeGa条带的磁化状态发生改变,应力在FeGa条带中诱导出单轴各向异性,根据Kittle公式,FeGa条带的共振频率由于局域的有效场发生改变而产生变化,从而,FeGa条带的吸波频率发生移动。
如图1所示,FeGa条带在应力作用下,共振吸收峰产生了移动,箭头所指方向为应力从压应力逐渐增大为张应力的变化过程。在张应力的作用下,共振吸收峰从17.25GHz降到了15.25GHz,也就是说,FeGa条带共振吸收峰在0~70.85MPa的张应力作用下,实现了15.25~17.25GHz的频率可调。类似的,在压应力从0~70.85MPa的范围内变化时,FeGa条带共振吸收峰从17.25GHz增加到19.0GHz。由此可见,FeGa条带的共振吸收峰频率可调范围为~4.0GHz。极大的拓展了雷达吸波材料的应用范围。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (1)
1.一种调控雷达吸波材料吸收频率的新方法,其特征在于:包括如下步骤:
S1、采用PET材料制作柔性衬底;
S2、采用磁控溅射镀膜方法,在弯曲的柔性衬底PET上沉积FeGa薄膜,通过光刻技术,制备出FeGa条带结构;
S3、在FeGa条带中施加不同程度的预应力;将柔性PET衬底弯曲在不同曲率半径的圆弧曲面上,沉积FeGa薄膜后,将PET衬底展平;
S4、通过机械装置拉伸或压缩衬底材料PET,从而对FeGa条带施加张应力或压应力,进行FeGa条带的吸波频率的改变。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810943790.5A CN108933335B (zh) | 2018-08-18 | 2018-08-18 | 一种调控雷达吸波材料吸收频率的新方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810943790.5A CN108933335B (zh) | 2018-08-18 | 2018-08-18 | 一种调控雷达吸波材料吸收频率的新方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108933335A true CN108933335A (zh) | 2018-12-04 |
CN108933335B CN108933335B (zh) | 2020-12-22 |
Family
ID=64445971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810943790.5A Active CN108933335B (zh) | 2018-08-18 | 2018-08-18 | 一种调控雷达吸波材料吸收频率的新方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108933335B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113088894A (zh) * | 2021-03-26 | 2021-07-09 | 电子科技大学 | 一种应力诱导提高薄膜应用频率的薄膜制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5214432A (en) * | 1986-11-25 | 1993-05-25 | Chomerics, Inc. | Broadband electromagnetic energy absorber |
US5472828A (en) * | 1992-06-22 | 1995-12-05 | Martin Marietta Corporation | Ablative process for printed circuit board technology |
CN101139722A (zh) * | 2007-10-22 | 2008-03-12 | 夏芝林 | 一种柔性可卷绕吸波膜材料的制备方法 |
US7750860B2 (en) * | 2006-09-07 | 2010-07-06 | Farrokh Mohamadi | Helmet antenna array system |
CN102983407A (zh) * | 2012-11-20 | 2013-03-20 | 深圳光启创新技术有限公司 | 三维结构超材料 |
US20130280088A1 (en) * | 2010-10-26 | 2013-10-24 | Vestas Wind Systems A/S | Wind turbine component comprising radar-absorbing material |
CN103779667A (zh) * | 2014-02-11 | 2014-05-07 | 国家纳米科学中心 | 一种结构型吸波材料及其制作方法 |
CN104716440A (zh) * | 2015-03-27 | 2015-06-17 | 电子科技大学 | 一种基于磁性薄膜的电磁吸波体结构及其设计方法 |
CN106244991A (zh) * | 2016-08-26 | 2016-12-21 | 电子科技大学 | 一种吸波多层薄膜及其制备方法 |
CN106329146A (zh) * | 2016-09-09 | 2017-01-11 | 电子科技大学 | 一种柔性太赫兹超材料吸波器及其制作方法 |
CN107479215A (zh) * | 2017-07-13 | 2017-12-15 | 华中科技大学 | 一种太赫兹超材料调制方法及其产品 |
-
2018
- 2018-08-18 CN CN201810943790.5A patent/CN108933335B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5214432A (en) * | 1986-11-25 | 1993-05-25 | Chomerics, Inc. | Broadband electromagnetic energy absorber |
US5472828A (en) * | 1992-06-22 | 1995-12-05 | Martin Marietta Corporation | Ablative process for printed circuit board technology |
US7750860B2 (en) * | 2006-09-07 | 2010-07-06 | Farrokh Mohamadi | Helmet antenna array system |
CN101139722A (zh) * | 2007-10-22 | 2008-03-12 | 夏芝林 | 一种柔性可卷绕吸波膜材料的制备方法 |
US20130280088A1 (en) * | 2010-10-26 | 2013-10-24 | Vestas Wind Systems A/S | Wind turbine component comprising radar-absorbing material |
CN102983407A (zh) * | 2012-11-20 | 2013-03-20 | 深圳光启创新技术有限公司 | 三维结构超材料 |
CN103779667A (zh) * | 2014-02-11 | 2014-05-07 | 国家纳米科学中心 | 一种结构型吸波材料及其制作方法 |
CN104716440A (zh) * | 2015-03-27 | 2015-06-17 | 电子科技大学 | 一种基于磁性薄膜的电磁吸波体结构及其设计方法 |
