CN108923803B - 一种基于nb-iot信号的夜视系统及其实现方法 - Google Patents

一种基于nb-iot信号的夜视系统及其实现方法 Download PDF

Info

Publication number
CN108923803B
CN108923803B CN201810390694.2A CN201810390694A CN108923803B CN 108923803 B CN108923803 B CN 108923803B CN 201810390694 A CN201810390694 A CN 201810390694A CN 108923803 B CN108923803 B CN 108923803B
Authority
CN
China
Prior art keywords
signal
iot
obtains
component
submodule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810390694.2A
Other languages
English (en)
Other versions
CN108923803A (zh
Inventor
曾张帆
邢赛楠
刘文超
周艳玲
潘永才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201810390694.2A priority Critical patent/CN108923803B/zh
Publication of CN108923803A publication Critical patent/CN108923803A/zh
Application granted granted Critical
Publication of CN108923803B publication Critical patent/CN108923803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本发明涉及一种基于NB‑IOT信号的夜视系统及其实现方法,包括:信号接收模块,用于接收来自NB‑IOT基站发射的第一射频信号以及从观测区域返回的第二射频信号,经放大、滤波、模数转换后输出第一信号和第二信号;通信模块,用于将信号接收模块输出的第一信号和第二信号传输至所述软件模块;坐标接收模块,用于获取夜视系统的实时坐标,并传输至软件模块;软件模块,包括第一至第七子模块,用于对第一信号和第二信号进行一系列处理,并结合坐标接收模块获取的系统实时坐标以及NB‑IOT基站坐标进行二维时域滤波处理,获取观测区域的图像。本发明可以解决现有夜视系统图像分辨率低、系统价格高的问题。

Description

一种基于NB-IOT信号的夜视系统及其实现方法
技术领域
本发明涉及一种基于NB-IOT信号的夜视系统及其实现方法,具体涉及一种采用NB-IOT信号进行夜间目标成像的系统及其实现方法,属于安防技术领域。
背景技术
夜视系统是一类帮助用户在夜间获得视线的辅助系统,常用于汽车,使得驾驶者在夜间或光线微弱的情况下获得前方路况信息,能够给驾驶者对前方潜在威胁提供预警。
现有的夜视相关的技术方案如《CN-201520869666-车载夜视系统》,《CN201720709058一种车载夜视系统》等皆采用红外成像技术,其缺点主要包括:
(1)红外夜视成像系统属于主动式系统,包括红外信号发射机和接收机,成本较高。
(2)如果物体的温度对比度低,红外夜视系统产生的图像分辨率较差。
因此,如何降低系统价格以及如何提高物体温度对比度低时的图像分辨率是亟待解决的问题。
发明内容
为了解决上述现有技术存在的问题,本发明的目的是:提供一种基于NB-IOT信号的夜视系统及其使用方法,以解决图像分辨率低、系统价格高的问题。
为了达到上述目的,本发明所采用的技术方案是:
一种基于NB-IOT信号的夜视系统,其特征在于,包括:
信号接收模块,用于接收来自NB-IOT基站发射的第一射频信号以及从观测区域返回的第二射频信号,经放大、滤波、模数转换后输出第一信号和第二信号;
通信模块,用于将信号接收模块输出的第一信号和第二信号传输至所述软件模块;
坐标接收模块,用于获取夜视系统的实时坐标,并传输至软件模块;
软件模块,包括第一子模块,第二子模块,第三子模块,第四子模块,第五子模块,第六子模块,第七子模块,其中:
所述第一子模块,用于将所述信号接收模块输出的第一信号和第二信号从射频信号转换到基带信号,产生第一基带信号和第二基带信号;
所述第二子模块,用于对所述第一基带信号进行二次同步处理,补偿电压偏移,补偿正交失配,输出第一处理信号;
所述第三子模块,用于对所述第一处理信号进行参考信号反映射,完成信道特征重构、信道频率响应补偿,输出第二处理信号;
所述第四子模块,用于对第二处理信号进行资源反映射、层解码、数字解调制,输出第三处理信号;
所述第五子模块,用于对所述第三处理信号进行信道解码,解扰码,软合并,输出第四处理信号;
所述第六子模块,用于对第五子模块输出的第四处理信号进行调制编码处理并结合NB-IOT标准帧结构,输出参考信号;
所述第七子模块,用于对第六子模块输出的参考信号、第一子模块输出的第二基带信号、坐标接收模块获取的系统实时坐标以及NB-IOT基站坐标进行成像处理,获取观测区域的图像。
进一步地,所述信号接收模块包括天线组件,射频组件及模数转换组件;所述天线组件包括第一天线和第二天线,所述夜视系统搭载在车辆上,所述第一天线指向天空,用于接收所述第一射频信号,所述第二天线指向车辆前方,用于接收所述第二射频信号;所述射频组件包括低噪声放大电路和带通滤波器电路,所述模数转换组件用于将所述射频组件输出的信号进行模数转换,并输出第一信号和第二信号。
进一步地,所述第二子模块,包括二次同步组件,电压偏移补偿组件,正交失配补偿组件,其中:
所述二次同步组件用于对所述第一基带信号进行二次同步处理,获取第一基带信号的时间、频率偏移,并进行频率误差补偿;
所述电压偏移补偿组件用于获取所述二次同步组件输出信号的采样时间偏移,并进行补偿;
所述正交失配补偿组件用于获取所述电压偏移补偿组件输出信号正交分量和差分分量的失配,并进行补偿,进而获得第一处理信号。
进一步地,所述第三子模块包括参考信号信道特征重构组件,数据信号信道特征重构组件,信道频率响应补偿组件,其中:
所述参考信号信道特征重构组件用于获取所述第一处理信号中的参考信号,进而获取参考信号信道特征矩阵;
所述数据信号信道特征重构组件用于根据所述参考信号信道特征矩阵,进而获取数据信号信道特征矩阵;