CN106244991A (zh) * | 2016-08-26 | 2016-12-21 | 电子科技大学 | 一种吸波多层薄膜及其制备方法 |
CN106329146A (zh) * | 2016-09-09 | 2017-01-11 | 电子科技大学 | 一种柔性太赫兹超材料吸波器及其制作方法 |
CN107479215A (zh) * | 2017-07-13 | 2017-12-15 | 华中科技大学 | 一种太赫兹超材料调制方法及其产品 |
Non-Patent Citations (4)
Title |
---|
X. ZHAO ET AL.: "Design, fabrication and characterization of tunable perfect absorber on flexible substrate", 《2014 IEEE 27TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS)》 * |
代国红等: "应力调控磁致伸缩FeGa薄膜的磁各向异性", 《第十四届全国磁学和磁性材料学术会议暨第二届全国磁热效应材料和磁制冷技术学术研讨会》 * |
王蕾等: "FeGa/BT()/FeGa层状复合结构中的磁电效应", 《功能材料》 * |
赵辉: "FeNip纳米复合材料制备及其吸波性能与力敏特性", 《中国博士学位论文全文数据库》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113088894A (zh) * | 2021-03-26 | 2021-07-09 | 电子科技大学 | 一种应力诱导提高薄膜应用频率的薄膜制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108933335B (zh) | 2020-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210351621A1 (en) | Wireless device having electromagnetic shielding | |
Kondo et al. | Conducted noise suppression effect up to 3 GHz by NiZn ferrite film plated at 90° C directly onto printed circuit board | |
Aen et al. | The role of Ga substitution on magnetic and electromagnetic properties of nano-sized W-type hexagonal ferrites | |
Li et al. | Novel NiZnAl-ferrites and strong magnetoelectric coupling in NiZnAl-ferrite/PZT multiferroic heterostructures | |
CN108933335A (zh) | 一种调控雷达吸波材料吸收频率的新方法 | |
CN203233642U (zh) | 一种具有层叠结构的吸波导磁屏蔽膜 | |
US5260615A (en) | Magnetoelastic wave device | |
Handoko et al. | Magnetic and microwave absorbing properties of BaFe12− 2xCoxZnxO19 (x= 0.0; 0.2; 0.4; 0.6) nanocrystalline | |
Kong et al. | Electromagnetic wave absorption properties of Fe 3 O 4 octahedral nanocrystallines in gigahertz range | |
US10364511B1 (en) | Magneto dielectric composite materials and microwave applications thereof | |
Pang et al. | Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces | |
Tan et al. | High-frequency electromagnetic properties of soft magnetic Y2Fe17Nx particles with easy-plane anisotropy | |
CN110034407A (zh) | 一种透波/隐身一体化超材料结构 | |
Hu et al. | Microwave absorbing properties of Y2Fe16Si micropowders with broad bandwidth and strong absorption | |
Zhang et al. | Tunability for anomalous refraction of flexural wave in a magneto-elastic metasurface by magnetic field and pre-stress | |
CN208423116U (zh) | 一种k波段多种同轴接口形式带线环行器结构 | |
CN208738439U (zh) | 双频线圆极化旋转器 | |
Guo et al. | Post annealing induced magnetic anisotropy in CoFeSi thin films on MgO (0 0 1) | |
CN112346163B (zh) | 一种等离子体和光子晶体复合隐身结构 | |
Hill et al. | Electromagnetic surface wave propagation over a bonded wire mesh | |
CN103779638A (zh) | 对称c型微带结构的磁电双可调超宽带带通滤波器及方法 | |
CN202337751U (zh) | 一种多波段兼容隐身填料 | |
He et al. | Role of magnetostrictive effect in magnetization dynamics of SmFe thin films | |
Matsushita et al. | Ni-Zn ferrite films synthesized from aqueous solution usable for sheet-type conducted noise suppressors in GHz range | |
CN108963467A (zh) | 一种利用磁导率近零超材料实现p波段智能可调完美吸波器的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220308 Address after: 335599 No.35 Jianye street, Wannian County, Shangrao City, Jiangxi Province Patentee after: Jiangxi Wanjun photoelectric Co.,Ltd. Address before: 999 No. 330031 Jiangxi province Nanchang Honggutan University Avenue Patentee before: Nanchang University |
|
TR01 | Transfer of patent right |