所述信道频率响应补偿组件用于根据所述数据信号信道特征矩阵,对所述第一处理信号的频率响应进行补偿处理,进而获得第二处理信号。
进一步地,所述第四子模块包括多载波解调制组件,资源反映射组件,层解码组件,数字解调制组件,其中:
所述多载波解调制组件对所述第二处理信号进行多载波解调制,获得多载波解调制信号;
所述资源反映射组件用于获取多载波解调制信号中的业务流数据;
所述层解码组件对所述业务流数据进行空时逆变换,获得层解码信号;
所述数字解调制组件对所述层解码信号进行数字解调制,获得第三处理信号。
进一步地,所述第五子模块包括信道解码组件,解扰码组件以及驻留合并组件,其中:
所述信道解码组件对所述第三处理信号进行信道解码,获得校验后的信号;
所述解扰码组件对所述信道解码组件输出信号进行解扰码处理,获得解扰码信号;
所述驻留合并组件对四个连续子帧解码获得的解扰码信号进行保存,进而进行软合并,获得第四处理信号。
进一步的,所述第六子模块包括帧结构生成组件和资源映射组件,其中:
所述帧结构生成组件产生NB-IOT子帧信号。
所述资源映射组件将第四处理信号和所述子帧信号进行资源映射,获得参考信号。
进一步,所述第七子模块包括距离向时域滤波组件,成像场景矩阵重构组件和方位向时域滤波组件,其中:
所述距离向时域滤波组件对参考信号和第二基带信号进行距离向时域滤波,获得距离压缩信号;
所述成像场景矩阵重构组件对成像场景中的目标像素点进行几何计算,获得成像场景矩阵;
所述方位向时域滤波组件对系统坐标,NB-IOT基站坐标和成像场景矩阵进行几何计算,获得方位向参考信号;进而对所述距离压缩信号和方位向参考信号进行方位向时域滤波,获得观测区域的二维图像。
一种基于NB-IOT信号的夜视系统的实现方法,采用如上所述的基于NB-IOT信号的夜视系统,其特征在于,包括如下步骤:
(1)所述夜视系统搭载在车辆上,用于接收所述第一射频信号的第一天线指向天空,用于接收所述第二射频信号的第二天线指向车辆前方,车辆启动,所述夜视系统上电开始工作;
(2)所述通信模块将第一信号和第二信号采集起来,并传输至所述软件模块;
(3)所述坐标接收模块获取车辆所在实时位置,并传输至所述软件模块;
(4)所述第一子模块对所述第一信号和所述第二信号进行频率转换,从射频信号转换到基带信号,获得第一基带信号和第二基带信号;
(5)所述第二子模块对所述第一基带信号进行二次同步处理,补偿电压偏移,补偿正交失配,输出第一处理信号;
(6)所述第三子模块对所述第一处理信号进行参考信号反映射,完成信道特征重构、信道频率响应补偿,输出第二处理信号;
(7)所述第四子模块对所述第二处理信号进行资源反映射、层解码、数字解调制,输出第三处理信号;
(8)所述第五子模块对所述第三处理信号进行信道解码,解扰码,软合并,输出第四处理信号;
(9)所述第六子模块对所述第四处理信号进行调制编码处理并结合NB-IOT标准帧结构,获得参考信号;
(10)所述第七子模块将NB-IOT基站坐标,系统实时坐标,第六子模块输出的参考信号和第一子模块输出的第二基带信号进行成像处理,获得观测区域的图像。
进一步地,所述第二子模块的实现方法包括:
S200,对所述第一基带信号进行第一次同步,具体包括:对所述第一基带信号,按照一个NB-IOT帧为第一处理单位,进行时域滤波,产生第一同步最大峰值和所述第一同步最大峰值对应的第一同步时间门信息;进而除去第一基带信号中先于所述第一同步时间门信息的信号,保留后续的信号,即为第一同步信号;
S210,对所述第一同步信号进行第二次同步,具体包括:对所述第一同步信号,按照一个NB-IOT子帧为第二处理单位,进行时域滤波,产生第二同步最大峰值和所述第二同步最大峰值对应的第二同步时间门信息;进而除去第一同步信号中先于所述第二同步时间门信息的信号,保留后续的信号,即为第二同步信号;
S220,对所述第二同步信号进行频率误差补偿,具体包括,对所述每个第二处理单位的第二同步最大峰值信息,进行相位提取,获得峰值相位向量;进而对峰值相位向量进行差分操作,获得频率误差向量;进而在所述第二同步信号中将其除去,获得第一补偿信号;
S230,对所述第一补偿信号进行电压偏移补偿,具体包括:对所述第一补偿信号,按照一个NB-IOT子帧为处理单位,计算其均方根幅度值,获得电压偏移;进而对所述第一补偿信号减去所述电压偏移,获得第二补偿信号;
S240,对所述第二补偿信号进行正交失配补偿,具体包括:对所述第二补偿信号,按照一个NB-IOT子帧符号向量为处理单位,去除CP部分和保护间隔部分的符号向量;进而对其余部分计算所述第二补偿信号同向分量与所述第二补偿信号正交分量的失配值;进而对所述第二补偿信号的正交分量消除所述失配值,获得第一处理信号。
进一步地,所述第三子模块的实现方法包括:
S300,根据NB-IOT协议中定义的参考信号结构和位置,以及NB-IOT发射信号的额定功率,计算出原始时域参考信号矩阵;进而对所述原始时域参考信号矩阵进行傅里叶变换,获得原始频域参考信号矩阵;
S310,对所述第一处理信号,按照一个NB-IOT子帧符号向量为处理单位,进行傅里叶变换,获得第一变换信号;
S320,根据NB-IOT协议中定义的参考信号结构和位置,对第一变换信号进行参考信号反映射,获得接收频域参考信号矩阵;
S330,对所述原始频域参考信号矩阵和所述接收频域参考信号矩阵进行对比计算,获得参考信号信道特征矩阵;
S340,对所述参考信号信道特征矩阵进行行列分离,具体包括:将参考信号信道特征矩阵,以行为单位,形成参考信号信道特征行向量;所述参考信号信道特征行向量对应的时域采样点为参考信号信道特征行时域采样向量;进而将参考信号信道特征矩阵,以列为单位,形成参考信号信道特征列向量;所述参考信号信道特征列向量对应的频域采样点为参考信号信道特征列频域采样向量;
S350,获取数据信号信道特征矩阵,具体包括:以所述参考信号信道特征行向量为原始数值向量,以参考信号信道特征行时域采样向量为原始时域采样向量,以一个NB-IOT子帧时域采样点为待求时域采样向量,进行内插值,获得NB-IOT数据信号信道特征行向量;以所述参考信号信道特征列向量为原始数值向量,以参考信号信道特征列频域采样向量为原始频域采样向量,以一个NB-IOT信号频域宽度中的采样点为待求频域采样向量,进行内插值,获得NB-IOT数据信号信道特征列向量;进而将所述NB-IOT数据信号信道特征行向量和NB-IOT数据信号信道特征列向量合并,获得数据信号信道特征矩阵;
S360,对所述第一变换信号和所述数据信号信道特征矩阵进行二维最大似然误差估计,完成信道频率响应补偿,获得第二处理信号。
进一步地,所述第四子模块的实现方法包括:
S400,对所述频域滤波信号进行多载波解调制,具体包括,以单位Sin波形为基波,以OFDM子载波间隔为谐波频率域步进,以NB-IOT带宽宽度为谐波频率域长度,以一个OFDM符号长度为谐波时间域步进,以一个NB-IOT子帧长度为谐波时间域长度,产生多载波解调制矩阵;进而对所述频域滤波信号,与所述多载波解调制矩阵进行乘法运算,获得基带多载波解调制信号和高频多载波解调制信号;进而采用低通滤波器将所述高频多载波解调制信号去除,只保留基带多载波解调制信号,即多载波解调制矩阵;
S410,对所述多载波解调制矩阵进行格式重排,具体包括,对所述多载波解调制矩阵进行转置处理,获得第二多载波解调制矩阵;进而以第二多载波解调制矩阵的行为单位,将所述第二多载波解调制矩阵的各行依次首尾相连,产生多载波解调制向量;
S420,对所述多载波解调制向量进行资源反映射,具体包括,根据NB-IOT协议对数据时频资源位置的定义,对所述多载波解调制向量进行资源反映射,获取时频资源信号;
S430,对所述时频资源信号进行降秩处理,获得NB-IOT符号向量,具体包括:根据NB-IOT协议中层解码矩阵结构,采用所述信号特征重构向量,对所述时频资源信号进行解正交处理,获得并行信号矩阵;进而对所述并行信号矩阵进行并串转换,获得NB-IOT符号向量;
S440,对所述NB-IOT符号向量进行数字解调制,具体包括:对所述NB-IOT符号向量,按照一个NB-IOT子帧为一个处理单元,采用最大似然估计算法,进行符号码流匹配,获得第三处理信号。
进一步地,所述第五子模块的实现方法包括:
S500,对所述第三处理信号进行信道解码,获得信道解码符号向量,具体包括:对所述第三处理信号,按照一个NB-IOT子帧为一个处理单位,采用贝叶斯迭代算法,获得信道解码符号向量;
S510,对所述信道解码符号向量进行解扰码处理,具体包括,对所述信道解码符号向量,与NB-IOT协议中定义的扰码根符号向量,进行软异或处理,获得解扰码信号;
S520,对解扰码信号进行保存,软合并,获得第四处理信号,具体包括:对所述解扰码信号进行保存,形成第一解扰码信号;进而对后续的3个NB-IOT子帧,按照步骤S210到步骤S510,进行处理和保存,形成第二、三、四解扰码信号;进而对第一、二、三、四解扰码信号进行局部最优化合并处理,获得第四处理信号。
进一步地,所述第六子模块的实现方法包括:
S600,产生NB-IOT子帧信号,具体包括,根据NB-IOT协议定义的NB-IOT子帧的信号结构和特点,采用随机信号进行仿真,获取NB-IOT子帧信号;
S610,获得参考信号,具体包括,根据NB-IOT协议规定的数据信号流程,对第四处理信号进行编码调制处理,获得数据信号;进而将所述数据信号映射到所述NB-IOT子帧信号中,获得参考信号。
进一步的,所述第七子模块的实现方法包括:
S700,获得距离压缩信号,具体包括,将所述第二基带信号,以一个NB-IOT信号频域宽度为行长度,转换成第二基带矩阵;将所述参考信号以信号本身为一行,扩展到与所述第二基带矩阵相同列数的参考矩阵;进而将所述第二基带矩阵与所述参考矩阵以行为单位进行时域滤波,获得距离向压缩信号;
S710,获得成像场景矩阵,具体包括,获取成像场景的中心三维坐标;以5米为一个步进,获取所述成像场景中以所述中心三维坐标为原点,周围1公里范围内所有像素点的三维坐标,即为成像场景矩阵;
S720,获得观测区域的二维图像,具体包括,对所述方位向时域滤波组件对系统坐标,NB-IOT基站坐标和成像场景矩阵进行几何计算,获得相位矩阵;将所述相位矩阵对单位sin信号进行相位调制,获得方位向参考信号;将所述方位向参考信号与距离向压缩信号,以列为单位进行时域滤波,获得观测区域的二维图像。
本发明的有益效果是:本发明的夜视系统及成像方法能够解决当前主流系统存在的技术限制,具体有益效果是:
1)本发明的夜间系统能够提供高分辨率。本系统采用电磁波成像技术,其分辨率恒定,不受目标物体的温度影响。
2)本发明的夜视系统部署成本低,使用的硬件模块均为常用器件,价格低廉。
附图说明
图1是本发明提供的基于NB-IOT信号的夜视系统成像场景示意图。
图2是本发明提供的基于NB-IOT信号的夜视系统内部结构示意图。
图3是发明提供的基于NB-IOT信号的夜视系统软件模块结构示意图。
图4是第一子模块结构示意图。
图5是第二子模块结构示意图。
图6是第三子模块结构示意图。
图7是第四子模块结构示意图。
图8是第五子模块结构示意图。
图9是第六子模块结构示意图。
图10是第七子模块结构示意图。
附图中的符号说明:1.NB-IOT基站,2.夜视系统部署所在的汽车,3.夜视区域,4.第一射频信号,5.第二射频信号,6.第一天线,7.第二天线,8.低噪放大器电路,9.带通滤波器电路,10.模数转换器电路,11.通信模块,12.位置接收模块,13.软件模块。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样在本申请所列权利要求书限定范围之内。
图1为本发明实施例提供的基于NB-IOT信号的夜视系统成像场景示意图,本系统部署在汽车2上,汽车向前行驶,夜视区域3在汽车行驶的正前方。NB-IOT基站1向地面360度发射电磁波。本系统通过对从夜视区域3反射的电磁波进行信号处理,获得夜视图像。本系统也可以应用在其它各种车辆和低空飞行器、低空无人机等,包括民用和军用的各种场合均可适用。
图2为本发明提供的基于NB-IOT信号的夜视系统包括硬件模块和软件模块的结构示意图。具体包括:
硬件模块用于获取NB-IOT基站发射的电磁波和从观测区域反射的电磁波。硬件模块包括信号接收模块,通信模块及坐标接收模块。信号接收模块用来接收来自NB-IOT基站发射的第一射频信号以及从观测区域返回的第二射频信号。包括天线组件,射频组件及模数转换组件。通信模块将信号接收模块的输出的第一信号和第二信号传输至所述软件模块。坐标接收模块获取本系统的实时坐标,并传输至软件模块。NB-IOT信号包括下行控制信道NPDCCH,下行信道NPDSCH,广播信道NPBCH,优选情况是采用NPDSCH。
天线组件包括第一天线6和第二天线7。所述第一天线6接收来自NB-IOT基站发出的所述第一射频信号4。所述第二天线接收来自观测区域返回的所述第二射频信号5。第一天线为全向天线,第二天线为定向天线。具体实施时,第二天线例如可以采用20度x20度的波束宽度。
射频组件包括低噪声放大电路8和带通滤波器电路9。具体实施时,低噪声放大电路例如可以采用20dB增益;带通滤波器例如可以采用工作频率与NB-IOT的信号频率同频,带宽为40MHz。
模数转换组件10将所述射频组件输出的所述信号进行从模拟变换到数字格式,输出第一信号和第二信号。具体实施时,例如可以采用8位模数转换电路。
通信模块11将信号接收模块的输出的第一信号和第二信号传输至所述软件模块。具体实施时,例如可以采用数据传输率为200Mbps的串口通信模块。
位置接收模块12将系统接收机的实时位置传输至软件模块。具体实施时,例如可以采用商用GPS接收机模块。
图3为软件模块结构示意图,软件模块包括第一子模块,第二子模块,第三子模块,第四子模块,第五子模块,第六子模块,第七子模块。
第一子模块将所述通信模块输入至所述软件模块的第一信号和第二信号从射频频段降低至基带,产生第一基带信号和第二基带信号。图4为第一子模块结构示意图,具体是:第一信号和第二信号分别与本地振荡电路产生的信号通过混频器,获得基带高频混合信号;进而将所述混合信号通过低通滤波电路,获得所述第一基带信号和第二基带信号。
第二子模块对所述第一基带信号进行二次同步处理,补偿电压偏移,补偿正交失配,输出第一处理信号。图5为第二子模块结构示意图,该模块包括二次同步组件,电压偏移补偿组件,正交失配补偿组件。第二子模块输出第一处理信号。
其中,所述二次同步组件用于对所述第一基带信号进行二次同步处理,获取第一基带信号的时间、频率偏移,并进行频率误差补偿;
其中,所述电压偏移补偿组件用于获取所述二次同步组件输出信号的采样时间偏移,并进行补偿;
其中,所述正交失配补偿组件用于获取所述电压偏移补偿组件输出信号正交分量和差分分量的失配,并进行补偿,进而获得第一处理信号。
其中,所述第二子模块的实现方法包括:
S200,对所述第一基带信号进行第一次同步,具体包括:对所述第一基带信号,按照一个NB-IOT帧为第一处理单位,进行时域滤波,产生第一同步最大峰值和所述第一同步最大峰值对应的第一同步时间门信息;进而除去第一基带信号中先于所述第一同步时间门信息的信号,保留后续的信号,即为第一同步信号;
S210,对所述第一同步信号进行第二次同步,具体包括:对所述第一同步信号,按照一个NB-IOT子帧为第二处理单位,进行时域滤波,产生第二同步最大峰值和所述第二同步最大峰值对应的第二同步时间门信息;进而除去第一同步信号中先于所述第二同步时间门信息的信号,保留后续的信号,即为第二同步信号;
S220,对所述第二同步信号进行频率误差补偿,具体包括,对所述每个第二处理单位的第二同步最大峰值信息,进行相位提取,获得峰值相位向量;进而对峰值相位向量进行差分操作,获得频率误差向量;进而在所述第二同步信号中将其除去,获得第一补偿信号;
S230,对所述第一补偿信号进行电压偏移补偿,具体包括:对所述第一补偿信号,按照一个NB-IOT子帧为处理单位,计算其均方根幅度值,获得电压偏移;进而对所述第一补偿信号减去所述电压偏移,获得第二补偿信号;
S240,对所述第二补偿信号进行正交失配补偿,具体包括:对所述第二补偿信号,按照一个NB-IOT子帧符号向量为处理单位,去除CP部分和保护间隔部分的符号向量;进而对其余部分计算所述第二补偿信号同向分量与所述第二补偿信号正交分量的失配值;进而对所述第二补偿信号的正交分量消除所述失配值,获得第一处理信号。
第三子模块对所述第一处理信号进行参考信号反映射,完成信道特征重构、信道频率响应补偿,输出第二处理信号。图6为第三子模块结构示意图,该模块包括参考信号信道特征重构组件,数据信号信道特征重构组件,信道频率响应补偿组件。第三子模块输出第二处理信号。
其中,所述参考信号信道特征重构组件用于获取所述第一处理信号中的参考信号,进而获取参考信号信道特征矩阵;
其中,所述数据信号信道特征重构组件用于根据所述参考信号信道特征矩阵,进而获取数据信号信道特征矩阵;
其中,所述信道频率响应补偿组件用于根据所述数据信号信道特征矩阵,对所述第一处理信号的频率响应进行补偿处理,进而获得第二处理信号。
所述第三子模块的实现方法包括:
S300,根据NB-IOT协议中定义的参考信号结构和位置,以及NB-IOT发射信号的额定功率,计算出原始时域参考信号矩阵;进而对所述原始时域参考信号矩阵进行傅里叶变换,获得原始频域参考信号矩阵;
S310,对所述第一处理信号,按照一个NB-IOT子帧符号向量为处理单位,进行傅里叶变换,获得第一变换信号;
S320,根据NB-IOT协议中定义的参考信号结构和位置,对第一变换信号进行参考信号反映射,获得接收频域参考信号矩阵;
S330,对所述原始频域参考信号矩阵和所述接收频域参考信号矩阵进行对比计算,获得参考信号信道特征矩阵;
S340,对所述参考信号信道特征矩阵进行行列分离,具体包括:将参考信号信道特征矩阵,以行为单位,形成参考信号信道特征行向量;所述参考信号信道特征行向量对应的时域采样点为参考信号信道特征行时域采样向量;进而将参考信号信道特征矩阵,以列为单位,形成参考信号信道特征列向量;所述参考信号信道特征列向量对应的频域采样点为参考信号信道特征列频域采样向量;
S350,获取数据信号信道特征矩阵,具体包括:以所述参考信号信道特征行向量为原始数值向量,以参考信号信道特征行时域采样向量为原始时域采样向量,以一个NB-IOT子帧时域采样点为待求时域采样向量,进行内插值,获得NB-IOT数据信号信道特征行向量;以所述参考信号信道特征列向量为原始数值向量,以参考信号信道特征列频域采样向量为原始频域采样向量,以一个NB-IOT信号频域宽度中的采样点为待求频域采样向量,进行内插值,获得NB-IOT数据信号信道特征列向量;进而将所述NB-IOT数据信号信道特征行向量和NB-IOT数据信号信道特征列向量合并,获得数据信号信道特征矩阵;
S360,对所述第一变换信号和所述数据信号信道特征矩阵进行二维最大似然误差估计,完成信道频率响应补偿,获得第二处理信号。
第四子模块对所述第二处理信号进行资源反映射、层解码、数字解调制,输出第三处理信号。图7为第四子模块结构示意图,该模块包括多载波解调制组件,资源反映射组件,层解码组件,数字解调制组件。
其中,所述多载波解调制组件对所述第二处理信号进行多载波解调制,获得多载波解调制信号;
其中,所述资源反映射组件用于获取多载波解调制信号中的业务流数据;
其中,所述层解码组件对所述业务流数据进行空时逆变换,获得层解码信号;
其中,所述数字解调制组件对所述层解码信号进行数字解调制,获得第三处理信号。
所述第四子模块的实现方法包括:
S400,对所述频域滤波信号进行多载波解调制,具体包括,以单位Sin波形为基波,以OFDM子载波间隔为谐波频率域步进,以NB-IOT带宽宽度为谐波频率域长度,以一个OFDM符号长度为谐波时间域步进,以一个NB-IOT子帧长度为谐波时间域长度,产生多载波解调制矩阵;进而对所述频域滤波信号,与所述多载波解调制矩阵进行乘法运算,获得基带多载波解调制信号和高频多载波解调制信号;进而采用低通滤波器将所述高频多载波解调制信号去除,只保留基带多载波解调制信号,即多载波解调制矩阵;
S410,对所述多载波解调制矩阵进行格式重排,具体包括,对所述多载波解调制矩阵进行转置处理,获得第二多载波解调制矩阵;进而以第二多载波解调制矩阵的行为单位,将所述第二多载波解调制矩阵的各行依次首尾相连,产生多载波解调制向量;
S420,对所述多载波解调制向量进行资源反映射,具体包括,根据NB-IOT协议对数据时频资源位置的定义,对所述多载波解调制向量进行资源反映射,获取时频资源信号;
S430,对所述时频资源信号进行降秩处理,获得NB-IOT符号向量,具体包括:根据NB-IOT协议中层解码矩阵结构,采用所述信号特征重构向量,对所述时频资源信号进行解正交处理,获得并行信号矩阵;进而对所述并行信号矩阵进行并串转换,获得NB-IOT符号向量;
S440,对所述NB-IOT符号向量进行数字解调制,具体包括:对所述NB-IOT符号向量,按照一个NB-IOT子帧为一个处理单元,采用最大似然估计算法,进行符号码流匹配,获得第三处理信号。
第五子模块对所述第三处理信号进行信道解码,解扰码,软合并,输出第四处理信号。图8为第五子模块结构示意图,该模块包括信道解码组件,解扰码组件以及驻留合并组件。
其中,所述信道解码组件对所述第三处理信号进行信道解码,获得校验后的信号;
其中,所述解扰码组件对所述信道解码组件输出信号进行解扰码处理,获得解扰码信号;
其中,所述驻留合并组件对四个连续子帧解码获得的解扰码信号进行保存,进而进行软合并,获得第四处理信号。
所述第五子模块的实现方法包括:
S500,对所述第三处理信号进行信道解码,获得信道解码符号向量,具体包括:对所述第三处理信号,按照一个NB-IOT子帧为一个处理单位,采用贝叶斯迭代算法,获得信道解码符号向量;
S510,对所述信道解码符号向量进行解扰码处理,具体包括,对所述信道解码符号向量,与NB-IOT协议中定义的扰码根符号向量,进行软异或处理,获得解扰码信号;
S520,对解扰码信号进行保存,软合并,获得第四处理信号,具体包括:对所述解扰码信号进行保存,形成第一解扰码信号;进而对后续的3个NB-IOT子帧,按照步骤S210到步骤S510,进行处理和保存,形成第二、三、四解扰码信号;进而对第一、二、三、四解扰码信号进行局部最优化合并处理,获得第四处理信号。
第六子模块对所述用于对第五子模块输出的第四处理信号进行调制编码处理并结合NB-IOT标准帧结构,输出参考信号。图9为第六子模块结构示意图,该模块包括帧结构生成组件和资源映射组件。
其中,所述帧结构生成组件产生NB-IOT信号的子帧信号。
其中,所述资源映射组件将第四处理信号和所述子帧信号进行资源映射,获得参考信号。
所述第六子模块的实现方法包括:
S600,产生NB-IOT子帧信号,具体包括,根据NB-IOT协议规定的NB-IOT子帧的信号结构和特点,采用随机信号进行仿真,获取NB-IOT子帧信号;
S610,获得参考信号,具体包括,根据NB-IOT协议规定的数据信号流程,对第四处理信号进行编码调制处理,获得数据信号;进而将所述数据信号映射到所述NB-IOT子帧信号中,获得参考信号。
第七子模块用于对第六子模块输出的参考信号、第一子模块输出的第二基带信号、坐标接收模块获取的系统实时坐标以及NB-IOT基站坐标进行成像处理,获取观测区域的图像。图10为第七子模块结构示意图,该模块包括距离向时域滤波组件,成像场景矩阵重构组件和方位向时域滤波组件。
其中,所述距离向时域滤波组件对参考信号和第二基带信号进行距离向时域滤波,获得距离压缩信号。
其中,所述成像场景矩阵重构组件对成像场景中的目标像素点进行几何计算,获得成像场景矩阵。
其中,所述方位向时域滤波组件对系统坐标,NB-IOT基站坐标和成像场景矩阵进行几何计算,获得方位向参考信号;进而对所述距离压缩信号和方位向参考信号进行方位向时域滤波,获得观测区域的二维图像。
所述第六子模块的实现方法包括:
S700,获得距离压缩信号,具体包括,将所述第二基带信号,以一个NB-IOT信号频域宽度为行长度,转换成第二基带矩阵;将所述参考信号以信号本身为一行,扩展到与所述第二基带矩阵相同列数的参考矩阵;进而将所述第二基带矩阵与所述参考矩阵以行为单位进行时域滤波,获得距离向压缩信号;
S710,获得成像场景矩阵,具体包括,获取成像场景的中心三维坐标;以5米为一个步进,获取所述成像场景中以所述中心三维坐标为原点,周围1公里范围内所有像素点的三维坐标,即为成像场景矩阵;
S720,获得观测区域的二维图像,具体包括,对所述方位向时域滤波组件对系统坐标,NB-IOT基站坐标和成像场景矩阵进行几何计算,获得相位矩阵;将所述相位矩阵对单位sin信号进行相位调制,获得方位向参考信号;将所述方位向参考信号与距离向压缩信号,以列为单位进行时域滤波,获得观测区域的二维图像。
本发明提供的一种基于NB-IOT信号的夜视系统的实现方法,具体工作过程如下:
(1)所述夜视系统搭载在车辆上,用于接收所述第一射频信号的第一天线指向天空,用于接收所述第二射频信号的第二天线指向车辆前方,车辆启动,所述夜视系统上电开始工作;
(2)所述通信模块将第一信号和第二信号采集起来,并传输至所述软件模块;
(3)所述坐标接收模块获取车辆所在实时位置,并传输至所述软件模块;
(4)所述第一子模块对所述第一信号和所述第二信号进行频率转换,从射频信号转换到基带信号,获得第一基带信号和第二基带信号;
(5)所述第二子模块对所述第一基带信号进行二次同步处理,补偿电压偏移,补偿正交失配,输出第一处理信号;
(6)所述第三子模块对所述第一处理信号进行参考信号反映射,完成信道特征重构、信道频率响应补偿,输出第二处理信号;
(7)所述第四子模块对所述第二处理信号进行资源反映射、层解码、数字解调制,输出第三处理信号;
(8)所述第五子模块对所述第三处理信号进行信道解码,解扰码,软合并,输出第四处理信号;
(9)所述第六子模块对所述第四处理信号进行调制编码处理并结合NB-IOT标准帧结构,获得参考信号;
(10)所述第七子模块将NB-IOT基站坐标,系统实时坐标,第六子模块输出的参考信号和第一子模块输出的第二基带信号进行成像处理,获得观测区域的图像。
最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换,均不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种基于NB-IOT信号的夜视系统,其特征在于,包括:
信号接收模块,用于接收来自NB-IOT基站发射的第一射频信号以及从NB-IOT基站发射的第一射频信号从观测区域返回的第二射频信号,经放大、滤波、模数转换后输出第一信号和第二信号;
通信模块,用于将信号接收模块输出的第一信号和第二信号传输至软件模块;
坐标接收模块,用于获取夜视系统的系统实时坐标,并传输至软件模块;
软件模块,包括第一子模块,第二子模块,第三子模块,第四子模块,第五子模块,第六子模块,第七子模块,其中:
所述第一子模块,用于将所述信号接收模块输出的第一信号和第二信号从射频信号转换到基带信号,产生第一基带信号和第二基带信号;
所述第二子模块,用于对所述第一基带信号进行二次同步处理,补偿电压偏移,补偿正交失配,输出第一处理信号;
所述第三子模块,用于对所述第一处理信号进行参考信号反映射,完成信道特征重构、信道频率响应补偿,输出第二处理信号;
所述第四子模块,用于对第二处理信号进行资源反映射、层解码、数字解调制,输出第三处理信号;
所述第五子模块,用于对所述第三处理信号进行信道解码,解扰码,软合并,输出第四处理信号;
所述第六子模块,用于对第五子模块输出的第四处理信号进行调制编码处理并结合NB-IOT标准帧结构,输出参考信号;
所述第七子模块,用于对第六子模块输出的参考信号、第一子模块输出的第二基带信号、坐标接收模块获取的系统实时坐标以及NB-IOT基站坐标进行成像处理,获取观测区域的图像。
2.根据权利要求1所述的基于NB-IOT信号的夜视系统,其特征在于:所述信号接收模块包括天线组件,射频组件及模数转换组件;所述天线组件包括第一天线和第二天线,所述夜视系统搭载在车辆上,所述第一天线指向天空,用于接收所述第一射频信号,所述第二天线指向车辆前方,用于接收所述第二射频信号;所述射频组件包括低噪声放大电路和带通滤波器电路,所述模数转换组件用于将所述射频组件输出的信号进行模数转换,并输出第一信号和第二信号。
3.根据权利要求1所述的基于NB-IOT信号的夜视系统,其特征在于:所述第二子模块,包括二次同步组件,电压偏移补偿组件,正交失配补偿组件,其中:
所述二次同步组件用于对所述第一基带信号进行二次同步处理,获取第一基带信号的时间、频率偏移,并进行频率误差补偿;
所述电压偏移补偿组件用于获取所述二次同步组件输出信号的采样时间偏移,并进行补偿;
所述正交失配补偿组件用于获取所述电压偏移补偿组件输出信号正交分量和差分分量的失配,并进行补偿,进而获得第一处理信号;
所述第三子模块包括参考信号信道特征重构组件,数据信号信道特征重构组件,信道频率响应补偿组件,其中:
所述参考信号信道特征重构组件用于获取所述第一处理信号中的参考信号,进而获取参考信号信道特征矩阵;
所述数据信号信道特征重构组件用于根据所述参考信号信道特征矩阵,进而获取数据信号信道特征矩阵;
所述信道频率响应补偿组件用于根据所述数据信号信道特征矩阵,对所述第一处理信号的频率响应进行补偿处理,进而获得第二处理信号。
4.根据权利要求1所述的基于NB-IOT信号的夜视系统,其特征在于:所述第四子模块包括多载波解调制组件,资源反映射组件,层解码组件,数字解调制组件,其中:
所述多载波解调制组件对所述第二处理信号进行多载波解调制,获得多载波解调制信号;
所述资源反映射组件用于获取多载波解调制信号中的业务流数据;
所述层解码组件对所述业务流数据进行空时逆变换,获得层解码信号;
所述数字解调制组件对所述层解码信号进行数字解调制,获得第三处理信号;
所述第五子模块包括信道解码组件,解扰码组件以及驻留合并组件,其中:
所述信道解码组件对所述第三处理信号进行信道解码,获得校验后的信号;
所述解扰码组件对所述信道解码组件输出信号进行解扰码处理,获得解扰码信号;
所述驻留合并组件对四个连续子帧解码获得的解扰码信号进行保存,进而进行软合并,获得第四处理信号;
所述第六子模块包括帧结构生成组件和资源映射组件,其中:
所述帧结构生成组件产生NB-IOT子帧信号;
所述资源映射组件将第四处理信号和所述子帧信号进行资源映射,获得参考信号。
5.根据权利要求1所述的基于NB-IOT信号的夜视系统,其特征在于:所述第七子模块包括距离向时域滤波组件,成像场景矩阵重构组件和方位向时域滤波组件,其中:
所述距离向时域滤波组件对参考信号和第二基带信号进行距离向时域滤波,获得距离压缩信号;
所述成像场景矩阵重构组件对成像场景中的目标像素点进行几何计算,获得成像场景矩阵;
所述方位向时域滤波组件对系统实时坐标,NB-IOT基站坐标和成像场景矩阵进行几何计算,获得方位向参考信号;进而对所述距离压缩信号和方位向参考信号进行方位向时域滤波,获得观测区域的二维图像。
6.一种基于NB-IOT信号的夜视系统的实现方法,采用如权利要求1-5任意一项所述的基于NB-IOT信号的夜视系统,其特征在于,包括如下步骤:
(1)所述夜视系统搭载在车辆上,用于接收所述第一射频信号的第一天线指向天空,用于接收所述第二射频信号的第二天线指向车辆前方,车辆启动,所述夜视系统上电开始工作;
(2)所述通信模块将第一信号和第二信号采集起来,并传输至所述软件模块;
(3)所述坐标接收模块获取车辆所在系统实时坐标,并传输至所述软件模块;
(4)所述第一子模块对所述第一信号和所述第二信号进行频率转换,从射频信号转换到基带信号,获得第一基带信号和第二基带信号;
(5)所述第二子模块对所述第一基带信号进行二次同步处理,补偿电压偏移,补偿正交失配,输出第一处理信号;
(6)所述第三子模块对所述第一处理信号进行参考信号反映射,完成信道特征重构、信道频率响应补偿,输出第二处理信号;
(7)所述第四子模块对所述第二处理信号进行资源反映射、层解码、数字解调制,输出第三处理信号;
(8)所述第五子模块对所述第三处理信号进行信道解码,解扰码,软合并,输出第四处理信号;
(9)所述第六子模块对所述第四处理信号进行调制编码处理并结合NB-IOT标准帧结构,获得参考信号;
(10)所述第七子模块将NB-IOT基站坐标,系统实时坐标,第六子模块输出的参考信号和第一子模块输出的第二基带信号进行成像处理,获得观测区域的图像。
7.根据权利要求6所述的基于NB-IOT信号的夜视系统的实现方法,其特征在于:所述第二子模块的实现方法包括:
S200,对所述第一基带信号进行第一次同步,具体包括:对所述第一基带信号,按照一个NB-IOT帧为第一处理单位,进行时域滤波,产生第一同步最大峰值和所述第一同步最大峰值对应的第一同步时间门信息;进而除去第一基带信号中先于所述第一同步时间门信息的信号,保留后续的信号,即为第一同步信号;
S210,对所述第一同步信号进行第二次同步,具体包括:对所述第一同步信号,按照一个NB-IOT子帧为第二处理单位,进行时域滤波,产生第二同步最大峰值和所述第二同步最大峰值对应的第二同步时间门信息;进而除去第一同步信号中先于所述第二同步时间门信息的信号,保留后续的信号,即为第二同步信号;
S220,对所述第二同步信号进行频率误差补偿,具体包括,对所述每个第二处理单位的第二同步最大峰值信息,进行相位提取,获得峰值相位向量;进而对峰值相位向量进行差分操作,获得频率误差向量;进而在所述第二同步信号中将其除去,获得第一补偿信号;
S230,对所述第一补偿信号进行电压偏移补偿,具体包括:对所述第一补偿信号,按照一个NB-IOT子帧为处理单位,计算其均方根幅度值,获得电压偏移;进而对所述第一补偿信号减去所述电压偏移,获得第二补偿信号;
S240,对所述第二补偿信号进行正交失配补偿,具体包括:对所述第二补偿信号,按照一个NB-IOT子帧符号向量为处理单位,去除CP部分和保护间隔部分的符号向量;进而对其余部分计算所述第二补偿信号同向分量与所述第二补偿信号正交分量的失配值;进而对所述第二补偿信号的正交分量消除所述失配值,获得第一处理信号;
所述第三子模块的实现方法包括:
S300,根据NB-IOT协议中定义的参考信号结构和位置,以及NB-IOT发射信号的额定功率,计算出原始时域参考信号矩阵;进而对所述原始时域参考信号矩阵进行傅里叶变换,获得原始频域参考信号矩阵;
S310,对所述第一处理信号,按照一个NB-IOT子帧符号向量为处理单位,进行傅里叶变换,获得第一变换信号;
S320,根据NB-IOT协议中定义的参考信号结构和位置,对第一变换信号进行参考信号反映射,获得接收频域参考信号矩阵;
S330,对所述原始频域参考信号矩阵和所述接收频域参考信号矩阵进行对比计算,获得参考信号信道特征矩阵;
S340,对所述参考信号信道特征矩阵进行行列分离,具体包括:将参考信号信道特征矩阵,以行为单位,形成参考信号信道特征行向量;所述参考信号信道特征行向量对应的时域采样点为参考信号信道特征行时域采样向量;进而将参考信号信道特征矩阵,以列为单位,形成参考信号信道特征列向量;所述参考信号信道特征列向量对应的频域采样点为参考信号信道特征列频域采样向量;
S350,获取数据信号信道特征矩阵,具体包括:以所述参考信号信道特征行向量为原始数值向量,以参考信号信道特征行时域采样向量为原始时域采样向量,以一个NB-IOT子帧时域采样点为待求时域采样向量,进行内插值,获得NB-IOT数据信号信道特征行向量;以所述参考信号信道特征列向量为原始数值向量,以参考信号信道特征列频域采样向量为原始频域采样向量,以一个NB-IOT信号频域宽度中的采样点为待求频域采样向量,进行内插值,获得NB-IOT数据信号信道特征列向量;进而将所述NB-IOT数据信号信道特征行向量和NB-IOT数据信号信道特征列向量合并,获得数据信号信道特征矩阵;
S360,对所述第一变换信号和所述数据信号信道特征矩阵进行二维最大似然误差估计,完成信道频率响应补偿,获得第二处理信号。
8.根据权利要求7所述的基于NB-IOT信号的夜视系统的实现方法,其特征在于:所述第四子模块的实现方法包括:
S400,对所述第二处理信号进行多载波解调制,具体包括,以单位Sin波形为基波,以OFDM子载波间隔为谐波频率域步进,以NB-IOT带宽宽度为谐波频率域长度,以一个OFDM符号长度为谐波时间域步进,以一个NB-IOT子帧长度为谐波时间域长度,产生多载波解调制矩阵;进而对所述第二处理信号,与所述多载波解调制矩阵进行乘法运算,获得基带多载波解调制信号和高频多载波解调制信号;进而采用低通滤波器将所述高频多载波解调制信号去除,只保留基带多载波解调制信号,即多载波解调制矩阵;
S410,对所述多载波解调制矩阵进行格式重排,具体包括,对所述多载波解调制矩阵进行转置处理,获得第二多载波解调制矩阵;进而以第二多载波解调制矩阵的行为单位,将所述第二多载波解调制矩阵的各行依次首尾相连,产生多载波解调制向量;
S420,对所述多载波解调制向量进行资源反映射,具体包括,根据NB-IOT协议对数据时频资源位置的定义,对所述多载波解调制向量进行资源反映射,获取时频资源信号;
S430,对所述时频资源信号进行降秩处理,获得NB-IOT符号向量,具体包括:根据NB-IOT协议中层解码矩阵结构,采用所述数据信号信道特征矩阵,对所述时频资源信号进行解正交处理,获得并行信号矩阵;进而对所述并行信号矩阵进行并串转换,获得NB-IOT符号向量;
S440,对所述NB-IOT符号向量进行数字解调制,具体包括:对所述NB-IOT符号向量,按照一个NB-IOT子帧为一个处理单元,采用最大似然估计算法,进行符号码流匹配,获得第三处理信号。
9.根据权利要求8所述的基于NB-IOT信号的夜视系统的实现方法,其特征在于:所述第五子模块的实现方法包括:
S500,对所述第三处理信号进行信道解码,获得信道解码符号向量,具体包括:对所述第三处理信号,按照一个NB-IOT子帧为一个处理单位,采用贝叶斯迭代算法,获得信道解码符号向量;
S510,对所述信道解码符号向量进行解扰码处理,具体包括,对所述信道解码符号向量,与NB-IOT协议中定义的扰码根符号向量,进行软异或处理,获得解扰码信号;
S520,对解扰码信号进行保存,软合并,获得第四处理信号,具体包括:对所述解扰码信号进行保存,形成第一解扰码信号;进而对后续的3个NB-IOT子帧,按照步骤S210到步骤S510,进行处理和保存,形成第二、三、四解扰码信号;进而对第一、二、三、四解扰码信号进行局部最优化合并处理,获得第四处理信号;
所述第六子模块的实现方法包括:
S600,产生NB-IOT子帧信号,具体包括,根据NB-IOT协议定义的NB-IOT子帧的信号结构和特点,采用随机信号进行仿真,获取NB-IOT子帧信号;
S610,获得参考信号,具体包括,根据NB-IOT协议规定的数据信号流程,对第四处理信号进行编码调制处理,获得数据信号;进而将所述数据信号映射到所述NB-IOT子帧信号中,获得参考信号。
CN201810390694.2A 2018-04-27 2018-04-27 一种基于nb-iot信号的夜视系统及其实现方法 Active CN108923803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810390694.2A CN108923803B (zh) 2018-04-27 2018-04-27 一种基于nb-iot信号的夜视系统及其实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810390694.2A CN108923803B (zh) 2018-04-27 2018-04-27 一种基于nb-iot信号的夜视系统及其实现方法

Publications (2)

Publication Number Publication Date
CN108923803A CN108923803A (zh) 2018-11-30
CN108923803B true CN108923803B (zh) 2019-10-11

Family

ID=64403776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810390694.2A Active CN108923803B (zh) 2018-04-27 2018-04-27 一种基于nb-iot信号的夜视系统及其实现方法

Country Status (1)

Country Link
CN (1) CN108923803B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691339B (zh) * 2021-08-18 2023-09-29 北京车和家信息技术有限公司 时钟同步方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104887272A (zh) * 2015-06-26 2015-09-09 四川大学 电磁波热致超声波成像激励源及其构成的成像设备
WO2015198300A1 (en) * 2014-06-24 2015-12-30 Brightway Vision Ltd. Gated sensor based imaging system with minimized delay time between sensor exposures
CN107367719A (zh) * 2017-08-14 2017-11-21 南昌大学 一种基于drm信号外辐射源雷达的杂波抑制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198300A1 (en) * 2014-06-24 2015-12-30 Brightway Vision Ltd. Gated sensor based imaging system with minimized delay time between sensor exposures
CN104887272A (zh) * 2015-06-26 2015-09-09 四川大学 电磁波热致超声波成像激励源及其构成的成像设备
CN107367719A (zh) * 2017-08-14 2017-11-21 南昌大学 一种基于drm信号外辐射源雷达的杂波抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夜视领域几个热点技术的进展及分析;金伟其等;《光学技术》;20050520;第31卷(第3期);第405-409,412页 *

Also Published As

Publication number Publication date
CN108923803A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Knill et al. High range and Doppler resolution by application of compressed sensing using low baseband bandwidth OFDM radar
CN110531323B (zh) 一种适用于mimo/ofdm外辐射源雷达的参考信号重构方法
CN110927723B (zh) 毫米波雷达泥石流智能监测预警系统与方法
CN107634797B (zh) 同时实现可见光定位和可见光通信及提高定位精度的方法
CN108627818A (zh) 基于ofdm的频控阵雷达通信一体化波形设计方法
CN109787932A (zh) 一种基于ofdm的雷达通信一体化信号设计方法
WO2017108947A1 (de) Sendeanordnung zum erzeugen eines für eine lokalisierung geeigneten signalmusters und empfangsanordnung zum durchführen einer lokalisierung
CN108923803B (zh) 一种基于nb-iot信号的夜视系统及其实现方法
CN114073016B (zh) 多流mimo/波束成形雷达
CN109450828B (zh) 信号处理芯片
CN108924072A (zh) 一种基于4glte信号的夜视系统及其实现方法
CN108833053A (zh) 一种基于地面数字电视信号的夜视系统及其实现方法
CN108832943A (zh) 一种基于数字视频卫星信号的夜视系统及其实现方法
CN108923804A (zh) 一种基于wlan信号的夜视系统及其实现方法
CN114355346B (zh) 多星收发组网sar系统及超大幅宽海面舰船目标成像方法
CN108900213A (zh) 一种基于Weightless信号的夜视系统及其实现方法
CN110927724A (zh) 毫米波雷达泥石流智能监测系统与方法
CN108828594A (zh) 一种基于gprs信号的夜视系统及其实现方法
CN109085578A (zh) 一种基于wlan信号的三维成像系统及其实现方法
Zhang et al. Enhanced Channel Estimation for OTFS-Assisted ISAC in Vehicular Networks: A Deep Learning Approach
Aberman et al. Adaptive frequency allocation in radar imaging: Towards cognitive SAR
Karpovich et al. Field tests of a random-padded OTFSM waveform in a joint sensing and communication system
CN108924071A (zh) 一种基于wcdma信号的夜视系统及其实现方法
CN108761448A (zh) 一种基于Weightless信号的低空目标预警系统及其实现方法
CN109085582A (zh) 一种基于nb-iot信号的三维成像系统及其实现方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant